30 April 2024 to 3 May 2024
Amsterdam, Hotel CASA
Europe/Amsterdam timezone

Session

3.3 Hardware acceleration, FPGAs & Uncertainty quantification

30 Apr 2024, 17:10
Amsterdam, Hotel CASA

Amsterdam, Hotel CASA

Conveners

3.3 Hardware acceleration, FPGAs & Uncertainty quantification

  • Anastasios Belias (GSI Helmholtzzentrum für Schwerionenforschung GmbH)

Presentation materials

Previous tabNext tab
Print
PDF
Full screen
Detailed view
Filter
17:00
18:00
Theo Heimel
Precision-Machine Learning for the Matrix Element Method
Oxford, Hotel CASA
17:10 - 17:13
Mark Costantini
Robust Uncertainty Quantification in Parton Distribution Function Inference
Oxford, Hotel CASA
17:13 - 17:16
Dr Samuele Grossi
Evaluating Generative Models with non-parametric two-sample tests
Oxford, Hotel CASA
17:16 - 17:19
julia vazquez escobar
Estimation of Machine Learning model uncertainty in particle physics event classifiers
Oxford, Hotel CASA
17:19 - 17:22
Timo Saala
Studying Adversarial Deep Learning techniques in the context of High-Energy Physics
Oxford, Hotel CASA
17:22 - 17:42
Dr Tanjona Rabemananjara
Hyperparameter optimization of neural networks for proton structure analyses
Oxford, Hotel CASA
17:42 - 18:02
Dily Duan Yi Ong
Next generation cosmological analysis with a re-usable library of machine learning emulators across a variety of cosmological models
Oxford, Hotel CASA
18:02 - 18:05
Dominique Kosters
Deep support vector data description models on an analog in-memory computing platform for real-time unsupervised anomaly detection.
Oxford, Hotel CASA
18:05 - 18:08
Mr Abhishek Kumar Sharma
Reconstruction of Low Mass Vector Mesons via Dimuon decay channel using Machine Learning Technique for the CBM Experiment at FAIR
Oxford, Hotel CASA
18:08 - 18:11
Gergely Gábor Barnaföldi
Deep learning predicted elliptic flow of identified particles in heavy-ion collisions at the RHIC and LHC energies
Oxford, Hotel CASA
18:11 - 18:14