Adversarial Attacks and Defenses in High Energy Physics

TIMO SAALA ON BEHALF OF THE AI SAFETY PROJECT

Motivation

- The laws of physics induce correlations among experimental observables
 - e.g. the rest mass of a particle and its energy in a collision are positively correlated
- Often, simulation is used for training DNNs
 - These simulated datasets are validated against real data
 - This is mostly done using the underlying 1D variable distributions
- Hypothesis: If a NN focuses more on the correlation, the classification performance will become more robust
- Idea: Construct adversarial examples that force the network to concentrate more on correlations, rather than the 1D variable distributions

I. IntroductionWhat are Adversaries?

• Input to a ML model

- Purposefully constructed to produce maximally incorrect results
- While keeping the (objective) perturbation minimal
- State-of-the-art algorithms include:
 - Fast Gradient Sign Method (FGSM)
 - Projected Gradient Descent (PGD)
- Both approaches:
 - Leverage the gradient of the loss w.r.t the input
 - To then alter the input in the direction of this gradient

Example of a misclassification caused by an adversarial attack / example. Taken from "Explaining and Harnessing Adversarial Examples" by Ian J. Goodfellow et. al.

I. Introduction

- Model
- In total, we use four models, two models on HEP data, one on medical data, and one on weather data.
 - Each model uses tabular data as inputs
- Here we focus on a single model on HEP data:
- Based on TopoDNN from G. Kasieczka et. al "The Machine Learning Landscape of Top Taggers"
 - 87 input features: p_T , η , and ϕ of leading 30 jet constituents (ordered by highest p_T)
 - - η_0 , ϕ_0 , η_1 as these take always identical values due to pre-processing
 - Rebuilt using CMS Open Data from 2012 run
 - Classify between TT and WW Jets

- Motivation
- "Normal" adversarial generators try to minimize the perceived change of a single input

- Motivation
- "Normal" adversarial generators significantly change 1D variable distributions

- Motivation
- 1D variable distributions are an important concept in many HEP analyses
- => Develop adversarial generator that seeks to minimize the change to 1D variable distributions

- Algorithm (Setup)
- For every variable, generate finely binned histograms over the entire dataset (e.g. test data)

- Algorithm (Setup)

• For every variable, take y-values (frequencies) as probability weights (0.03, ..., 0.49, ...) 0.5 0.4 0.3 0.2 -0.1 -0.0

- Algorithm (Iteration)
- Take a single input I, iterate over all input features
- For each input feature (X): shuffle probabilitiscally within the previously calculated frequencies

- Algorithm (Iteration)
- Take a single input I, iterate over all input features
- For each input feature (X): shuffle probabilitiscally within the previously calculated frequencies

- Algorithm (Iteration)
- Take a single input I, iterate over all input features
- After all input features have been shuffled, test if this combination is adversarial

- Algorithm (Iteration)
- After all input features have been shuffled, test if this combination is adversarial
- If no, continue shuffling (up to a defined amount of tries)

- Algorithm (Iteration)
- After all input features have been shuffled, test if this combination is adversarial
- If yes, terminate and return adversary

- Algorithm (Caveats)

 Instead of always shuffling every variable, the amount of variables to be shuffled nVars for the given data set can be set

- Then, for each input: sample nVars randomly from the set of input features to be shuffled
- Additionally, can define the maximum amount of shuffle attempts to be done

III. Performance of RDSA

- Attack

• Apply varying "strengths" of RDSA and PGD (as a Reference)

• RDSA :

- Shuffle between 10 and 87 (all) variables each time (in increments of 10 / 7)
 - => 10, 20, ..., 80, 87
- Do the shuffling for a maximum of 100 attempts for each input
- PGD:
 - Choose maximum allowed perturbation ϵ between 0.5 and 4.0 in increments of 0.5
 - Perturbation per step = 0.0035 * epsilon, total of 40 steps

III. Performance of RDSA

- Attack
- As metrics here, consider the Fooling Ratio (x-Axis),
- And the p-values (y-Axis) resulting from a χ^2 test

Remarks:

- PGD Always 0
- We split the data set for the χ^2 test in half => p-values of 1 (or close to 1) are impossible

III. Performance of RDSA

- Attack
- An interesting and perhaps useful property of the attack:
- Correlations of input features "vanish" when shuffling all of them

Correlation Matrices of Variables of Initial Data (Left) and RDSA (Right)

Correlation Matrices of Variables of Initial Data (Left) and RDSA (Right)

III. Improving the Network Robustness

- Retraining
- Use novel RDSA for data augmentation
 - Compare also with CTGAN (from Lei Xu et. al. "Modeling Tabular data using Conditional GAN" and PGD as augmentation
- Assumption: By "fixing" the 1D distributions of the training set, the model focuses more on learning higher dimensional statistical moments
 - e.g. Correlation
- To this end, purposefully reduce training data size to bring model to data-starved regions
 - From ~280k inputs for training to ~70k

III. Improving the Network Robustness

- Retraining
- As this is a binary classification task, consider mainly two metrics
- The accuracy of the augmented models,
- Errors here are given by the standard deviation

III. Improving the Network Robustness

- Retraining
- As this is a binary classification task, consider mainly two metrics
- The accuracy of the augmented models, and the AUROC

•Errors here are given by the standard deviation

IV. Conclusion

- Introduced novel attack, achieving high fooling ratios while keeping the changes to 1D distributions minimal
 - Additionally tested on three further models, one more HEP, one medicine, and one weather
 - This attack also vanishes the correlations between the input features
 - This attack would go "unnoticed" when comparing 1D variable distributions
- Can be used as an (at least) competitive data augmentation method
 - According to our tests conducted
 - Keeping the 1D distributions of the training set very similar
 - => possibly forcing the network to focus on higher dimensional statistical moments