
Adversarial Attacks and 
Defenses in High Energy 
Physics
TIMO SAALA ON BEHALF OF THE AI SAFETY PROJECT



Motivation
• The laws of physics induce correlations among experimental observables
• e.g. the rest mass of a particle and its energy in a collision are positively correlated

• Often, simulation is used for training DNNs
• These simulated datasets are validated against real data

• This is mostly done using the underlying 1D variable distributions

• Hypothesis: If a NN focuses more on the correlation, the classification performance will become
more robust

• Idea: Construct adversarial examples that force the network to concentrate more on 
correlations, rather than the 1D variable distributions
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I. Introduction
- What are Adversaries?
• Input to a ML model
• Purposefully constructed to produce maximally incorrect results

• While keeping the (objective) perturbation minimal

• State-of-the-art algorithms include:
• Fast Gradient Sign Method (FGSM) 

• Projected Gradient Descent (PGD)

• Both approaches:
• Leverage the gradient of the loss w.r.t the input

• To then alter the input in the direction of this gradient
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Example of a misclassification caused by an adversarial attack / example.
Taken from „Explaining and Harnessing Adversarial Examples“ by Ian J. 
Goodfellow et. al.



I. Introduction
- Model

• In total, we use four models, two models on HEP data, one on medical data, and one on 
weather data.
• Each model uses tabular data as inputs

• Here we focus on a single model on HEP data:

• Based on TopoDNN from G. Kasieczka et. al „The Machine Learning Landscape of Top Taggers“
• 87 input features: 𝑝𝑇 , 𝜂, 𝑎𝑛𝑑 𝜙 of leading 30 jet constituents (ordered by highest 𝑝𝑇)
• - 𝜂0, 𝜙0, 𝜂1 as these take always identical values due to pre-processing

• Rebuilt using CMS Open Data from 2012 run

• Classify between TT and WW Jets
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II. Random Distribution Shuffle Attack
- Motivation

• „Normal“ adversarial generators try to minimize the perceived change of a single input
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II. Random Distribution Shuffle Attack
- Motivation

• „Normal“ adversarial generators significantly change 1D variable distributions
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II. Random Distribution Shuffle Attack
- Motivation

• 1D variable distributions are an important concept in many HEP analyses

=> Develop adversarial generator that seeks to minimize the change to 1D variable distributions
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II. Random Distribution Shuffle Attack
- Algorithm (Setup)

• For every variable, generate finely binned histograms over the entire dataset (e.g. test data)
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II. Random Distribution Shuffle Attack
- Algorithm (Setup)

• For every variable, take y-values (frequencies) as probabilty weights (0.03, …, 0.49, …)
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II. Random Distribution Shuffle Attack
- Algorithm (Iteration)

• Take a single input I, iterate over all input features

• For each input feature (X): shuffle probabilitiscally within the previously calculated frequencies
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II. Random Distribution Shuffle Attack
- Algorithm (Iteration)

• Take a single input I, iterate over all input features

• For each input feature (X): shuffle probabilitiscally within the previously calculated frequencies
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II. Random Distribution Shuffle Attack
- Algorithm (Iteration)

• Take a single input I, iterate over all input features

• After all input features have been shuffled, test if this combination is adversarial
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II. Random Distribution Shuffle Attack
- Algorithm (Iteration)

• After all input features have been shuffled, test if this combination is adversarial

• If no, continue shuffling (up to a defined amount of tries)
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II. Random Distribution Shuffle Attack
- Algorithm (Iteration)

• After all input features have been shuffled, test if this combination is adversarial

• If yes, terminate and return adversary
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II. Random Distribution Shuffle Attack
- Algorithm (Caveats)

• Instead of always shuffling every variable, the amount of variables to be shuffled nVars for the
given data set can be set

• Then, for each input: sample nVars randomly from the set of input features to be shuffled

• Additionally, can define the maximum amount of shuffle attempts to be done
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III. Performance of RDSA
- Attack

• Apply varying „strengths“ of RDSA and PGD (as a Reference)

• RDSA :
• Shuffle between 10 and 87 (all) variables each time (in increments of 10 / 7)
• => 10, 20, …, 80, 87

• Do the shuffling for a maximum of 100 attempts for each input

• PGD:
• Choose maximum allowed perturbation 𝜖 between 0.5 and 4.0 in increments of 0.5

• Perturbation per step = 0.0035 * epsilon, total of 40 steps

TIMO SAALA ON BEHALF OF THE AI SAFETY PROJECT 16



III. Performance of RDSA
- Attack

• As metrics here, consider the Fooling Ratio (x-Axis), 

• And the p-values (y-Axis) resulting from a 𝜒2 test
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Remarks:
• PGD Always 0
• We split the data set for the 𝜒2 test in half

=> p-values of 1 (or close to 1) are impossible



III. Performance of RDSA
- Attack

• An interesting and perhaps useful property of the attack:

• Correlations of input features „vanish“ when shuffling all of them
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III. Improving the Network Robustness
- Retraining

• Use novel RDSA for data augmentation
• Compare also with CTGAN (from Lei Xu et. al. „Modeling Tabular data using Conditional GAN“ and PGD 

as augmentation

• Assumption: By „fixing“ the 1D distributions of the training set, the model focuses more on 
learning higher dimensional statistical moments
• e.g. Correlation

• To this end, purposefully reduce training data size to bring model to data-starved regions
• From ~280k inputs for training to ~70k
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III. Improving the Network Robustness
- Retraining

• As this is a binary classification task, consider mainly two metrics

• The accuracy of the augmented models, 

• Errors here are given by the standard deviation
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III. Improving the Network Robustness
- Retraining

• As this is a binary classification task, consider mainly two metrics

• The accuracy of the augmented models, 
and  the AUROC

•Errors here are given by the standard deviation
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IV. Conclusion

• Introduced novel attack, achieving high fooling ratios while keeping the changes to 1D 
distributions minimal
• Additionally tested on three further models, one more HEP, one medicine, and one weather

• This attack also vanishes the correlations between the input features

• This attack would go „unnoticed“ when comparing 1D variable distributions

• Can be used as an (at least) competitive data augmentation method
• According to our tests conducted

• Keeping the 1D distributions of the training set very similar

• => possibly forcing the network to focus on higher dimensional statistical moments
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