-
17:10
Precision-Machine Learning for the Matrix Element Method
-
Theo Heimel
(Heidelberg University)
-
17:13
Robust Uncertainty Quantification in Parton Distribution Function Inference
-
Mark Costantini
(University of Cambridge)
-
17:16
Evaluating Generative Models with non-parametric two-sample tests
-
Samuele Grossi
(University of Genova)
-
17:19
Estimation of Machine Learning model uncertainty in particle physics event classifiers
-
julia vazquez escobar
(Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT))
-
17:22
Studying Adversarial Deep Learning techniques in the context of High-Energy Physics
-
Timo Saala
-
17:42
Hyperparameter optimization of neural networks for proton structure analyses
-
Tanjona Rabemananjara
(nikhef)
-
18:02
Next generation cosmological analysis with a re-usable library of machine learning emulators across a variety of cosmological models
-
Dily Duan Yi Ong
-
18:05
Deep support vector data description models on an analog in-memory computing platform for real-time unsupervised anomaly detection.
-
Dominique Kosters
(Radboud Universiteit, IBM, IMM,)
-
18:08
Reconstruction of Low Mass Vector Mesons via Dimuon decay channel using Machine Learning Technique for the CBM Experiment at FAIR
-
Abhishek Kumar Sharma
(Aligarh Muslim Universty, Aligarh, India)
-
18:11
Deep learning predicted elliptic flow of identified particles in heavy-ion collisions at the RHIC and LHC energies
-
Gergely Gábor Barnaföldi
(HUN-REN Wigner RCP)