Precision-Machine Learning for the Matrix Element Method

Theo Heimel April 2024

Institut für theoretische Physik Universität Heidelberg

HEIDELBERG ZUKUNFT **SEIT 1386**

How can we extract all the available information from LHC data?

Use theory knowledge to extract likelihood

 \rightarrow matrix element method

Precision-Machine Learning for the Matrix Element Method

neural importance sampling!

Come to my poster to see how this can be done with transformers, normalizing flows, classifiers and

2

PDF uncertainties in the presence of inconsistent training data

Mark N. Costantini

EuCAIF Conference 2024, Amsterdam

POSTER: #100

Funded by the European Union

European Research Council Established by the European Commission

Parton Distribution Functions and their uncertainties

- PDFs parameterise the structure of the proton in terms of its subnuclear constituents
- estimated trough the Monte Carlo replica method [arXiV: 2404.10056]
- affect fit

• NNPDF: PDF model is parameterised by a dense Neural Network and uncertainties are

• Fitted from data from several experimental sources \rightarrow several sources of inconsistencies can

Inconsistent training data

- Inconsistency is defined as a missing or underestimated experimental uncertainty
- Closure test: powerful framework to test fitting methodology [arXiV: 2111.05787]

Add Gaussian noise sampled from experimental covariance matrix

Evaluating Generative Models with non-parametric two-sample tests Samuele Grossi

Amsterdam, EuCAIFCon, 30th April 2024 Based on work in collaboration with Riccardo Torre

Two-sample test in high energy physics

Two-Sample Test: understand if two independent data samples are drawn from the same probability density function (PDF)

- **PARAMETRIC**: Some assumptions on the underlying distributions of the samples are needed to perform the test
- **NON-PARAMETRIC**: Only the data are used to perform the test, without any assumption on the underlying distributions

In high energy physics: two-sample test to compare data provided by two different generators. Example: Powheg/MadGraph vs Neural Networks

Objectives and procedure

Purpose of the work: provide a systematic analysis of non-parametric two-sample test using different evaluation metrics

- Use reference distributions to :
- Extract toy samples to build null hypothesis distributionsPerform the likelihood-ratio test
- Carry out non-parametric tests using different metrics. Compare performances to the likelihood-ratio

Particle physics **mathematic** high dimensional datasets

We focused on *univariate integral probability measure* metrics: easy to implement, fast results, scale well with the dimensions

Estimation of ML model uncertainty in particle physics event classifiers

Miguel Cárdenas Montes¹ <u>miguel.cardenas@ciemat.es</u> José M. Hernández¹ <u>jose.hernandez@ciemat.es</u> <u>Julia Vázquez Escobar</u>¹ <u>julia.vazquez@ciemat.es</u> ¹Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)

> EuCAIFCon 2024 May 30, 2024

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Julia Vázquez-Escobar, J.M. Hernández, Miguel Cárdenas-Montes, Computer Physics Communications, 268, (2021)

Methods

Bayesian approx.

$$\widetilde{\mathbb{E}}\left[\mathbf{y}^{*}\right] := \frac{1}{T} \sum_{t=1}^{T} \mathbf{f}^{\hat{\omega}_{t}}\left(\mathbf{x}^{*}\right) \xrightarrow[T \to \infty]{} \mathbb{E}_{q_{\theta}^{*}\left(\mathbf{y}^{*} | \mathbf{x}^{*}\right)}\left[\mathbf{y}^{*}\right]$$

$$\widetilde{\operatorname{Var}}\left[\mathbf{y}^{*}\right] := \tau^{-1}\mathbf{I} + \frac{1}{T}\sum_{t=1}^{T}\mathbf{f}^{\hat{\omega}t}\left(\mathbf{x}^{*}\right)^{T}\mathbf{f}^{\hat{\omega}_{t}}\left(\mathbf{x}^{*}\right) - \widetilde{\mathbb{E}}\left[\mathbf{y}^{*}\right]^{T}\widetilde{\mathbb{E}}\left[\mathbf{y}^{*}\right] \xrightarrow[T \to \infty]{} \operatorname{Var}_{q_{\theta}^{*}\left(\mathbf{y}^{*} | \mathbf{x}^{*}\right)}\left[\mathbf{y}^{*}\right]$$

Probabilistic RF

Local ensembles

Proposition 1.1 Let Δ_{θ} be the projection of a random perturbation with mean zero and covariance proportional to the identity $\epsilon \cdot I$ into the ensemble subspace spanned by $\{\xi_{(j)} : j > m\}$. Let P_{Δ} be the linearized change in prediction induced by the perturbation

$$P_{\Delta}(x') := g_{\theta*}(x')^{\top} \Delta_{\theta} \approx \hat{y}(x', \theta * + \Delta_{\theta}) - \hat{y}(x', \theta *)$$

then $\mathcal{E}_m(x') = \varepsilon^{-1/2} \cdot SD(P_\Delta(x')).$

Results

The probability density functions of the classification parameter for true signal and background events are shown.

Results

Model	AUC
Probabilistic Random Forest Local Ensembles	$\begin{array}{c} 0.969 \pm 0.005 \\ 0.951 \pm 0.006 \end{array}$
Bayesian Approximation	0.990 ± 0.001

