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How can we extract all the 
available information from LHC data?
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→ loss of information
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known from 
theory

likelihood intractable 
→ use machine learning

ℒ
Theory Shower EventsHard process Hadronization Detectors

• smooth and well-calibrated likelihoods, 
both for low and high event counts 

• close to optimal information 
• Uncertainty bands: MC integration error & 

systematic error from limited training statistics (BNN) 
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• transformer 
correlations between momenta, combinatorics 

• normalizing flow 
likelihood for individual momenta  

• Bayesian networks 
estimate training uncertainties 
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Classical analysis 

• hand-crafted observables 
• binned data 

→ loss of information

Matrix Element Method (MEM) 

• based on first principles 
• estimates uncertainties reliably 
• optimal use of information 

→ perfect for processes with few events

Theory 
parameter 

α

Reconstructed 
momenta 

xreco

known from 
theory

likelihood intractable 
→ learn with neural network

p(xreco |α) = ∫ dxhard p(xhard |α) p(xreco |xhard) ϵ(xhard)

Efficient MC integration 
importance sampling 
with normalizing flow 

xhard ∼ p(xhard ∣ xreco, α)

Theory knowledge 
diff. cross-section 

1
σ(α)

dσ(α)
dxhard

Transfer function 
density estimation: 

normalizing flow and 
transformer

Acceptance function 
learn with simple 
classifier network

ℒ
Theory Shower EventsHard process DetectorsHadronization

How can we extract 
all the available information 

from LHC data?

Single top and Higgs production with anomalous CP-phase  
Hadronic decay of top + ISR:   

• low total cross section (few events)  
• low variation of rate 
• kinematic observables still sensitive 

→ ideal use case for MEM 
 

α
tHq → (bjj) (γγ) j + QCD jets

LHC example

Results

Learning the transfer function

SciPost Physics Submission

the inputs by one and mask the self-attention matrix using a triangular mask to ensure that
every momentum is only conditioned on the previous momenta. e(i)reco and e(i)hard denote the
particle-wise embeddings of the momenta and their position. We define this embedding as the
concatenation of the momenta and their one-hot-encoded position in the event, padded with
zeros. Using a single linear layer instead of the zero-padding does not lead to any performance
improvements. We then sample from the transfer probability iteratively, which requires n
Transfermer evaluations,

p(x (i)reco|xhard)⌘ p(x (i)reco|c(e(0)reco, . . . , e(i�1)
reco , ehard)) . (46)

Since all c(i) can be computed in a single step from the reco-level momenta, density estimation
and training this model is very fast. This is also the way the Transfermer is used during the
MEM integration.

The transfer probability in Eq.(45) still has to be converted into a probability distribution
for the 4-momentum components of the external particles. To encode massless and massive
particles in the same cINN we factorize it into

p(x (i)reco|c(i)) = p(p(i)T ,⌘(i),�(i)|c(i))⇥ p(m(i)|p(i)T ,⌘(i),�(i), c(i)) , (47)

such that the generation of the mass direction can be omitted without affecting the other three
components. The corresponding cINN architecture is given in the right panel of Fig. 6. Ratio-
nal quadratic spline coupling layers model the one-dimensional distributions. By transforming
each momentum component once and conditioning it on the other components and the trans-
former output, using a feed-forward network, we build a minimal cINN that is able to model
the correlations between the momentum components.

In practice, we use normalized versions of log pT and log m as inputs for the network and
map them to Gaussian latent spaces. Similarly, we map � and ⌘ to uniform latent spaces,
taking into account the detector-level ⌘ cuts. For � we use periodic RQS splines [88]. The
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Figure 6: Left: transformer combined with cINN, encoding the transfer probability. Right:
cINN used to learn individual momenta, where r is the usual latent space to parametrize a
generative model.
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Come to my poster to see how this can be done with 
transformers, normalizing flows, classifiers and 
neural importance sampling!



PDF uncertainties in the presence of 
inconsistent training data
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Parton Distribution Functions and their uncertainties

2

 PDFs parameterise the structure of the proton in terms of its subnuclear 
constituents

 Fitted from data from several experimental sources  several sources of inconsistencies can 
affect fit

→

 NNPDF: PDF model is parameterised by a dense Neural Network and uncertainties are 
estimated trough the Monte Carlo replica method [arXiV: 2404.10056]

[arXiv: 2109.02653]
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Inconsistent training data

3

 Inconsistency is defined as a missing or underestimated experimental uncertainty

 Closure test: powerful framework to test fitting methodology [arXiV: 2111.05787]
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fout

Fit to model using 
MC replica method

Compare to 
underlying 
law

Add Gaussian noise 
sampled from 
experimental 
covariance matrix
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Evaluating Generative Models with 
non-parametric two-sample tests

Samuele Grossi

Amsterdam, EuCAIFCon,  30th April 2024
Based on work in collaboration with Riccardo Torre
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Two-sample test in high energy physics

2

• PARAMETRIC: Some assumptions on the underlying distributions of the samples are 
needed to perform the test

• NON-PARAMETRIC: Only the data are used to perform the test, without any assumption 
on the underlying distributions

Two-Sample Test: understand if two independent data samples are drawn from the same 
probability density function (PDF)

In high energy physics: two-sample test to compare data provided by two different generators. 
Example: Powheg/MadGraph vs Neural Networks



Objectives and procedure
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• Use reference distributions to : - Extract toy samples to build null hypothesis distributions
- Perform the likelihood-ratio test 

• Carry out non-parametric tests using different metrics. Compare performances to the likelihood-ratio 

Purpose of the work: provide a systematic analysis of non-parametric two-sample test using 
different evaluation metrics

Particle physics                     high dimensional datasets 

We focused on univariate integral probability measure metrics: 
easy to implement, fast results, scale well with the dimensions



Estimation of ML model uncertainty in particle 
physics event classifiers

Miguel Cárdenas Montes1 miguel.cardenas@ciemat.es 
 José M. Hernández1 jose.hernandez@ciemat.es Julia Vázquez Escobar1 julia.vazquez@ciemat.es 

 EuCAIFCon 2024
May 30, 2024

1Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)

1

Julia Vázquez-Escobar, J.M. 
Hernández, Miguel Cárdenas-Montes, 
Computer Physics Communications, 
268, (2021)

mailto:jose.hernandez@ciemat.es
mailto:julia.vazquez@ciemat.es
https://www.sciencedirect.com/science/article/abs/pii/S0010465521002125?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0010465521002125?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0010465521002125?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0010465521002125?via%3Dihub


Methods
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Bayesian approx.                      Probabilistic RF          

Local ensembles       



Results
The probability density functions of the 

classification parameter for true signal and 
background events are shown. 



Results
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