unimpeded: A universal parameter estimation, model comparison and tension quantification distributed over every dataset

Dily Duan Yi Ong <dlo26@cam.ac.uk>, Will Handley <wh260@cam.ac.uk>

Simple and straightforward pip installable package gives you access across models and datasets!

Your choice of samplers! MCMC or Nested Sampling

pip install unimpeded

samples = unimpeded.get(data='planck_2018_CamSpec', model='lcdm',
method='ns')

Cosmological models

- Λ CDM : H_0 , τ_{reio} , $\Omega_b h^2$, $\Omega_c h^2$, A_s , n_s
- $K\Lambda CDM : \Lambda CDM + \Omega_K$ (varying curvature)
- NACDM : Varying $N_{\rm eff}$ and total mass of 3 degenerate ν 's
- $n\Lambda$ CDM : Varying total mass of 3 degenerate ν 's with $N_{\rm eff}$ =3.044
- $m\Lambda$ CDM : Varying $N_{\rm eff}$ with two massless ν and one with $m{=}0.06$
- $n_{run}\Lambda CDM : \Lambda CDM + n_{run}$ (running of spectral index $dn_s/d \ln k$)
- $wCDM : \Lambda CDM + w$ (constant cosmological equation of state)
- $w_0 w_a \Lambda CDM : \Lambda CDM + w_0 + w_a$ (varying dark energy equation of state, CLP)
- $r \land CDM : \land CDM + r$ (varying scalar-to-tensor ratio)

Cosmological datasets

- CMB:(Plik, Camspec, NPIPE, BICEP)
 ± CMB lensing
- BAO:SDSS, BOSS, eBOSS, Lyα
- SNe: Pantheon, SH0ES
- WL: DESY1

Metropolis-Hastings MCMC

- Single "walker"
- Explores posterior
- Fast, if proposal matrix is tuned
- Parameter estimation, suspiciousness calculation
- Channel capacity optimised for generating posterior samples

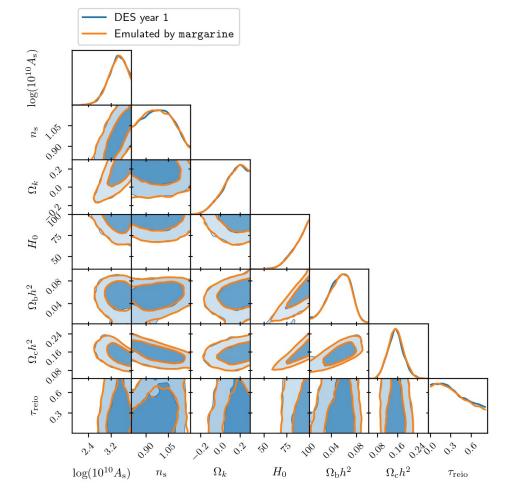
Nested Sampling

- Ensemble of "live points"
- Scans from prior to peak of likelihood
- Slower, no tuning reauired
- Parameter estimation, model comparison, tension quantification
- Channel capacity optimised for computing partition function

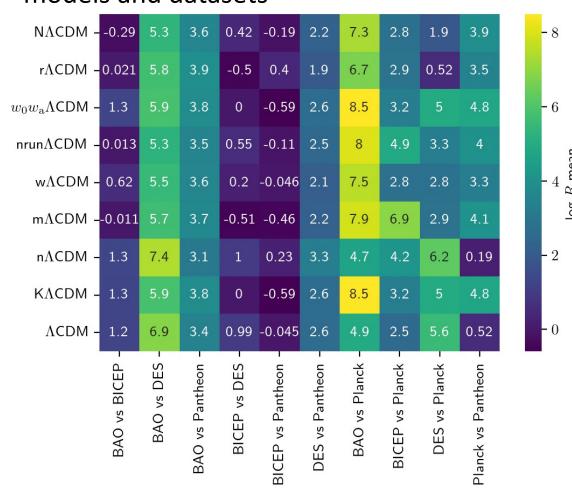
unimpeded: A universal parameter estimation, model comparison and tension quantification distributed over every dataset

Dily Duan Yi Ong <dlo26@cam.ac.uk>, Will Handley <wh260@cam.ac.uk>

A re-usable library of machine learning emulators, implemented with piecewise normalising flows



Rapid tension statistics comparisons across models and datasets

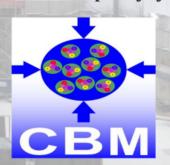


Reconstruction of Low Mass Vector Mesons(LMVM) using machine learning techniques for CBM Experiment at FAIR SIS100

Presented by: Abhishek Kumar Sharma

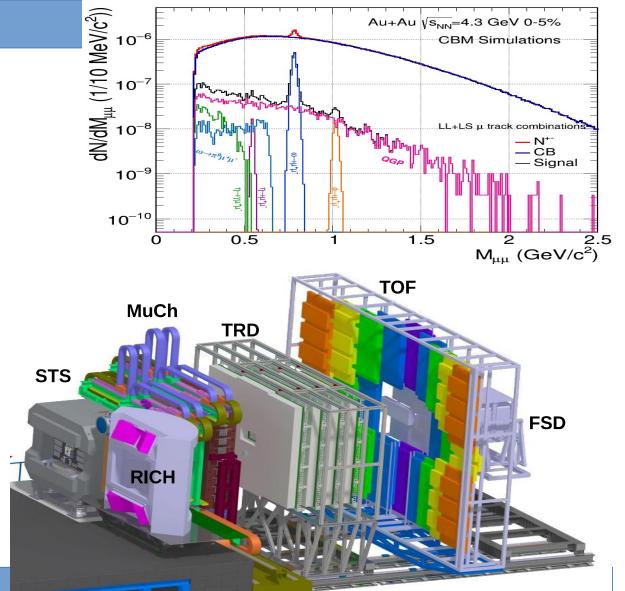
Collaborators: Raktim Mukherjee, Pawan Sharma, Partha Partim Bhaduri, Apar Agarwal,

Anand Kumar Dubey, Anna Senger, Subhashish Chattopadhyay



CBM Experiment at FAIR

- The Compressed Baryonic Matter Experiment is situated within the accelerator facility known as Facility for Anti Proton Ion Research (FAIR) in Darmstadt, Germany
- The goal of the CBM experiment is to investigate the phase diagram of strongly interacting matter under conditions characterized by high net baryon densities and moderate temperatures.
- In-medium modification of light vector mesons, hyper-nuclei, charm production and their propagation inside the nuclear matter.
- The particle multiplicity of the particle like ω , η , ϕ , ρ is quite low.
- The precision and rare probes need high statistics with greater efficiency. The signal efficiency obtained through traditional uni-variate cut method is low.
- Therefore the need for multivariate analysis for the dimuon detection is required.



8.0

0.9

m_{inv} (GeV/c²)

0.8

0.9

1.1

m_{inv} (GeV/c²)

0.45 0.5

0.55

m_{inv} (GeV/c²)

0.45 0.5 0.55

m_{inv} (GeV/c²)

Comparison Table for Physics Observables

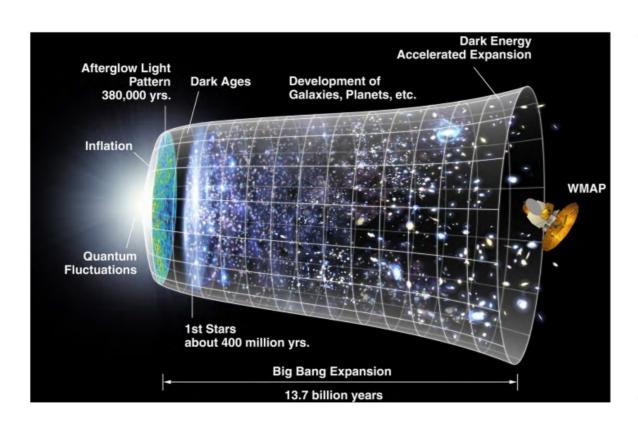
meson	method	S/B ratio	Efficiency(%)	Normalised Significance
$\omega \rightarrow \mu^+ \mu^-$	Manual cuts	0.24	0.61	1.00
$\omega \rightarrow \mu^+ \mu^-$	BDTG @ 0.65	0.22	2.07	1.77
$\omega \rightarrow \mu^+ \mu^-$	kNN @ 0.88	0.22	1.37	1.47
$\omega \rightarrow \mu^+ \mu^-$	HMatrix @ 0.18	0.21	0.97	1.19
$\eta \rightarrow \mu^+ \mu^-$	Manual cuts	0.01	0.23	1.00
$\eta \rightarrow \mu^+ \mu^-$	BDTG @ 0.7	0.01	1.15	2.24
$\varphi \to \mu^+ \mu^-$	Manual cuts	0.014	2.09	1.00
$\phi \rightarrow \mu^+ \mu^-$	BDTG @ 0.71	0.014	5.27	1.57

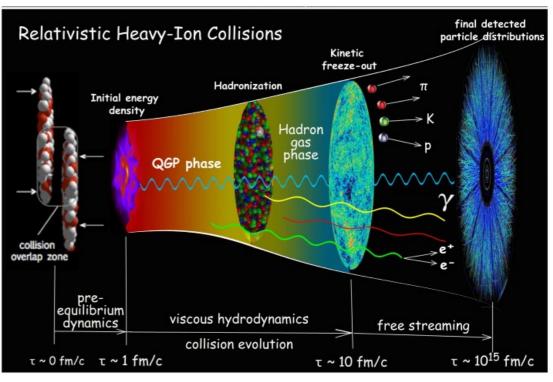
- Further investigation of complete dimuon cocktail production and for high mass region for J/ψ production is under progress.
- These ML algorithms can also be used to at the digitization and reconstruction level as well for improving the detector efficiency.

Thank you very much for your Kind Attention!

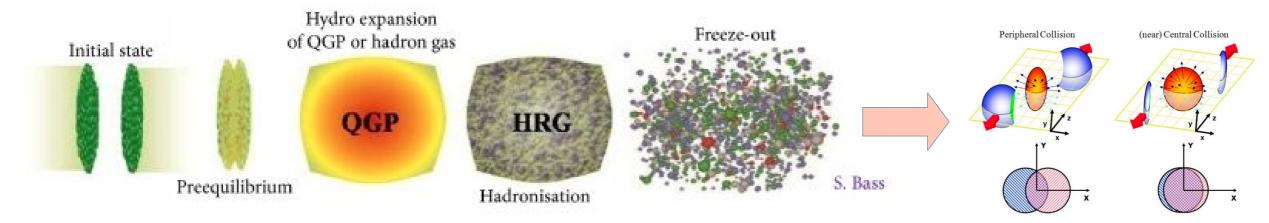
4

G.G. Barnaföldi *et al*: Deep learning predicted elliptic flow of identified particles at the RHIC & LHC energies





QGP signature: elliptic flow (v₂) in HIC



Elliptic flow describes the azimuthal momentum space anisotropy of particle emission for a non-central heavy-ion collision.

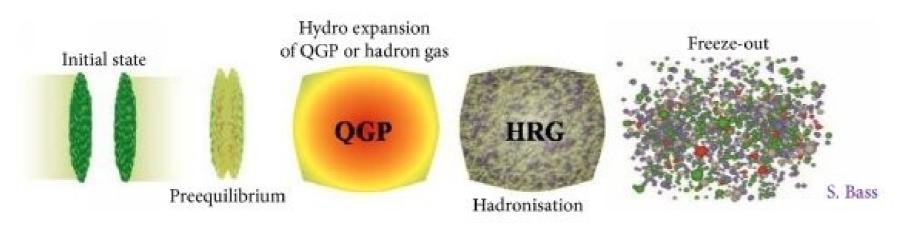
$$E\frac{d^{3}N}{dp^{3}} = \frac{d^{2}N}{p_{T}dp_{T}dy} \frac{1}{2\pi} \left(1 + 2\sum_{n=1}^{\infty} v_{n} \cos[n(\phi - \psi_{n})] \right)$$

The 2nd harmonic coefficient of the Fourier expansion of azimuthal momentum distribution: $v_2(p_T, y) = \langle \cos(2(\phi - \psi_2)) \rangle$

Azimuthal momentum space anisotropy

Spatial anisotropy

QGP signature: elliptic flow (v₂) in HIC



Elliptic flow describes the azimuthal momentum space anisotropy of particle emission for a non-central heavy-ion collision.

$$E\frac{d^{3}N}{dp^{3}} = \frac{d^{2}N}{p_{T}dp_{T}dy} \frac{1}{2\pi} \left(1 + 2\sum_{n=1}^{\infty} v_{n} \cos[n(\phi - \psi_{n})] \right)$$

The 2nd harmonic coefficient of the Fourier expansion of azimuthal momentum distribution: $v_2(p_T, y) = \langle \cos(2(\phi - \psi_2)) \rangle$

G.G. Barnafoldi: ExploreQGP 2023

(near) Central Collision

Results: how ML can help with this?

It is possible to estimate the elliptic flow by ML

- Get best Min. Bias. Monte Carlo simulation data and train the well-designed DNN system...
 - → AMPT & DNN correlates well for all centrality
 - → Best correlation is for the highest statistic
 - → Energy scaling is well preserved (non-linear)
 - → The $v_2(p_T)$ is also preserved with PID & NCQ

See more on poster #105

NKFIH OTKA K135515, NEMZ_KI-2022-00031, Wigner Scientific Computing Laboratory

Refs.: PRD 105, 114022 (2022) PRD 107, 094001(2023)

G.G. Barnafoldi: ExploreQGP 2023

