Conveners
2.1 Pattern recognition & Image analysis
- Pietro Vischia (Universidad de Oviedo and Instituto de Ciencias y Tecnologías Espaciales de Asturias (ICTEA))
Presentation materials
The expected increase in the recorded dataset for future upgrades of the main experiments at the Large Hadron Collider (LHC) at CERN, including the LHCb detector, while having a limited bandwidth, comes with computational challenges that classic computing struggles to solve. Emerging technologies such as Quantum Computing (QC), which exploits the principles of superposition and interference,...
We have been studying the use of deep neural networks (DNNs) to identify and locate primary vertices (PVs) in proton-proton collisions at the LHC. Previously reported results demonstrate that a hybrid architecture, using a fully connected network (FCN) as the first stage and a convolutional neural network (CNN) as the second stage provides better efficiency than the default heuristic...
Continuing from our prior work \citep{10.1093/mnras/stac3797}, where a single detector data of the Einstein Telescope (ET) was evaluated for the detection of binary black hole (BBHs) using deep learning (DL). In this work we explored the detection efficiency of BBHs using data combined from all the three proposed detectors of ET, with five different lower frequency cutoff (
Machine learning (ML) plays a significant role in data mining at the High Energy Physics experiments. An overview of ML applications at the ATLAS experiments will be shown, with highlights in Physics Beyond the Standard model searches using anomaly detection and active learning. Additionally, advances in the object reconstruction and improvements in simulation using ML will be shown.
In particle collider experiments, such as the ATLAS and CMS experiments at CERN, high-energy particles collide and shatter into a plethora of charged particles traversing a silicon detector and leaving energy deposits, or hits, on the detector modules. The reconstruction of charged-particle trajectories (tracks) from these hits, an integral part in any physics program at the Large Hadron...
Research on Universe and Matter (ErUM) at major infrastructures such as CERN or large observatories, jointly conducted with university groups, is an important driver for the digital transformation. In Germany, about 20.000 scientists are working on ErUM-related sciences and can benefit from actual methods of artificial intelligence. The central networking and transfer office ErUM-Data-Hub...
Isotopic composition measurements of singly-charged Cosmic Rays (CR) provide essential insights into CR transport in the Galaxy. The Alpha Magnetic Spectrometer (AMS-02) can identify singly-charged isotopes up to about 10 GeV/n. However, their identification presents challenges due to the small abundance of CR deuterons compared to the proton background. In particular, a high accuracy for the...
The interTwin project, funded by the European Commission, is at the forefront of leveraging 'Digital Twins' across various scientific domains, with a particular emphasis on physics and earth observation. One of the most advanced use-cases of interTwin is event generation for particle detector simulation at CERN. interTwin enables particle detector simulations to leverage AI methodologies on...
Nested sampling is a tool for posterior estimation and model comparison across a wide variety of cross-disciplinary fields, and is used in Simulation Based Inference and AI emulation. This talk explores the performance and accuracy gains to be made in high dimensional nested sampling by rescuing the discarded likelihood evaluations available in present nested sampling runs, and is thus useful...
Phenomenological analyses in beyond the Standard Model (BSM) theories assess the viability of BSM models by testing them against current experimental data, aiming to explain new physics signals. However, these analyses face significant challenges. The parameter space in BSM models are commonly large and high dimensional. The regions capable of accommodating a combination of experimental...