The observation of a CP-violating permanent electric dipole moment of the electron (eEDM) larger than the value predicted by the Standard Model (SM) of particle physics would be direct evidence of new physics, while an upper limit of the eEDM would constrain extensions to the SM. The NL-eEDM experiment has been set up over the last few years, and first measurements demonstrate the working of...
Minute-long gravitational-wave transients are an interesting class of events with a high potential for new Science. Comparatively to recent detections of gravitational waves produced from compact binary systems, minute-long transients are expected to originate from a wide range of poorly understood astrophysical phenomena such as magnetars and accretion disk instabilities for which the lack of...
Gravitational waves play an essential role in multi-messenger astronomy. In principle, they could be detected before the other channels. This is particularly important for binary neutron star mergers, where electromagnetic counterparts can be observed. To issue alerts, one would require the detection in the early inspiral part of the signal, well before the maximum frequency is reached. Our...
In view of the LHC upgrade to high-luminosity LHC, trackers need to be upgraded to comply new stringent requirements in terms of position (~5um) and time (~10ps) resolution. These properties are required for dealing with an extremely high event rate, identifying particles and reconstructing originating collision and vertex positions.
MAPS are good candidates for present and future trackers...
The measurement of the muon magnetic anomaly, aμ = (gμ - 2)/2, is one of the most accurate tests of the Standard Model (SM).
The measurement of aμ by the E989 Muon g-2 experiment was presented last April and confirmed the E821 BNL experimental result of 2004, increasing the significance of the discrepancy between the measured and SM predicted aμ from 3.7σ to 4.2σ.
In the E989 experiment,...
Interferometer data contains numerous noise transients, or “glitches”, that can mimic true gravitational waves, reducing the sensitivity of the match-filtering search by increasing the rate at which random coincidences occur. High mass binary black hole mergers are particularly susceptible since they resemble short noise transients. We show that we can use a template bank of compact binary...
Generalized Transverse Momentum Dependent parton distributions (GTMDs) encode information about both the transverse momentum and the coordinate dependence of quarks and gluons inside hadrons. GTMDs are hard to probe in experiments, but a few possibilities have been suggested. Gluon GTMDs are accessible via diffractive dijet production which can be explored at the Electron-Ion Collider (EIC), a...
Gas catchers are widely used to slow down energetic particles in order to prepare them for precision measurements. Chemical reactions of the ions with impurities in the gas can affect the extraction efficiency from the gas-catcher. Our aim is to make use of this effect and to explore the potential of chemical reactions for Chemical Isobaric Separation (CISe)
We want to apply this technique to...
Heavy diatomic molecules are currently considered to be among the most sensitive systems used in the search for the P,T-violating effects and in probing of the Standard Model of particle physics. In certain molecules effects resulting from both parity violation and time-reversal violation (P,T- odd effects) are considerably enhanced with respect to atomic systems. The strength of these...