With help from Pulsar timing solutions, it becomes possible to target individual pulsars for their continuous gravitational wave (CW) emission. Such targeted searches are the most sensitive among the various types of CW searches. In the event of a non-detection, the constraints on the gravitational wave strain at twice the spin frequency of the pulsar translate to a constraint on the...
Surveying the sky in search of continuous gravitational waves (CWs) emitted by unknown neutron stars (NSs) is by now a well established practise. The elusiveness of such signals pushes the involved academic community to refine its search techniques and strategies as well as to review the assumptions made on an astrophysical basis.
We discuss both points and study the prospects for detection...
Rotating neutron stars offer great potential as targets for continuous gravitational wave (CW) searches. However their spin frequency may display stochastic fluctuations over time, due to X-ray flux (and hence accretion torque) variability or timing noise. It is crucial to accommodate for this spin-wandering'' in (at least some) CW search algorithms. One approach is to deploy a hidden Markov...