Corotating interaction regions affecting galactic cosmic rays are the origin of the 27-day GCR recurrence detected by neutron monitors on the ground, and in space, by spacecraft. The GCR recurrent variation during the solar cycles 24 and 25 based on the 3-d Parker transport equation is the subject of our studies. We investigate convection and diffusion effects on the structure of this...
We present error estimation for the COR system dedicated to the cosmic rays trajectories in magnetosphere tracing available at cor.crmodels.ord and at GitHub [https://github.com/COR-Cut-off-rigidity/Trajectories_IGRF_T04_C][1]. Used numerical method is analysed and model dependence on crucial parameters is shown. The base error criterium to evaluate/determine model precision is defined.
...
For comprehensive global modeling of cosmic rays modulation in the heliosphere, it is essential to have a sound transport theory, and reliable numerical schemes with appropriate boundary conditions. For the description of the solar modulation process, and the propagation of the particles inside the heliosphere, Parker`s transport equation is widely used. The correct and precise solution of...
The global neutron monitor (NM) network historically consists of over a hundred stations, that measure the galactic cosmic ray (GCR) flux all over the globe. This flux of GCR is modulated by solar/heliospheric magnetic activity, which is affected by the solar cycle and other solar activity manifestations. Thus, the temporal evolution of GCR flux can be ultimately used to study solar...
A small local anisotropy of galactic cosmic rays (GCR) due to geometrical and orbital parameters is observed as a diurnal variability by the ground-based neutron monitor (NM) count rates. The capability of observing the GCR diurnal anisotropy is different for various NMs because of their different asymptotic directions. Here, we present the results of an analysis of the diurnal variability of...
For decades, the global neutron monitor network was successfully used to study cosmic ray variations and fluxes of accelerated solar ions, known as energetic solar particles. Recently, it has been used also for space weather purposes, specifically alerts and the related assessment of exposure to radiation. Here, we overview the current status and applications of the global neutron monitor...
Extreme solar particle events (ESPE) are a special class of solar energetic particle (SEP) events characterized by huge SEP fluxes, orders of magnitude greater than ever observed directly. The first event of this class, dated back to 774 AD, was found by Miyake and coworkers in 2012 in cosmogenic radiocarbon records in tree rings and identified as an ESPE. Today, four ESPEs are independently...
The Baikal-GVD is a neutrino telescope under deployment situated in Lake Baikal - the deepest freshwater lake in the world. It is composed of independent operational units called clusters. In 2022, 10 clusters are data taking. The main goal of the Baikal-GVD neutrino telescope is the detection of astrophysical neutrinos.
In charged current interaction of tau neutrino the resulting tau...
A new paradigm of multisensory observations joined multiband measurements of the radiation coming from celestial objects to develop and confirm models of the origin of high-energy cosmic rays. The integral parameters of the cosmic ray flux, such as energy spectra and mass composition, mostly measured in the last century also bring useful information on the CR origination. Especially useful was...
Measurements of the natural radiation background, specifically in the upper troposphere and low stratosphere, are important in order to compare and eventually inter-calibrate different experimental set-ups, as well as to provide a reliable basis for improving the existing models related to the environmental radiation in the Earth's atmosphere. Here, we report results from a new zero-pressure...
This investigation is based on a new model CORSIMA (COsmic Ray Spectra and Intensity in Middle Atmosphere). Numerical simulations of Galactic Cosmic Ray (GCR) spectra and intensity for the middle atmosphere and lower altitudes of the ionosphere (30-100 km) are presented. These altitudes are above the Regener-Pfotzer maximum.
The full GCR composition (protons p, alpha particles α, and heavier...
Recently, the Large High Altitude Air Shower Observatory (LHAASO) reported discovery of 12 ultrahigh-energy (UHE; ε > 100 TeV) gamma-ray sources located in the Galactic plane. We have used the multiwavelength radiation from these sources by considering a PWN origin, where the emission is powered by time-dependent spin-down luminosity of the associated pulsars. In this time-dependent leptonic...
Current challenges in astroparticle physics like the muon puzzle in air shower physics or the upcoming launch of next-generation neutrino and gamma observatories require modern tools for the simulation of particle propagation, both from a technical and a physical standpoint.
For those purposes, PROPOSAL is a simulation framework that provides 3D Monte Carlo simulations of charged leptons...
High-energy atmospheric muons are of special relevance to very large-volume neutrino telescopes as they constitute by far their major event yield. Understanding their characteristics at sea level can help to properly interpret the signal observed deep underwater. This work aims to investigate the flux as well as the charge ratio of atmospheric muons above 100 GeV at sea level. The calculations...
The SPHERE project studies primary cosmic rays by detection of the Cherenkov light of extensive air showers reflected from the snow covered surface of the earth. The SPHERE project is the first successful implementation of a new EAS detection method — detection of reflected Cherenkov light using an aerial-based detector — a method first proposed by A. Chudakov and first implemented by R....
We develop a new algorithm for the production and propagation of cosmic ray (CR) secondary elements and hadronic gamma ray emission within the framework of Cosmic Ray Energy SPectrum (CRESP) module of Piernik MHD code (Ogrodnik et al ApJS 253, 18, 2021). CRESP is based on the piece-wise power-law (coarse-grained) method for self consistent and numerically efficient cosmic ray (CR) propagation...
Galactic outflows and extended non-thermal emission due to Comic Ray (CR) electrons were observed from many edge-on galaxies in radio range of electromagnetic radiation, allowing i.a. to estimate the strength and vertical structure of galactic magnetic field.
We construct a global model of NGC891, based on observational characteristics of this galaxy. We assume that on the large scales the...
The new generation of experiments for the indirect detection of cosmic radiation by observing Extensive Air Showers (EAS) in the atmosphere, requires continuous observation of the atmospheric physical properties in their Fiel of View. For this purpose, these experiments on ground and in space use large atmospheric volumes as calorimeters. One of the key points is the determination of the...
The approximation function that makes it possible to describe the lateral distribution function (LDF) of Cherenkov light of individual extensive air showers (EAS) from various primary nuclei with energies of 1-100 PeV and zenith angles up to 20 degrees with an accuracy better than 5% in the distance range 0-500 meters from the shower axis was found. Initially the approximation was intended for...
The Fermi Large Area Telescope is enabling a revolution in pulsar physics, having detected more than 270 gamma-ray pulsars. Many Fermi pulsars show glitches in one or more timing parameters, and one of them, the radio-quiet PSR J2021+4026, is variable on a time scale of a few years. Hence, a monitoring infrastructure is required in order to systematically study the timing evolution of...
Star-forming galaxies (SFGs) are rich in energetic cosmic rays. These CRs can undergo hadronic interactions to produce gamma-rays, with the combined gamma-ray glow from populations of SFGs forming an important component of the isotropic extra-galactic gamma-ray background (EGB). The gamma-ray emission from galaxies is dependent on their intrinsic physical properties - in particular, their...
The Fermi Large Area Telescope (LAT) has been in orbit of Earth since 2008 collecting gamma rays. One challenge in analyzing LAT data is detecting sources to know the various classes of gamma-ray sources and how many they are. Neural networks show impressive accuracy in many fields. Application of these networks to Fermi LAT data can potentially be more successful than traditional statistical...
Interactions between secondary cosmic rays and nuclei in natural minerals can leave tracks in the lattice due to nuclear recoils. These defects can be preserved up to the Gyr timescale, making these so-called “Paleo-detectors” useful “time machines” for the study of the history of astrophysical messengers such as cosmic rays, neutrinos or even dark matter. These "Paleo-detectors" feature...