Speaker
Description
The Fermi Large Area Telescope is enabling a revolution in pulsar physics, having detected more than 270 gamma-ray pulsars. Many Fermi pulsars show glitches in one or more timing parameters, and one of them, the radio-quiet PSR J2021+4026, is variable on a time scale of a few years. Hence, a monitoring infrastructure is required in order to systematically study the timing evolution of gamma-ray pulsars. For this purpose we are developing the Automated Pulsar Periodicity Looker, an analysis pipeline for Fermi pulsars, based on Python and on the official Fermitools. This pipeline periodically runs data reduction and periodicity tests for each gamma-ray pulsar in the catalog, then performs a glitch search with different approaches. The computational time is reduced thanks to an optimized usage of memory, which renders the tool suitable for a systematic timing analysis of Fermi pulsars. Moreover, a web application allows users to visualize the results and to interactively manage analysis setups. Here we present a preview of the infrastructure, and we discuss future applications in the multi-messenger framework, focusing on searches for gravitational waves from pulsars.