

Testbeam analysis of a single chip timepix3 ingrid

Kees Ligtenberg

Nikhef
November 20, 2017

Detector setup

Adapted from Thesis Pascal Wolf Bonn, 2016
Triggered by a scintillating plane 6 mimosa planes and timepix3 TPC

FEI4 between telescope and TPC

- Telescope track has additional smearing compared to timepix3 track
- Possibly caused by the FEI4-chip being attached to the telescope (for timing in some setups)
- FEI4 is used for ATLAS IBL that has a radiation length of 1.5%. (And each mimosa plane has 0.1\%)
- Could have caused a scatter of about $\sim 0.7 \mathrm{mRad}$

Time matching

- Each telescope frame $(115.2 \mu \mathrm{~s})$ can have a range of triggers
- Try to decode trigger number in timepix3 using rising edge only
- Save timepix3 tracks within 400 ns of a trigger

For each frame, attempt to match all events of the timepix3 with triggers in the range

Cluster finding in telescope and timepix3

Find clusters from hits binned by position

- Fill $30 \times 15(12 \times 12)$ bins for telescope (TPC)
- If more than 3 (6) hits in one bin, try to merge up to 8 neighbours
- If cluster has more than 10 (5) hits
update image: mention bins and telescope

Fit procedure

- Independently align telescope
- Rotate and shift Timepix3 to match telescope frame
- Do ToT and time walk corrections
- Do a double simple linear regression fit in the telescope frame
- Errors in directions perpendicular to beam-axis
- In telescope frame the tracks direction is almost parallel to beam-axis, therefore errors along beam-axis were neglected
- Match Timepix3 and telescope clusters
- Add final plane crossing of telescope as a point with $10 \mu \mathrm{~m}$ errors to Timepix3 fit

Hit errors

Assign errors to hit:

- $\sigma_{y}^{2}=\frac{0.055^{2}}{12}+D_{T}^{2}\left(z-z_{0}\right)$
- $\sigma_{z}^{2}=\frac{(1.56 n s) v_{\text {drift }}}{12}+D_{L}^{2}\left(z-z_{0}\right)$
where D the diffusion coefficient

Selection cuts

Telescope

At least 4 planes hit
Fit and reject extreme outliers ($>700 \mu \mathrm{~m}$)
Telescope fit goes through tpc
Timepix 3
Hit ToT $>0.15 \mu \mathrm{~s}$
At least 20 hits
Exactly one cluster
Cut hit outliers ($>3 \sigma_{\text {drift }},>2 \sigma_{\text {plane }}$)
Fit goes through front and back (pixel row)
Matching
Fits closer than 1 mm in both x and y at center of tpc
A unique time match
Histograms
At least 30 TPC hits in fit
At least 75% of total number of tpc hits in fit

Tests from run 347

Run 347	
length	60 m
triggers	4733381
V grid	350 V
E drift	$280 \mathrm{~V} / \mathrm{cm}$
rotation	17 degree
	0 degree
threshold	800 e

- Used first 1000000 telescope frames:
- 461426 triggers of which 330925 with matching tracks
- A drift speed of $75 \mu \mathrm{~m} / \mathrm{ns}$ was assumed

ToT-correction

Differences in odd and even column numbers in ToT Corrected by introducing a factor for each column

Time walk correction using ToT

Timewalk corrected by fitting $\delta x_{\text {timewalk }}=\frac{c_{1}}{t_{\mathrm{ToT}^{\prime}}+t_{0}}+x_{0}$

Find diffusion from residuals

Plot residuals in 2-dimensional histogram

Fit gauss to y-slices and put σ in graph

Fit $\sqrt{\sigma_{z 0}^{2}+D^{2}\left(z-z_{0}\right)}$ to graph, and get results \rightarrow

Diffusion in pixel plane perpendicular to track

Fix $\sigma_{z 0}=0.055 / \sqrt{12}=0.0159 \mathrm{~mm}$
$D_{T}=221 \mu \mathrm{~m} / \sqrt{\mathrm{cm}}$
From laser test $D_{T}=309 \mu \mathrm{~m} / \sqrt{\mathrm{cm}}$ at 330 V and $v_{\text {drift }}=66.4 \mu \mathrm{~m} / \mathrm{ns}$

Diffusion in drift direction

$D_{L}=240 \mu \mathrm{~m} / \sqrt{c m}$
From laser test without time walk correction $D_{L}=254 \mu \mathrm{~m} / \sqrt{\mathrm{cm}}$ at 330 V and $v_{\text {drift }}=66.4 \mu \mathrm{~m} / \mathrm{ns}$

Hitmap

Note some defects

Deformations in pixel plane perpendicular to track

Deformatiosn in mm
Residuals are filled at expected row and column

Deformations in drift direction

Deformations in mm
Residuals are filled at expected row and column

Conclusions

- Telescope track does not seem te be usable, possible due to material between telescope and Timepix3. A single point was used
- ToT was corrected and used for a time walk correction
- The diffusion coefficient fitted from data is $D_{T}=70 \mu \mathrm{~m} / \sqrt{\mathrm{mm}}$ and $D_{L}=76 \mu \mathrm{~m} / \sqrt{m m}$
- Deformations in the pixel plane are found to be small $(<20 \mu m)$

Next: looking at cross-talk at different voltages

Number of hits at different grid-voltages

Indication of cut effects

status of timepixTrigger

Cuts are roughly in order presented before

Align telescope planes

Align with 3 degrees of freedom: x, y shifts and rotation around z Fix z position and assume all detectors perpendicular to the z-axis

Find corrections from residuals

- Find mean of residuals using gaus fit
- Find rotation using histogram of $\Delta \phi=\left(y r_{x}-x r_{y}\right) /\left(x^{2}+y^{2}\right)$, where x, y are the hit coordinates with respect to the average hit position and r is the residual, histogram is weighted by $\sqrt{x^{2}+y^{2}}$

Telescope alignment procedure

(1) Fit through points in plane 2 and 5 shift planes $1,3,4,5,6$ in x and y
(2) Fit through points in plane 2 and 5 rotate plane 5 around its average hit postition to match plane 2
(3) Fit through points in plane 2 and 5 rotate all planes around their average hit position
(4) Fit through points in all planes check if converged.

Mimosa telescope

MIMOSA26 User Manual, 2011
Detector with digital silicon pixels
Rolling shutter readout with 115.2μ s per frame

