Neutrino Source Searches with Likelihood Landscapes

Neutrino Source Searches

- Hypothesis H0: background only flux
 - Atmospheric neutrino's
 - (Misreconstructed) Atmospheric Muons
- Hypothesis H1: background + signal flux
 (High energy) Cosmic Neutrinos

General Procedure

• How compatible is data with H0 or H1?

$$\lambda = \log \left[rac{P(ext{data}|H_1)}{P(ext{data}|H_0)}
ight]$$

- When to claim an observation?
 - Accept H1 if $\lambda > \lambda_c$
 - $-\lambda_c$ such that

P(accept H1 | H0 = true) < 0.00...1

$\lambda = \log \left[\frac{P(\text{data}|H_1)}{P(\text{data}|H_0)} \right]$ Test Statistic (Conventional)

Given detected (and selected) events {ev_i}

$$P(data|H) = \sum_{i} \left[\log \int P(x_{reco,i} | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$$

Reconstruction Detection Expected flux efficiency

Test Statistic

Given detected (and selected) events {ev_i}

$$P(data|H) = \sum_{i} \left[\log \int P(x_{reco,i} | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$$

Reconstruction Detection Expected flux efficiency

• New method:

$$P(data|H) = \sum_{i} \left[\log \left[P(ev_i | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H) \right]$$

• No big deal?

New vs. Conventional

Conventional

- Only best solution kept from reconstruction
- Selection criteria needed to select well-reconstructed events -> events are lost
- Different reconstruction algorithms (showers/tracks/tau double bang) patched together
- Event identification by BDT's and other black magic algorithms
- Parameterizations of MC events
- Fast

New Method

- Detailed knowledge of event likelihood landscape
- All events can be used

- Single 'reconstruction' algorithm for all events
- Neutrino flavour identification automatically taken into account
- Event-by-event
- Probably slow

Likelihood Ingredients

$$P(data|H) = \sum_{i} \left[\log \int P(ev_i | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$$

 $\mu(x_{true} | H)$ Number of expected background or signal events in our detector (can)

 $P^{det}(x_{true})$

 $P(ev_i | x_{true})$

Atmospheric Neutrinos

Current Parameterization

- KM3NeT Letter of Intent
- Based on Seatray
- Polynomial fit of Honda tables
 - Extrapolation to higher energy ranges
 - Outdated? Honda 2006 used.
 - Gaisser H3a knee correction
- Polynomial fit of Gauld tables 2015

– From PromptNuFlux, L. Rottoli

Both Extrapolated (2)

Honda: Zenith Dependence

cos(Zenith)

Likelihood Ingredients

$$P(data|H) = \sum_{i} \left[\log \int P(ev_i | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$$

 $\mu(x_{true} | H)$ Number of expected background or signal events in our detector (can)

 $P^{det}(x_{true})$

 $P(ev_i | x_{true})$

Earth Propagation

Transversed Matter Density

ANIS, Kowalski 2003 Figure from Colnard 2009 Neutrino Cross Sections

Neutrino Absorption

cos(zenith angle)

Neutrino NC Scattering (1)

Neutrino NC Scattering (2)

cos(zenith angle)

Neutrino NC Scattering (3)

- Change in direction: <≈ 0.6 degrees for Enu > 10³ GeV
- Change in Energy???

Effects on expected atm. Neutrino flux neglected $_{20}$

Neutrino Oscillations

Likelihood Ingredients

$$P(data|H) = \sum_{i} \left[\log \int P(ev_i | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$$

 $\mu(x_{true} | H)$ Number of expected background or signal events in our detector (can)

$P^{det}(x_{true})$ Probability to detect (=trigger) and select event 6-D Interpolation from tabulated values -> fast

 $P(ev_i | x_{true})$

Detection Efficiency (1)

Detection Efficiency (2)

What is Pdet?

- Probability that an event:
 - Causes hits in detector: Jsirene
 - Leads to a trigger: JTriggerEfficiency
 - Is selected (reject atm. Muons): ??
- Get Pdet(x_{true}) by running MC events

Statistical Fluctuations

26

Different Interpolation Techniques

Polynomial vs linear fit

3rd degree polynomial

Time Consumption

Scanning over 72000 Positions * 98 Directions * 1 Energy-bins = 7056000 points... Done in

624169.543 ms elapsed 623814.165 ms user 12.998 ms system 99%CPU

3rd degree polynomial interpolation of 7 million points in 10 minutes

```
Scanning over 72000 Positions * 98 Directions * 1 Energy-bins = 7056000 points... Done in
16068.632 ms elapsed
16057.558 ms user
4.999 ms system
99%CPU
```

Linear interpolation of 7 million points in 16 seconds

Likelihood Ingredients

$$P(data|H) = \sum_{i} \left[\log \int P(ev_i | x_{true}) \cdot P^{det}(x_{true}) \cdot \mu(x_{true} | H) \, dx_{true} \right] - \mu^{tot}(H)$$

 $\mu(x_{true} | H)$ Number of expected background or signal events in our detector (can)

 $P^{det}(x_{true})$ Probability to detect (=trigger) and select event

 $P(ev_i | x_{true})$ Reconstruction, loop over PMTs. Phit * Ptime -> to do

Conclusions

New method seems promising

• Most ingredients in place

• 'Reconstruction' part to be done

Backup

Honda extrapolated

arXiv:1311.7048

Knee Correction (Gaisser H3a)

Honda extrapolated

Honda extrapolated + knee correction

T. Gaisser 2012

Prompt: Gauld Flux (2016)

Gauld 2016 extrapolated

Enberg extrapolated

Enberg extrapolated + knee correction

arXiv:1311.7048

Knee Correction (Gaisser H3a)

https://arxiv.org/pdf/hep-ph/0604188.pdf

Neutrino Cross Sections

ANIS, Kowalski 2003 Figure from Colnard 2009 Neutrino Cross Sections

Neutrino Cross Sections

