Proton radiography in proton therapy treatment

Aleksandra K. Biegun

5 July 2017, Nikhef, Science Park Amsterdam

a.k.biegun@rug.nl

university of groningen

kvi - center for advanced radiation technology

A.K. Biegun E.R. van der Graaf S. Brandenburg

J. Takatsu T. Nakaji

M-J. van Goethem

J. Visser M. van Beuzekom E.N. Koffeman

Photons vs. protons

kvi - center for advanced radiation technology

Aleksandra K. Biegun, Nikhef, Science Park Amsterdam, 5 July 2017

Photons vs. protons

kvi - center for advanced radiation technology

Integral dose to healthy tissue for protons is 6 times lower!

Aleksandra K. Biegun, Nikhef, Science Park Amsterdam, 5 July 2017

Proton radiography in proton therapy treatment

Proton therapy work flow

CT scan

 $HU = 1000 \frac{\mu - \mu_{water}}{\mu_{water}}$

Translation

3D map of proton stopping powers (PSP)

Treatment planning

Proton therapy work flow

Proton radiography in proton therapy treatment

Knowledge of patient in proton therapy treatment

is NOT unique

 Systematic uncertainties of 3-4% or more require larger than necessary irradiation safety margins around the tumor **Stopping Powers (PSP)**

university of groningen kvi - center for advanced

... And the consequence...

Why proton radiography?

- High resolving power for proton beam (centerpiece of the pen visible)
- X-ray produces a clearer image of the spring, but density resolution for the centerpiece is not high

high proton energy (180 N	leV)
	E MAAAAA
low proton energy (40 Me	V)
3	
Y-rave	
A-rays	

Why proton radiography?

- university of groningen kvi - center for advanced radiation technology
- High resolving power for proton beam (centerpiece of the pen visible) \diamond
- X-ray produces a clearer image of the spring, \diamond but density resolution for the centerpiece is not high

9 mm T	high proton energy (180 MeV)		
T		11444A	
5461	low proton energy (40 MeV)		Protons help to improve determinatio
MB53 (2008)	X-rays		of energy loss in "soft mater
Ruy et al, Pl			

nation

osses

aterial"

What is proton radiography?

 \diamond Proton beam energy higher than the therapeutic energies, i.e. protons pass through the patient

therapy

Position detectors:

radiography

 \diamond Range / residual energy detector:

before and after the patient after the patient

university of

Aleksandra K. Biegun, Nikhef, Science Park Amsterdam, 5 July 2017

Complex phantom (54 x 94 x 60 mm³)

kvi - center for advanced radiation technology

 Few materials on proton beam 11 various materials, including 5 tissue surrogates 			on beam ncluding	Cortical bone PMMA Cortical bone AI D3 L1 Liver L60	Ti D2 L2 Air D1 L5 Cu D1 L4 Lung L20 PMMA L10 Lung L30 Lung L60
Phantom material	Physical density (g/cm ³)	Phantom material	Physical density (g/cm ³)	Alipose L20 Air L30 CT solid water L10	In2 In4
Cortical bone*	1.820	Breast*	0.981	Breast L60	
PMMA	1.180	Lung*	0.428		11111
Liver*	1.095	AI	2.702		
Adipose (fat)*	0.946	Ti	4.519		E _p = 150 MeV
Air	0.0012	Cu	8.920		Proton beam
CT solid water	1.045	* Tissue-ee	quivalent materials		

<u>https://www.sunnuclear.com/documents/datasheets/</u> gammex/ct_electron_density_phantom.pdf

Proton scattering angle, θ

$$\theta(rad) = \cos^{-1} \left(\frac{\overrightarrow{p_0 p_3}}{\left| \overrightarrow{p_0} \right| \left| \overrightarrow{p_3} \right|} \right)$$

$$p_0, p_3$$
 – proton momenta
in the source and energy
detector, respectively

Energy loss radiographs: $\Delta E = E_{beam} - E_{residual}$

university of groningen

kvi - center for advanced radiation technology

Protons that passed through all 3 detectors are considered

Aleksandra K. Biegun, Nikhef, Science Park Amsterdam, 5 July 2017

Energy loss radiographs: $\Delta E = E_{beam} - E_{residual}$

 Protons that passed through all 3 detectors are considered ↔ Protons with maximum scattering angle θ < 5.2 mrad

Statistics @ $E_p = 150 \text{ MeV}$

kvi - center for advanced radiation technology

A.K. Biegun et al, JINST 11 (2016) C12015

Aleksandra K. Biegun, Nikhef, Science Park Amsterdam, 5 July 2017

Statistics @ $E_p = 150 \text{ MeV}$

kvi - center for advanced radiation technology

Significant number of protons (>70%) simulated at E_p =150 MeV is eliminated at θ < 8.7 mrad

A.K. Biegun et al, JINST 11 (2016) C12015

Aleksandra K. Biegun, Nikhef, Science Park Amsterdam, 5 July 2017

Proton radiography in proton therapy treatment

Aleksandra K. Biegun, Nikhef, Science Park Amsterdam, 5 July 2017

Collaboration with J. Visser, M. van Beuzekom, E.N. Koffeman

- Tracking detectors:
 - Timepix3-based TPC
 - Count rate ~20 kHz \bigcirc
- Energy: BaF₂ scintillator
- Proton beam energy: \circ E_p = 150 MeV AGOR @KVI-CART Groningen (NL)

Count rate not high enough as required in clinics

Proton radiography @KVI–CART: Exp setup'15

university of groningen

> kvi - center for advanced radiation technology

Energy loss reconstruction: Sims vs. Exp'2015

kvi - center for advanced radiation technology

♦ Phantom only partially covered by Timepix3-based TPCs (3.0 x 3.0 cm²)

Energy loss reconstruction: Sims vs. Exp'2015

kvi - center for advanced radiation technology

Simulations and experimental results comparable

Aleksandra K. Biegun, Nikhef, Science Park Amsterdam, 5 July 2017

Proton radiography in proton therapy treatment

Scattering angle reconstruction: Exp'2015

university of groningen

kvi - center for advanced radiation technology

Scattering angle well reconstructed, but more statistics needed

Current systems

Group	Year	PSDs (# of units)	RED/Range Detector	Rate (Hz)	Imaging device
PSI	2005	x-y Sci-Fi (2+2)	Plastic scintillator telescope	1 M	pRad
LLU/UCSC/ NIU	2013	x-y SiSDs (2+2)	CsI (TI)	15 k	рСТ
LLU/UCSC/ CSUSB	2014	x-y SiSDs (2+2)	Plastic scintillator telescope	2 M	рСТ
AQUA	2013	x-y GEMs (1+1)	Plastic scintillator telescope	1 M	pRad
PRIMA I	2014	x-y SiSDs (2+2)	YAG:Ce calorimeter	10 k	рСТ
PRIMA II	2014	x-y SiSDs (2+2)	YAG:Ce calorimeter	1 M	рСТ
INFN	2014	x-y Sci-Fi (2+2)	x-y Sci-Fi	1 M	рСТ
NIU/FNAL	2014	x-y Sci-Fi (2+2)	Plastic scintillator telescope	2 M	рСТ
Niigata University	2014	x-y SiSDs (2+2)	Nal (TI) calorimeter	5 k	рСТ
PRaVDA	2015	X-u-v SiSDs (6+6)	CMOS APS telescope	1 M	рСТ

G. Poludniowski et al., Br J Radiol (2015) **88**:20150134

Current systems

- ♦ Trend towards Si tracking detectors
 → very fast
- Different approaches for energy/range detectors
- Count rate close to what is required

G. Poludniowski et al., Br J Radiol (2015) **88**:20150134

Group	Year	PSDs (# of units)	RED/Range Detector	Rate (Hz)	lmaging device
PSI	2005	x-y Sci-Fi (2+2)	Plastic scintillator telescope	1 M	pRad
LLU/UCSC/ NIU	2013	x-y SiSDs (2+2)	CsI (TI)	15 k	рСТ
LLU/UCSC/ CSUSB	2014	x-y SiSDs (2+2)	Plastic scintillator telescope	2 M	рСТ
AQUA	2013	x-y GEMs (1+1)	Plastic scintillator telescope	1 M	pRad
PRIMA I	2014	x-y SiSDs (2+2)	YAG:Ce calorimeter	10 k	рСТ
PRIMA II	2014	x-y SiSDs (2+2)	YAG:Ce calorimeter	1 M	рСТ
INFN	2014	x-y Sci-Fi (2+2)	x-y Sci-Fi	1 M	рСТ
NIU/FNAL	2014	x-y Sci-Fi (2+2)	Plastic scintillator telescope	2 M	рСТ
Niigata University	2014	x-y SiSDs (2+2)	Nal (TI) calorimeter	5 k	рСТ
PRaVDA	2015	X-u-v SiSDs (6+6)	CMOS APS telescope	1 M	рСТ

But...

kvi - center for advanced radiation technology

- ♦ Si (Z=14, ρ=2.33 g/cm³)
 - \rightarrow Multiple Coulomb Scattering already in the detector material
- Range detector does not give yet accurate enough residual energy important for proton stopping powers determination of an object

Simulations for:	Group	Year	PSDs (# of units)	RED/Range Detector	Rate (Hz)	Imaging device
RED,	PSI	2005	x-y Sci-Fi (2+2)	Plastic scintillator telescope	1 M	pRad
PSD 1 PSD 2 Range detector	LLU/UCSC/ NIU	2013	x-y SiSDs (2+2)	Csl (Tl)	15 k	рСТ
Proton detected positions	LLU/UCSC/ CSUSB	2014	x-y SiSDs (2+2)	Plastic scintillator telescope	2 M	рСТ
G. Poludniowski et al., Br J Radiol (2015) 88 :20150134	AQUA	2013	x-y GEMs (1+1)	Plastic scintillator telescope	1 M	pRad
	PRIMA I	2014	x-y SiSDs (2+2)	YAG:Ce calorimeter	10 k	рСТ
-	PRIMA II	2014	x-y SiSDs (2+2)	YAG:Ce calorimeter	1 M	рСТ
	INFN	2014	x-y Sci-Fi (2+2)	x-y Sci-Fi	1 M	рСТ
	NIU/FNAL	2014	x-y Sci-Fi (2+2)	Plastic scintillator telescope	2 M	рСТ
	Niigata University	2014	x-y SiSDs (2+2)	Nal (TI) calorimeter	5 k	рСТ
G. Poludniowski et al., Br J Radiol (2015) 88 :20150134	PRaVDA	2015	X-u-v SiSDs (6+6)	CMOS APS telescope	1 M	рСТ

Various PSDs in proton radiography setup

university of groningen

kvi - center for advanced

PSDs parameters

kvi - center for advanced radiation technology

PSD detector type	Number of PSDs	Material	Material thickness (mm)	Material density (g/cm³)	WET (mm)
Ideal	1	Air	0.001	0.0012	-
Plastic scintillator Fiber [1]	2	Bicron BCF12	4.0	1.032	4.106
Silicon strip detector [2]	2	Silicon	0.4	2.33	0.752
Gaseous TPC [3]	1	Isobutene C_4H_{10}	30	0.0025	0.394

[1] U.Schneider et al., *First proton radiography of an animal patient*, Med Phys 2014, 31 (5), 1046-1051
[2] M. Scaringella et al., *A proton computed tomography based medical imaging system*, JINS 2014, 9:C12009
[3] A.K. Biegun et al., *Proton Radiography with Timepix3-based Time Projection Chambers: Towards clinical application*, in preparation

Aleksandra K. Biegun, Nikhef, Science Park Amsterdam, 5 July 2017

Aleksandra K. Biegun, Nikhef, Science Park Amsterdam, 5 July 2017

Statistics @ E_p = 150, 190 and 230 MeV

university of groningen

kvi - center for advanced radiation technology

Using *position* of protons to calculate θ_{12} more protons, by factor of 2, are accepted to build the radiographic image

A.K. Biegun al., under review at Physica Medica: EJMP

Geant4 simulations

29

Aleksandra K. Biegun, Nikhef, Science Park Amsterdam, 5 July 2017

Proton radiography in proton therapy treatment

Energy loss radiographs for various PSDs

university of

groningen kvi - center for advanced radiation technology

A.K. Biegun al., under review at Physica Medica: EJMP

Aleksandra K. Biegun, Nikhef, Science Park Amsterdam, 5 July 2017

Proton radiography in proton therapy treatment

Ideal system with tracking detectors

radiation technology

G. Poludniowski et al., Br J Radiol (2015) 88:20150134

✓ Tracking detectors

- Low Z and WET → minimum MCS in a detector
- Fast → high count rate (> MHz),

based on Timepix3/Timepix4,

time resolution ~ns

- Spatial resolution \rightarrow 50 µm
- Full proton track determination
- Modular \rightarrow ultimate size 30x30 cm²

✓ Residual energy detector

- Fast scintillator (YAG:Ce, LaBr₃)
- Good energy resolution (up to 1%)
- High count rate (> MHz)

Ideal system with tracking detectors

G. Poludniowski et al., Br J Radiol (2015) 88:20150134

Easy to mount on a gantry in proton therapy centers

 ✓ Scan time + reconstruction in a clinic of up to 10 s

Needs to be clinically acceptable!

✓ Tracking detectors

- Low Z and WET → minimum MCS in a detector
- Fast \rightarrow high count rate (> MHz),

based on Timepix3/Timepix4,

time resolution ~ns

- Spatial resolution \rightarrow 50 µm
- Full proton track determination
- Modular \rightarrow ultimate size 30x30 cm²

✓ Residual energy detector

- Fast scintillator (YAG:Ce, LaBr₃)
- Good energy resolution (up to 1%)
- High count rate (> MHz)

Calibration of Relative Proton Stopping Powers

university of groningen kvi - center for advanced radiation technology

WEPL = Water Equivalent Path Length DRR = Digitally Reconstructed Radiograph

pRG = proton RadioGraphy

Optimization of the clinical calibration curve

university of groningen

kvi - center for advanced radiation technology

RPSP = Relative Proton Stopping Power

Optimization of the clinical calibration curve

university of groningen

kvi - center for advanced radiation technology

Before optimization

Metric	With PMMA
RMSE	3.59 mm
X ²	5083.80

After optimization

Metric	With PMMA
RMSE	2.36 mm (-34.33%)
X ²	2287.10 (-55.01%)

university of

groningen kvi - center for advanced radiation technology

Backup slides

kvi - center for advanced radiation technology

Energy loss radiographs: Projections

university of

groningen

kvi - center for advanced radiation technology

Energy loss radiographs: Projections

university of

Goal...

kvi - center for advanced radiation technology

Fast and compact detection system with:

- Spatial and angular resolutions
 - Energy resolutions
- Compatible with reconstruction algorithms

to deliver an accurate map of proton stopping powers of the patient to fully benefit from proton therapy

http://tcr.amegroups.com/article/view/5403/html

Simulations

- Further analysis of the alternative approach for θ is necessary, also for more realistic phantoms and real patient CT data
- Realistic tracking detectors need to be implemented in simulations

Experimental work

- Development of Timepix-based TPC is needed to achieve clinically relevant count rates (> MHz)
- ♦ Fast energy detector with energy resolution <1% should be consider</p>

Both simulations and experimental work are necessary to have a proton radiography system relevant and accepted in hospitals!

Detection system:

Position detectors:

- (1) Improved data acquisition for Timepix3 (fast & compact) \rightarrow MHz rate
- (3) Increase the size of the detectors (sufficient in clinics) $\rightarrow 100 \times 100 \text{ mm}^2$
- (4) 3D information of the proton tract with a good position resolution (good angle reconstruction) \rightarrow 50 μ m

Energy:

- (1) Fast energy detector \rightarrow MHz rate
- (2) Energy resolution $\rightarrow \leq 1\%$

university of groningen

kvi - center for advanced radiation technology

kvi - center for advanced radiation technology

Proton undergoes multiple Coulomb scattering causing image blurring

Why proton radiography?

- A lamb chop 1 cm thick immersed in 12.5 cm thick water phantom
 E_{X-rays} = 30 kVp
- ♦ E_p = 160 MeV

A.M. Koehler, AIP Conf Proc (1972) 586-562

- (-) much less contrast for fat(-) no contrast for lean meat (muscle)
- (+) much better spatial resolution

(-) poor spatial resolution

(+) high contrast for soft tissues

Reconstruction of imaged object: trapezoid

Energy loss (MeV

university of

Scattered proton beam

of 30 x 30 mm² size

Brass trapezoid $\rho = 8.55 \text{ g/cm}^3$ $\rho = 1.18 \text{ g/cm}^3$ Polymer

Reconstruction of object with tissue-like inserts

kvi - center for advanced radiation technology

The AGOR cyclotron

- Superconducting magnet (up to 4.1 T)
- Protons up to 190 MeV
- Alpha particles, ¹²C up to 90 MeV/u
- Heavy ions: 600 (q/A)² MeV/u

kvi - center for advanced radiation technology

Tumor modification during treatment: an example

kvi - center for advanced radiation technology

before treatment

after 5 weeks