Depth dependence with the first two KM3NeT Detection Units

Martijn Jongen Nikhef, Amsterdam

13 July 2017 International Cosmic Ray Conference Busan, South-Korea

KM3NeT (quick summary)

See previous talk by K. Melis
Cubic kilometer neutrino telescope

Mediterranean sea

 Oscillation/Astroparticle Research with Cosmics in the Abyss

ORCA: atmospheric neutrino oscillation
 ARCA: high-energy cosmic neutrino sources
 Construction ongoing

KM3NeT (quick summary)

Digital Optical Module (DOM) Contains 31 3" PMTs

DA TRAC

Detection Unit (DU) or "string" Consists of 18 DOMs

1 THE

First two ARCA Detection Units

- ARCA-DU1 and ARCA-DU2
 - first two full KM3NeT DUs or "strings"
 - deployed December 2015 and May 2016
 - Capo Passero, Sicily
- Data sample used in this analysis
 - 19.5 days of ARCA-DU1 + ARCA-DU2 data
 - 23 December 2016 to 13 January 2017

KM3NeT deployment sites. Capo Passero, the location of ARCA-DU1 and ARCA-DU2, is indicated. Floor 3, height ~141 m

Detection Unit to scale

Floor 2, height ~103 m

Floor 1, height ~65 m

Each • represents a DOM such as the one shown in this picture.

Height difference 630 m between floor 1 and floor 18.

Up to floor 18

Assuming 173.5 cm for scale

Muon flux depth dependence

- Atmospheric muons created in cosmic ray air showers
- Penetrate to large depths
- Background for neutrino searches
- Useful for in-situ calibration

Local coincidences

- [Show illustration of DOM with three sources of signal: atmospheric muons, K40 and bioluminescence]
- 25 ns window
- m-fold or multiplicity m coincidence: m PMTs hit on a DOM within a 25 ns time window

Monte Carlo simulations

- K-40 background: OMGsim
 - see ...
- Atmospheric muons
 - MUPAGE "fast muon generator for neutrino telescopes based on parametric formulas"
- Generation and propagation of light using KM3 and JPP
- Use in-situ calibrated PMT efficiencies

PMT efficiencies

- number for each PMT
- quantifies how well it performs compared to the MC PMT model
- based on in-situ calibration
- see "In-situ Calibration of KM3NeT" poster by K. Melis

Distance of closest approach

KM3NeT/ARCA preliminary

10² Distance of closest approach [m] 90% closer than 20 m 10 median DCA 6 m Median 10% and 90% guantile 10^{-1} 18 20 6 8 10 12 14 16 Highest multiplicity on DOM

- Single muon MC events
- Signal muons pass very close to the DOM

Muon energy

KM3NeT/ARCA preliminary

- Single muon MC events
- Muon energy increases with multiplicity

Muon bundle contribution

- ~13% of the generated MUPAGE events is a muon bundle, i.e. contains >1 muon
- Bundle muons are close together: median distance to leading muon is 8 m

Martijn Jongen

Data/MC comparison

• Correction factor applied to each data point:

MC rate (uniform efficiencies)

MC rate (K-40 efficiencies)

• Efficiencies from in-situ calibration improve data/MC agreement

Conclusions and outlook

- Depth dependence of high-multiplicity coincidence rates measured
 - ≥8-fold rates decrease by a factor \sim 2 along the 630 m depth difference
 - Excellent data/MC agreement
- First demonstration that K-40 PMT efficiencies improve data/MC agreement
- Atmospheric muon signal characteristics for m≥8 studied in MC
 - median energy 300-400 GeV
 - mostly single-muon events
 - 90% have distance of closest approach \leq 20 m
- Outlook
 - compare different atmospheric muon generators (CORSIKA)
 - investigation of systematics
 - translate to measurement of physical atmospheric muon flux

Backup slides

