KM3NeT/ARCA Reconstruction Algorithms

Karel Melis on Behalf of the KM3NeT Collaboration

35th ICRC (2017) – Busan - South Korea

The KM3NeT Detectors

- Digital Optical Module (DOM)
 - 31 x 3-inch PMTs
 - DAQ + Calibration devices
- Detection Unit (DU)
 - 18 DOMs
 - ARCA: DOMs ~36m apart
 - ORCA: DOMs ~9m apart
- Building Block
 - 115 DUs
 - ARCA: DUs ~95m apart
 - ORCA: DUs ~ 23m apart

KM3NeT Science Objectives

KM3NeT/ORCA

- Neutrino mass hierarchy
- Low-energy atmospheric neutrinos
- Sensitivity: **3 sigma in 3 years**

KM3NeT/ARCA

- Cosmic high-energy neutrino sources
- Diffuse flux
- Sensitivity: **5 sigma in 0.5 year**

^{35&}lt;sup>th</sup> ICRC (2017) – Busan - Korea

Karel Melis - KM3NeT/ARCA Reconstruction Algorithms

- Three event topologies:
 - Shower-like
 - Track-like
 - Tau double-bang
- Reconstruction of:
 - Position and time
 - Direction and energy

- Three event topologies:
 - Shower-like
 - Track-like
 - Tau double-bang
- Reconstruction of:
 - Position and time
 - Direction and energy

Track Direction and Energy

$$\mathscr{L} = \prod_{hit PMTs} \left[\frac{\partial P}{\partial t} (\rho_i, \theta_i, \phi_i, \Delta t) \right]$$

- Data: time of 1st hit on PMT
- PDF:
 - Interpolated tables in 4D
 - Includes ionization losses, light propagation, detector response (TTS), optical backgrounds etc.
- Water ideal medium
 - Very sharply peaked PDF
 - Very narrow maximum

- Provide set of (12) best start values
 - Many sharp local maxima in likelihood landscape
- Scan over assumed track directions
 - Linear chi² fit of track trajectory
- **Outlier** removal
 - **Clustering algorithm**
 - One less hit must lead to >3 sigma chi² improvement
- Good start value in 90% of events

Track Resolutions

Direction resolution: < 0.1 degree

Energy resolution: $\sigma < 0.3$ in $\log_{10}(E_{reco}/E_{mu})$

- Three event topologies:
 - Shower-like
 - Track-like
 - Tau double-bang
- Reconstruction of:
 - Position and time
 - Direction and energy

Shower Position

- Data: Hit times of local coincidences in DOM
 - High-purity sample
- Model: Expanding sphere from shower position
- M-estimator score function
 - Background hits further suppressed
- Vertex Fit Resolution: <1 meter
 - Shower maximum fitted rather than interaction vertex

10

Shower Direction and Energy Fit

- Fitted vertex as pivot point
- Spatial distribution of hit/not hit PMTs
- Number of photons proportional to shower energy

Shower Resolutions

Showers in Antares

- More or less same algorithm used in Antares
 - Direction resolution: ~4 degrees
- Antares
 - Smaller detector
 - Fewer PMTs

Neutrino point source search including cascade events with the ANTARES neutrino telescope , T. Michael, ICRC (2015)

Showers in Antares

- More or less same algorithm in Antares
 - Direction resolution: ~4 degrees
- Reconstructed muon tracks with luminous (Bremsstrahlung) shower along axis
 - Both approximately same direction
- Confirmation of angular resolution

Neutrino point source search including cascade events with the ANTARES neutrino telescope , T. Michael, ICRC (2015)

- Three event topologies:
 - Shower-like
 - Track-like
 - Tau double-bang
- Reconstruction of:
 - Position and time
 - Direction and energy

Tau Double Bang Events

PDF:

Tau flight length resolution:

- Study by R. Bormuth with preliminary results
- Clustering hit selection algorithm
 - High purity sample related to single shower
- Single shower fit
 - Vertex + Direction
- Full likelihood fit
 - Data: Hit times of first hits on all PMTs
 - Model: Very simple PDF based on hit times
- Good resolving power of shower positions
 - Expected angular resolution: ~1 degree

35th ICRC (2017) – Busan - Korea

Conclusions

- All-flavour reconstruction algorithms tested on Monte Carlo & Antares data
- 5σ confirmation of IC high-energy diffuse flux in 0.5 year
- Pinpoint cosmic neutrino sources with unprecedented resolutions:
- Muon tracks:
 - Direction: < 0.1 degree,
 - Energy: <0.3 in $log_{10}(E_{reco}/E_{mu})$
- Showers:
 - Direction: ~ 1.5 degree
 - Energy: ~5%
- Tau double bang:
 - Preliminary results very promising

