

Testing PMT properties with nanosecond interval between photons for KM3NeT

Master thesis presentation

Bram Schermer

Supervisor: dr. R. Bruijn

KM3Ne^{*}

Bram Schermer BSc

01.07.17

Table of contents

- KM3NeT
- Project
 - Motivation
 - Setup
 - Results
- Conclusion and outlook

KM3NeT

- KM3NeT
 - Large volume deep sea neutrino telescope
- Neutrinos
 - 3 flavours
 - Only weak interaction
 - Very small interaction cross-section
 - Hard to detect
 - Mass hierarchy problem

plaatje

- Objectives:
 - Measure cosmic neutrinos and find their sources *
 - Determine mass hierarchy by measuring neutrino oscillations
- Cubic kilometer effective volume
 - Small neutrino interaction crosssection
 - Sea floor → 3000 meters deep
 - String 700 meters high
 - 18 Digital optical modules (DOMs) per string
 - ~80 meters between strings
 - 115 strings in a detection block

- Cubic kilometer effective volume
 - Small neutrino interaction crosssection
 - Sea floor \rightarrow 3000 meters deep
 - 80 meters between strings
 - String 700 meters high
 - 115 strings in a detection block
 - 18 Digital optical modules (DOMs) per string
- Cosmic neutrinos (ARCA)
 - Cosmic neutrino flux measured by lcecube
 - Searching for neutrino sources
- Atmospheric neutrinos (ORCA)
 - Oscillation probabilities
 - Mass hierarchy problem

- DOM
 - 17 inch glass sphere
 - 31 PMTs
 - Central logic board
 - Optical communication with the shore

KM3NeT

- Neutrino interacts
- Carged particles created
 - Cherenkov Radiation
- Light reaches the DOM
- PMTs in the DOM detect the light and convert into a electrical signal
- CLB processes the signal and sends it to shore

University of Amsterdam

Photo multiplier tube

- Photo cathode
- Dynodes
 - High voltage
 - Gain
- Hamamatsu PMT
- Connected to the base

University of Amsterdam

PMT Base

- Converts analog PMT signal
- Amplifier
- Comparator
- High or low singal
 - Time over Threshold
- LVDS out

Project

- Testing detailed time properties of the PMT used in KM3NeT
- Motivation
 - Event reconstruction can be improved by:
 - Actual number of incoming photons
 - Detailed time structure
 - Why is it not used yet?
 - Non trivial relation between the photon flux and ToT

Project

- Photonflux vs ToT relation
 - Single photon
 - Multiple photons
- Detailed time structure of incoming photons
 - Delayed photons
 - Pre and afterpulses
- Threshold scan
 - Threshold and gain spread important in simulations
 - Threshold is 0.3 p.e.

01-07-17

University of Amsterdam

Setup

KM3NeT

13

- A. Black box
- B. Photon sources
- C. Pulse generator
- D. DAQ
- E. Controller
- F. Hamamatsu PMT

Photons, fiber ends

Base

LVDS out, connected with PMT connector_{01.07.17}

1 photon ToT distribution

Measurement of the 1 photo electron peak

- Peak of 1pe peak at 27.10 ± 0.09 ns
- Difference with calibration due to fit model
- Fit in a larger range leads to deviation
- Simulation corresponds with measurement
- 1 pe peak is not Gaussian distributed

Simulation of the 1 pe peak

01.07.17 1

KM3NeT

Bram Schermer BSc

01-07-17

Multiple photon distribution

Fit function used:

1 pe peak fitted with transformation Model, due to the linear behavior of the model the 2 pe peak and higher are Gaussian distributed.

KM3NeT

- Correlation between the number of photons and ToT
- Poisson constraint on the heights of underlying distributions

01.07.17

Multiple photon distribution

Linear behavior in the ToT of the pe

Irregular behavior in the sigma's Further studies needed

01-07-17

Multiple photon distribution

Measurement compared to Simulation. Both the same source intensity. Simulation breaks down in the higher pe range. $\lambda = 2.50397$ pe per hit

01-07-17

ΔT between photons

- Controllable delay between incoming photons
- Subtraction method used
 - Poisson normalized distributions
- 2 pe peak position determined

 Slewing in the beginning

Ni

- Expected from TTS effects
- Linearity on the right side
- Red dot from multiple photon measurement

01-07-17

Tot of 2 pe peak vs delay

KM3NeT

After pulse

01-07-17

- LVDS signal directly measured
- Insight into multiple effects in the PMT
 - More then only ToT response

Delayed pulse

Pre pulse ToT1 = ToT of all first pulses ToT2 = ToT of second pulses

Transit time and ToT

Toa1 vs tot1

After pulses / dark rate randomly distributed in the toa plane.

Bram Schermer BSc

01-07-17

Tot (ns)

- Normal 1 pe pulses, pre pulses and after pulses / dark rate
- Same effect seen in situ
- Further studies needed

Bram Schermer BSc

01-07-17

Toa (ns)

Similar in situ data see elog: http://elog.km3net.de/Analysis/186

University of Amsterdam

ToT1 vs ToT2

2 populations of pulses.0.92% of the total hits have two hits in one trigger

Bram Schermer BSc

01-07-17

25

University of Amsterdam

Threshold Scan

- Determine shape of 1 pe peak
 - Identify the current threshold with respect to the amount of pe
 - Width of the 1 pe peak
 - Mean of the 1 pe peak
- Threshold Scan is
 - Set fixed HV at calibrated level
 - Set different thresholds
 - Take count rate
 - Dark rate
 - Photon source + Dark rate

01-07-17

Threshold Scan

Count rate (kHz) 30 52 53

20

15

10

5

0

University of Amsterdam

Threshold scan

Threshold Scan

 $\mu = 1.43674 \pm 0.003 \text{ V}$ $\sigma = 0.202 \pm 0.002 \text{ V} = 0.462 \pm 0.002 \text{ pe}$ Default threshold at $1.09375 V = 0.2147 \pm 0.003 pe$ Base line at 1 V 01-07-17

Conclusion and Outlook

- Input from measurements improved simulation model
 - The threshold parameter in the model is adjusted
- First time measured the mean ToT position of the 2 till 7 photon peaks
- Future studies could be:
 - Improve the model further
 - Understand the linear relation between ToT and Toa
 - Doing a threshold scan with multiple PMTs
 - Delayed photons with a higher intensity per source

Conclusion and Outlook

- Better model needed for multiple incoming photons
 - Single photon well described
- Threshold scan:
 - Threshold value is: $1.09375 V = 0.2147 \pm 0.003 pe$
 - Gain spread (σ) is: 0.202 V = 0.462 ± 0.002 pe
- ToT of 2 pe peak behaves linear with the delay
- Further studies needed in the Toa vs ToT relation

Back up

Bram Schermer BSc

-17 30

Cherenkov radiation

- Relativistic charged particle
 - Faster speed than the speed of light in medium
- Emitted under constant angle: $\cos(\theta) = \frac{1}{n\beta}$

KM3Ne1

Background effects

- Bioluminescence
- ⁴⁰K decay
 - Cherenkov electron
- Cosmic muons
 - High energy
 - Path length order of kms

KM3Ne¹

University of Amsterdam

Absorption length water

Between 400 and 500 nm the longest

Relation between ToT and Charge

Br