

GridPix detector with Timepix3 ASIC

<u>Jochen Kaminski</u>, Klaus Desch, Kevin Keijhoff, Tobias Schiffer University of Bonn

Fred Hartjes, Peter Kluit, Gerhard Raven, Jan Timmermans, Harry van der Graaf Nikhef, Amsterdam

> MPGD 2017 Philadelphia, 22.-26.05.2017

Improving Micromegas: GridPix

Could the spatial resolution of single electrons be improved? Ar:CH₄ 90:10 \rightarrow D₇ = 208 µm/ \sqrt{cm}

 $\rightarrow \sigma$ = 24 μ m

Ar:iButane 95:5 \rightarrow D_T = 211 µm/ \sqrt{cm}

 $\rightarrow \sigma$ = 24 µm Smaller pads/pixels could result in better resolution! At NIKHEF the GridPix was invented. Standard charge collection:

- Pads of several mm²
- Long strips (I~10 cm, pitch ~200 μm)

Instead: Bump bond pads are used as charge collection pads.

Timepix

Number of pixels: 256×256 pixelsPixel pitch: $55 \times 55 \ \mu m^2$ Chip dimensions: $1.4 \times 1.4 \ cm^2$ ENC: $\sim 90 \ e^{-1}$

<u>Limitations:</u> no multi-hit capability, charge and time measurement not possible for one pixel. Each pixel can be set to one of these modes: TOT = time over threshold (charge) Time between hit and shutter end.

universitätbonn

Application IAXO/CAST

Magnet is pointed to the Sun. Axions and chameleons produced in the Sun convert into X-ray photons. Detector requirements:

- Radiopure materials
- Good background separation (distinguish round X-rays and longer tracks)
- Good energy resolution
- Very low dead time
- => Detector optimized for spatial and energy resolution:
- Gas mixture

- Electric fields (E_{drift} = 500 V/cm)
- Gas gain (G~ 3000) and
- Analysis (pixel counting).

During the study energy resolutions $\sigma_{\rm E}$ /E=3.85% for the photopeak of ⁵⁵Fe could be reached.

Application: ILC

International Linear Collider (ILC) is a linear e^+e^- colliders with $\sqrt{s} = 500 \text{ GeV} - 1\text{TeV}$

TPC Requirements :

Parameter	
Geometrical parameters	$egin{array}{ccc} r_{\mathrm{in}} & r_{\mathrm{out}} & z \\ 329 \ mm & 1808 \ mm & \pm 2350 \ mm \end{array}$
Solid angle coverage	up to $\cos heta~\simeq~0.98$ (10 pad rows)
TPC material budget	$\simeq~0.05~{ m X_0}$ including outer fieldcage in r
	$<~0.25~{ m X_0}$ for readout endcaps in z
Number of pads/timebuckets	\simeq 1-2 $ imes$ $10^6/1000$ per endcap
Pad pitch/ no.padrows	$\simeq~1 imes$ 6 mm 2 for 220 padrows
$\sigma_{ m point}$ in $r\phi$	$\simeq~60~\mu$ m for zero drift, $<~100~\mu$ m overall
$\sigma_{ m point}$ in rz	$\simeq 0.4-1.4$ mm (for zero – full drift)
2-hit resolution in $r\phi$	$\simeq 2 \mathrm{mm}$
2-hit resolution in rz	$\simeq 6 \text{ mm}$
dE/dx resolution	$\simeq 5$ %
Momentum resolution at $B=3.5 \text{ T}$	$\delta(1/p_t)~\simeq~10^{-4}/{ m GeV/c}$ (TPC only)

International Large Detector

- Standard HEP detector
- TPC as main tracker

Benefits of GridPix readout:

- Lower occupancy → better track finding
- Identification/removal of δ -rays/kinks
- Improved dE/dx → primary e⁻ counting <u>But</u> to readout the TPC with GridPixes: ~100-120 chips/module 240 module/endcap (10 m²) → 50000-60000 GridPixes

Timepix3

CMOS technology	130 nm, 8-metal stack
Pixels	256×256
Pixel size	$55 imes55\mu\mathrm{m}^2$
Acquisition modes	Charge and time
	Time only
	Event counting and integral charge
Zero suppressed readout	YES
Dead time per pixel	ToT Pulse time + 475 ns
Timing resolution	1.5625 ns (640 MHz)
On-chip power pulsing	YES
Output bandwidth	Up to $5.12 \text{ Gbps} (8 \times 640 \text{ Mbps})$
I/O	SLVS, 8b/10b, 8 output links for data

Protection Layer

During a 2 week test beam (5 GeV e-) about 19 out of 160 chips were destroyed.

Reason identified: Machine depositing $Si_{x}N_{y}$ caused defects in the protective layer during growths. [lə 150 [lə 150

Process has been switched to a different machine.

 \rightarrow no defects anymore

J. Kaminski MPGD2017

250

200

> 100

50

Grid sags in the stress relief gaps. At high gains these places are prone for discharges.

=> gaps have been removed

Production at IZM

Production was set up at the Fraunhofer Institut IZM at Berlin. This process is wafer-based \rightarrow batches of up to 4 wafers (105 chips each) at a time.

- Formation of Si_xN_y protection layer (to protect chip from discharges)
- 2. Deposition of SU-8
- 3. Pillar structure formation
- 4. Formation of Al grid

6. Development of SU-8

Pictures

MPGD2017

universität**bonn**

11

Laser Setup at Nikhef

- pulsed UV nitrogen laser
 - $\lambda = 337 \text{ nm}$
- duration:
 1 ns
- energy: few μJ

- divergence: near diffraction limit
- double photon absorption, ionization enhanced by traces of TMPD => ionization is merely confined to the focal point

- About 10 hits per laser pulse
- 960 laser pulses per spot
- Spot size dominated by diffusion. About 5 pixels (standard deviation) in the example on the right.

Gas Parameters

universität**bon**

Spatial Resolution

Residuals in x and y of each laser dot

Outer part of detector shows larger residuals because of field distortions and grid inefficiencies. Central part has a very small residual

distributions. d = 7.6 mm $N_{pulses} = 960$

- 1. partially contained dots
- 2. low efficiency

قِ pixels

- 3. field distortions due to field cage
- 4. grid peeling off

5. guard electrode distorted

Residual column [mm]

Plans New Module

Longterm plan: built a LCTPC – module with about 100 GridPixes Module size: 22×17 cm² – keystone shaped GridPixes are grouped into smaller units (4-8 GridPixes) Short term plan: start with a module equipped with 1 or 2 of the small units Currently: Quads, designed to minimize the dead area

Quad assembly

Summary

GridPix based on Timepix has demonstrated good performance in several applications. But limited because of Timepix performance.

New ASIC, Timepix3, has been developed which has multi-hit capability, a time resolution of 1.56 ns, gives charge and time information for each pixel and has a continuous readout.

InGrids have been built on top of Timepix3 forming new GridPixes. For this

- the quality of the protections layer has been improved
- the grid layout has been modified to decrease the covered pixels from 8.7 % to 2.3 %.

A detector has been built and tested with a laser setup. Good performance could be demonstrated at the center of the chip. E-field distortion expected from detector design.

New larger area detectors are in preparation.

