Electroweak interactions - Exercices

1 Groups, spinors and gauge transformations
1. For Lie Groups, a group element arbitrarily close to the identity can be expanded as:
U=1+iaT* (1)

where a are real parameters and T* are the generators. The latter form a Lie algebra
that is defined though the commutation relations:

(T, 7" = ifoteT @)
where f%¢ are the structure constants and are real.

(a) For U a group element of SU(N) and SO(N) determine the properties of the
generators (hermitian, etc) and, for N x N transformations (corresponding to the
fundamental representation) determine the number of the group generators.

(b) Check that for SU(2), the generators T% = 0% /2, where o are the Pauli Matrices,
satisfy the commutation relations above with ¢ = eabe,

(c) Check that for SU(2), the representation of dimension 2 satisfy —7T%* = UT*UT
with U = i09. This representation is said to be pseudo-real.!

(d) Consider an SU(2) lepton doublet,
Le = (VeL 6L>T . (3)

How does this doublet transforms under an SU(2) transformation described by (1)
with o® = a, and a! = a? = 0.

2. We are now going to look at the Lorentz transformations acting on spinors.

(a) The 4 dimensional matrices S¥ = i/4[y*,+"] provide a representation of the
Lorentz algebra. Give the form of S% and S% in terms of the Pauli matrices using
the Weyl representation of the Dirac matrices ~*.

(b) Considering that a Dirac Spinor transform as ¥ — exp(—iw,, S* )V, where w,,
is ar antisymmetric tensor, check that the left and right components of the spinor

U = (¢ryr)”
e transform in the same way when considering an infinitesimal rotation of angle
w12 = —wi2 = 0 in the zy plane

1For a given representation R described with the generators T, the complex conjugate representation R
with Tf = —Tg" is also a representation as it satisfy (2). A real representation satisfy 75 = Tx (or there
is a unitary transformation V such that T% = V" 'TEV satisfy T}% = Tg) You can check that the Adjoint
representations of SU(N) or the fundamental representations of SO(N) are real representations.



e transform differently under an infinitesimal boost of rapidity wg; = —w1ig =
in the z-direction.

This is directly related to the fact that the Dirac representation of the Lorentz
group is reducible.

(c) Check that io?x?% transforms as ¥ using the last item of Exercise 1

(d) Check that xTio?1y, is a scalar under Lorentz transformations, conclude that UW
with W = (11 ¢r)T is a Lorentz scalar.

3. Considering the covariant derivative
D, =0, —1igA,, (4)
the field strength can be defined as [D,, D,] = —igF,.

(a) For an abelian gauge group check that F,, = 0,4, — 0, A, .

(b) For a non abelian gauge group check that Fy, = 0, A; — 9, A}, + gf“bcAzAﬁ with
F, = F2,T% and A, = AaT*.

4. The kinetic term for and SU(2), xU(1)y lepton doublet L, = (L1 Le2) with Ly = ver,
and L.o = ey, reads L )L, with D,=0,— z‘g'YeLBH —igW, and W, = Wﬁ% In the
compact expression of this kinetic term, write explicitly the sum over SU(2), Lorentz
and spinor indices.

2 Processes

In order to fix the notations, here we follow the notations of [1] describing a Dirac spinor as
Y (x,t) = Z/d% (ak u(k,s) e * 4 bl v (k,s) eikx) (5)
’ — ) (2m)32E, \ 77 ks T A '

The sum runs over spin values s and aL < (bL s) creates a particle (antiparticle) of momentum

k and spin s. The spinors v and v obey the Dirac equations

(F—m)u(k,s) = 0
(k+m)v(k,s) = 0 (6)

with the sums:

Zu(k,s)a(k,s):}é+m, Zv(k,s)z‘;(k:,s):k—m (7)

S S

For a vector, we use:
o dSk w —ikx T px dkx
VHE (z,t) = Z 7(2@3 TN (ak,,\ek,)\e + bk786k7/\e ) (8)
A

where the sum runs over the polarizations A and the € , are the polarization vectors that
satisfy:
E'LkL’)\Ek)\/M = _5)\/\’ and k‘uel]:’/\ =0. (9)
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Also, in order to calculate decay widths, you can make use of the following expression for the
decay width [2]:

1 |Pal?
dT'(X — ab) = 32?\/\412 —d0 (10)
X

which is valid in the restframe of the particle X. |M]|? refers to the transition matrix
squared summed (averaged) over final (initial) state polarization and spins and p, and
dQ) = d¢gdcos b, are the momentum and the solid angle of particle a respectively.
2.1 Decay of a gauge boson and number of v; families
1. Compute the decay width for the process:
W™ = e 0 (11)

neglecting electron and the neutrino masses. For that purpose, use the lagrangian for
gauge boson-lepton interactions that were obtained in the lectures. You can also use of
the following tools:

(a) the sum over the polarization vectors of the on-shell W boson of 4-momentum k
is given by >, e’,;/\eZ’j\ = —g" + kmu#

(b) tr(any odd nb. of v’s)=0
(C) tl” (’}/ "}/’B’yufy ) — 4 (gl’”’gaﬁ _ gMagVﬁ _|_gal/gu/8)
(d) tr (y*yPyty"®) = —di P

)

r
7L 7070 in Dirac and Weyl representations.

(e

2. Compute the decay width for the process:
Z = . (12)

You can use the similitudes between the Lagrangians driving (11) and (12) for a rapid
evaluation.

This is of interest because the total decay width of the Z boson can be obtained ana-
lyzing the total cross-section for eTe™ annihilation at the Z pole obtained at LEPI and
SLAC. Compare the obtained decay width with the invisible decay width of Z obtained
experimentally (see e.g. PDG [2]) and deduce the number of families of active neutrinos
in Nature.

2.2 Decay of the top quark and Goldstone bosons
1. Compute the decay width for the process:

t— Wb (13)

using the lagrangian for gauge boson-quarks interactions that were obtained in the
lectures and assuming that the CKM matrix element |V;| ~ 1 and neglecting the mass
of the bottom quark.



2. Compute the decay width for the process:
t—o¢th, (14)

where ¢t is the charged Goldstone boson appearing in the decomposition of the Stan-
dard Model (SM) scalar doublet (use the top-SM scalar yukawa interactions). Compare
to the result obtained in the previous exercise and discuss.
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