Electroweak interactions - Exercices

1 Groups, spinors and gauge transformations

1. For Lie Groups, a group element arbitrarily close to the identity can be expanded as:

$$U = I + i\alpha^a T^a \tag{1}$$

where α^a are real parameters and T^a are the generators. The latter form a Lie algebra that is defined though the commutation relations:

$$[T^a, T^b] = if^{abc}T^c (2)$$

where f^{abc} are the structure constants and are real.

- (a) For U a group element of SU(N) and SO(N) determine the properties of the generators (hermitian, etc) and, for $N \times N$ transformations (corresponding to the fundamental representation) determine the number of the group generators.
- (b) Check that for SU(2), the generators $T^a = \sigma^a/2$, where σ^a are the Pauli Matrices, satisfy the commutation relations above with $f^{abc} = \epsilon^{abc}$.
- (c) Check that for SU(2), the representation of dimension 2 satisfy $-T^{a*} = UT^aU^{\dagger}$ with $U = i\sigma_2$. This representation is said to be pseudo-real.¹
- (d) Consider an SU(2) lepton doublet,

$$L_e = (\nu_{eL} e_L)^T. (3)$$

How does this doublet transforms under an SU(2) transformation described by (1) with $\alpha^3 = \alpha$, and $\alpha^1 = \alpha^2 = 0$.

- 2. We are now going to look at the Lorentz transformations acting on spinors.
 - (a) The 4 dimensional matrices $S^{\mu\nu}=i/4[\gamma^{\mu},\gamma^{\nu}]$ provide a representation of the Lorentz algebra. Give the form of S^{0i} and S^{ij} in terms of the Pauli matrices using the Weyl representation of the Dirac matrices γ^{μ} .
 - (b) Considering that a Dirac Spinor transform as $\Psi \to \exp(-i\omega_{\mu\nu}S^{\mu\nu})\Psi$, where $\omega_{\mu\nu}$ is ar antisymmetric tensor, check that the left and right components of the spinor $\Psi = (\psi_L \psi_B)^T$
 - transform in the same way when considering an infinitesimal rotation of angle $\omega_{12} = -\omega_{12} = \theta$ in the xy plane

¹For a given representation R described with the generators T_R^a , the complex conjugate representation \bar{R} with $T_{\bar{R}}^a = -T_R^{a*}$ is also a representation as it satisfy (2). A real representation satisfy $T_{\bar{R}}^a = T_R^a$ (or there is a unitary transformation V such that $\tilde{T}_R^a = V^{-1}T_R^aV$ satisfy $\tilde{T}_{\bar{R}}^a = \tilde{T}_R^a$). You can check that the Adjoint representations of SU(N) or the fundamental representations of SO(N) are real representations.

• transform differently under an infinitesimal boost of rapidity $\omega_{01} = -\omega_{10} = \beta$ in the x-direction.

This is directly related to the fact that the Dirac representation of the Lorentz group is reducible.

- (c) Check that $i\sigma^2\chi_L^*$ transforms as ψ_R using the last item of Exercise 1
- (d) Check that $\chi_L^T i \sigma^2 \psi_L$ is a scalar under Lorentz transformations, conclude that $\bar{\Psi} \Psi$ with $\Psi = (\psi_L \psi_R)^T$ is a Lorentz scalar.
- 3. Considering the covariant derivative

$$D_{\mu} = \partial_{\mu} - igA_{\mu} \,, \tag{4}$$

the field strength can be defined as $[D_{\mu}, D_{\nu}] = -igF_{\mu\nu}$.

- (a) For an abelian gauge group check that $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$.
- (b) For a non abelian gauge group check that $F^a_{\mu\nu}=\partial_\mu A^a_\nu-\partial_\nu A^a_\mu+gf^{abc}A^b_\mu A^c_\nu$ with $F_{\mu\nu}=F^a_{\mu\nu}T^a$ and $A_\mu=A^a_\mu T^a$.
- 4. The kinetic term for and $SU(2)_L \times U(1)_Y$ lepton doublet $L_e = (L_{e1} L_{e2})^T$ with $L_{e1} = \nu_{eL}$ and $L_{e2} = e_L$ reads $\bar{L}_e \not\!\!\!D L_e$ with $D_\mu = \partial_\mu ig' Y_{eL} B_\mu ig W_\mu$ and $W_\mu = W_\mu^a \frac{\sigma^a}{2}$. In the compact expression of this kinetic term, write explicitly the sum over SU(2), Lorentz and spinor indices.

2 Processes

In order to fix the notations, here we follow the notations of [1] describing a Dirac spinor as

$$\psi(x,t) = \sum_{s} \int \frac{d^3k}{(2\pi)^3 \sqrt{2E_k}} \left(a_{k,s} u(k,s) e^{-ikx} + b_{k,s}^{\dagger} v(k,s) e^{ikx} \right).$$
 (5)

The sum runs over spin values s and $a_{k,s}^{\dagger}\left(b_{k,s}^{\dagger}\right)$ creates a particle (antiparticle) of momentum \vec{k} and spin s. The spinors u and v obey the Dirac equations

$$(\cancel{k} - m)u(k, s) = 0$$

$$(\cancel{k} + m)v(k, s) = 0$$
(6)

with the sums:

$$\sum_{s} u(k,s) \, \bar{u}(k,s) = k + m, \quad \sum_{s} v(k,s) \, \bar{v}(k,s) = k - m$$
 (7)

For a vector, we use:

$$V^{\mu}(x,t) = \sum_{\lambda} \int \frac{d^3k}{(2\pi)^3 \sqrt{2E_k}} \left(a_{k,\lambda} \epsilon_{k,\lambda}^{\mu} e^{-ikx} + b_{k,s}^{\dagger} \epsilon_{k,\lambda}^{\mu*} e^{ikx} \right)$$
(8)

where the sum runs over the polarizations λ and the $\epsilon_{k,\lambda}^{\mu}$ are the polarization vectors that satisfy:

$$\epsilon_{k,\lambda}^{\mu}\epsilon_{k,\lambda'\mu} = -\delta_{\lambda\lambda'} \quad \text{and} \quad k_{\mu}\epsilon_{k,\lambda}^{\mu} = 0.$$
 (9)

Also, in order to calculate decay widths, you can make use of the following expression for the decay width [2]:

$$d\Gamma(X \to ab) = \frac{1}{32\pi^2} |\mathcal{M}|^2 \frac{|\vec{p}_a|^2}{m_Y^2} d\Omega \tag{10}$$

which is valid in the restframe of the particle X. $|\mathcal{M}|^2$ refers to the transition matrix squared summed (averaged) over final (initial) state polarization and spins and \vec{p}_a and $d\Omega = d\phi_a d\cos\theta_a$ are the momentum and the solid angle of particle a respectively.

2.1 Decay of a gauge boson and number of ν_L families

1. Compute the decay width for the process:

$$W^- \to e^- \bar{\nu}_e \tag{11}$$

neglecting electron and the neutrino masses. For that purpose, use the lagrangian for gauge boson-lepton interactions that were obtained in the lectures. You can also use of the following tools:

- (a) the sum over the polarization vectors of the on-shell W boson of 4-momentum k is given by $\sum_{\lambda} \epsilon_{k,\lambda}^{\mu} \epsilon_{k,\lambda}^{\nu*} = -g^{\mu\nu} + \frac{k^{\mu}k^{\nu}}{m_W^2}$
- (b) tr(any odd nb. of γ 's)=0
- (c) $\operatorname{tr}\left(\gamma^{\alpha}\gamma^{\beta}\gamma^{\mu}\gamma^{\nu}\right) = 4\left(g^{\mu\nu}g^{\alpha\beta} g^{\mu\alpha}g^{\nu\beta} + g^{\alpha\nu}g^{\mu\beta}\right)$
- (d) tr $(\gamma^{\alpha}\gamma^{\beta}\gamma^{\mu}\gamma^{\nu}\gamma^{5}) = -4i \epsilon^{\alpha\beta\mu\nu}$
- (e) $\gamma_{\mu}^{\dagger} = \gamma_0 \gamma_{\mu} \gamma_0$ in Dirac and Weyl representations.
- 2. Compute the decay width for the process:

$$Z \to \bar{\nu}\nu$$
. (12)

You can use the similitudes between the Lagrangians driving (11) and (12) for a rapid evaluation.

This is of interest because the total decay width of the Z boson can be obtained analyzing the total cross-section for e^+e^- annihilation at the Z pole obtained at LEPI and SLAC. Compare the obtained decay width with the invisible decay width of Z obtained experimentally (see e.g. PDG [2]) and deduce the number of families of active neutrinos in Nature.

2.2 Decay of the top quark and Goldstone bosons

1. Compute the decay width for the process:

$$t \to W^+ b \tag{13}$$

using the lagrangian for gauge boson-quarks interactions that were obtained in the lectures and assuming that the CKM matrix element $|V_{tb}| \simeq 1$ and neglecting the mass of the bottom quark.

2. Compute the decay width for the process:

$$t \to \phi^+ b$$
, (14)

where ϕ^+ is the charged Goldstone boson appearing in the decomposition of the Standard Model (SM) scalar doublet (use the top-SM scalar yukawa interactions). Compare to the result obtained in the previous exercise and discuss.

References

- [1] Michael E. Peskin and Daniel V. Schroeder. An Introduction to quantum field theory.
- [2] Beringer et al. (Particle Data Group). Review of particle physics. *Phys. Rev. D*, 86:010001, Jul 2012.