
Electroweak interactions - Exercices

1 Groups, spinors and gauge transformations

1. For Lie Groups, a group element arbitrarily close to the identity can be expanded as:

U = I + iαaT a (1)

where αa are real parameters and T a are the generators. The latter form a Lie algebra
that is defined though the commutation relations:

[T a, T b] = ifabcT c (2)

where fabc are the structure constants and are real.

(a) For U a group element of SU(N) and SO(N) determine the properties of the
generators (hermitian, etc) and, for N ×N transformations (corresponding to the
fundamental representation) determine the number of the group generators.

(b) Check that for SU(2), the generators T a = σa/2, where σa are the Pauli Matrices,
satisfy the commutation relations above with fabc = εabc.

(c) Check that for SU(2), the representation of dimension 2 satisfy −T a∗ = UT aU †

with U = iσ2. This representation is said to be pseudo-real.1

(d) Consider an SU(2) lepton doublet,

Le = (νeL eL)T . (3)

How does this doublet transforms under an SU(2) transformation described by (1)
with α3 = α, and α1 = α2 = 0.

2. We are now going to look at the Lorentz transformations acting on spinors.

(a) The 4 dimensional matrices Sµν = i/4[γµ, γν ] provide a representation of the
Lorentz algebra. Give the form of S0i and Sij in terms of the Pauli matrices using
the Weyl representation of the Dirac matrices γµ.

(b) Considering that a Dirac Spinor transform as Ψ → exp(−iωµνSµν)Ψ, where ωµν
is ar antisymmetric tensor, check that the left and right components of the spinor
Ψ = (ψL ψR)T

• transform in the same way when considering an infinitesimal rotation of angle
ω12 = −ω12 = θ in the xy plane

1For a given representation R described with the generators T aR, the complex conjugate representation R̄
with T aR̄ = −T a∗R is also a representation as it satisfy (2). A real representation satisfy T aR̄ = T aR (or there
is a unitary transformation V such that T̃ aR = V −1T aRV satisfy T̃ aR̄ = T̃ aR). You can check that the Adjoint
representations of SU(N) or the fundamental representations of SO(N) are real representations.
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• transform differently under an infinitesimal boost of rapidity ω01 = −ω10 = β
in the x-direction.

This is directly related to the fact that the Dirac representation of the Lorentz
group is reducible.

(c) Check that iσ2χ∗L transforms as ψR using the last item of Exercise 1

(d) Check that χTLiσ
2ψL is a scalar under Lorentz transformations, conclude that Ψ̄Ψ

with Ψ = (ψL ψR)T is a Lorentz scalar.

3. Considering the covariant derivative

Dµ = ∂µ − igAµ , (4)

the field strength can be defined as [Dµ, Dν ] = −igFµν .

(a) For an abelian gauge group check that Fµν = ∂µAν − ∂νAµ .

(b) For a non abelian gauge group check that F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν with

Fµν = F aµνT
a and Aµ = AaµT

a .

4. The kinetic term for and SU(2)L×U(1)Y lepton doublet Le = (Le1 Le2)
T with Le1 = νeL

and Le2 = eL reads L̄e /DLe with Dµ = ∂µ − ig′YeLBµ − igWµ and Wµ = W a
µ
σa

2 . In the
compact expression of this kinetic term, write explicitly the sum over SU(2), Lorentz
and spinor indices.

2 Processes

In order to fix the notations, here we follow the notations of [1] describing a Dirac spinor as

ψ (x, t) =
∑
s

∫
d3k

(2π)3
√

2Ek

(
ak,su (k, s) e−ikx + b†k,sv (k, s) eikx

)
. (5)

The sum runs over spin values s and a†k,s

(
b†k,s

)
creates a particle (antiparticle) of momentum

~k and spin s. The spinors u and v obey the Dirac equations

(/k −m)u (k, s) = 0
(/k +m)v (k, s) = 0 (6)

with the sums: ∑
s

u (k, s) ū (k, s) = /k +m,
∑
s

v (k, s) v̄ (k, s) = /k −m (7)

For a vector, we use:

V µ (x, t) =
∑
λ

∫
d3k

(2π)3
√

2Ek

(
ak,λε

µ
k,λe

−ikx + b†k,sε
µ∗
k,λe

ikx
)

(8)

where the sum runs over the polarizations λ and the εµk,λ are the polarization vectors that
satisfy:

εµk,λεk,λ′ µ = −δλλ′ and kµε
µ
k,λ = 0 . (9)
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Also, in order to calculate decay widths, you can make use of the following expression for the
decay width [2]:

dΓ(X → ab) =
1

32π2
|M|2 |~pa|

2

m2
X

dΩ (10)

which is valid in the restframe of the particle X. |M|2 refers to the transition matrix
squared summed (averaged) over final (initial) state polarization and spins and ~pa and
dΩ = dφad cos θa are the momentum and the solid angle of particle a respectively.

2.1 Decay of a gauge boson and number of νL families

1. Compute the decay width for the process:

W− → e−ν̄e (11)

neglecting electron and the neutrino masses. For that purpose, use the lagrangian for
gauge boson-lepton interactions that were obtained in the lectures. You can also use of
the following tools:

(a) the sum over the polarization vectors of the on-shell W boson of 4-momentum k
is given by

∑
λ ε

µ
k,λε

ν ∗
k,λ = −gµν + kµkν

m2
W

(b) tr(any odd nb. of γ’s)=0

(c) tr
(
γαγβγµγν

)
= 4

(
gµνgαβ − gµαgνβ + gανgµβ

)
(d) tr

(
γαγβγµγνγ5

)
= −4i εαβµν

(e) γ†µ = γ0γµγ0 in Dirac and Weyl representations.

2. Compute the decay width for the process:

Z → ν̄ν . (12)

You can use the similitudes between the Lagrangians driving (11) and (12) for a rapid
evaluation.
This is of interest because the total decay width of the Z boson can be obtained ana-
lyzing the total cross-section for e+e− annihilation at the Z pole obtained at LEPI and
SLAC. Compare the obtained decay width with the invisible decay width of Z obtained
experimentally (see e.g. PDG [2]) and deduce the number of families of active neutrinos
in Nature.

2.2 Decay of the top quark and Goldstone bosons

1. Compute the decay width for the process:

t→W+b (13)

using the lagrangian for gauge boson-quarks interactions that were obtained in the
lectures and assuming that the CKM matrix element |Vtb| ' 1 and neglecting the mass
of the bottom quark.
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2. Compute the decay width for the process:

t→ φ+b , (14)

where φ+ is the charged Goldstone boson appearing in the decomposition of the Stan-
dard Model (SM) scalar doublet (use the top-SM scalar yukawa interactions). Compare
to the result obtained in the previous exercise and discuss.
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