

university of groningen

faculty of mathematics and natural sciences van swinderen institute for particle physics and gravity

Precision Electroweak Experiments – at low energies –

Gerco Onderwater BND School 2017 - Callantsoog

Who am I?

1993-1998 : VU/NIKHEF Hadron group at the AmPS facility

1998-2004 : Univ. of Illinois at Urbana-Champaign

Precision Physics Group Several low-energy "precision" experiments, incl. muon g-2, EDM & lifetime @ BNL & PSI

2004-now : Univ. of Groningen Van Swinderen Institute for Particle Physics & Gravity Experimental Particle Physics Group

C, P, & T: EDM (μ ,p,d,Ra,Xe), Ra⁺APV, β -decay, SrF LIV: Na-decay, d α /dt LFV : LHCb (B \rightarrow e μ) New muon g-2

My Research

Exploring the Quantum Universe

Baryon asymmetry Dark matter • **Dark energy** • 1012 cm **Neutron stars** 10 cm Su Nuclei 10¹²cm **Baryogenesis** Homa 10'8 Leptogenesis **UHECR**

Planck physics Symmetry violation Leptons & Baryons Mass Unification Neutrinos

Understand nature at Testing of the Extreme scales ↔ Standard Model

5

Energy frontier

Space-Time frontier Cosmology

Intensity frontier B-factories, v-factories

Precision frontier

Precision Frontier

Extremely precise calculations

QED/QFD : from first principles QCD : latQDC, EFT, χPT,

AND

Extremely precise measurements

Atomic, Nuclear, Particle physics techniques Symmetry violation Rare processes

What is "low energy"?

What is "low energy"?

Physics : high energy = QCD perturbative

What is "precision"?

precision /prɪˈsɪʒ(ə)n/ •)

noun

the quality, condition, or fact of being exact and accurate.

"the deal was planned and executed with military precision" synonyms: exactness, exactitude, accuracy, accurateness, correctness, preciseness, clarity, clearness, distinctness; More

- marked by or adapted for accuracy and exactness. modifier noun: precision "a precision instrument"
- technical

refinement in a measurement, calculation, or specification, especially as represented by the number of digits given.

plural noun: precisions

"a technique which examines and identifies each character with the highest level of precision"

Translations, word origin, and more definitions

Pushing at the limits of what we can conceptually and techniqually (and financially) accomplish.

Outline

Constants of the Standard Model

What makes a measurement?

Selected experiments

Conclusion

Outline

Constants of the Standard Model

What makes a measurement?

Selected experiments

Conclusion

Based on "Planning the edifice : structure of theories", Ch. 3, Uzan & Leclercq G. Cohen-Tannoudji, "Universal constants, standard models and fundamental metrology", Eur. Phys. J ST, 172, 5 (2009)

What is a "constant"?

Definition of CONSTANT

- : something invariable or unchanging: as
- a : a number that has a fixed value in a given situation or universally or that is characteristic of some substance or instrument
- b : a number that is assumed not to change value in a given mathematical discussion
- c : a term in logic with a fixed designation

Definition of "fundamental"?

Ι.

- a : serving as an original or generating source : PRIMARY <a discovery fundamental to modern computers>
- b : serving as a basis supporting existence or determining essential structure or function : BASIC
- 11.
 - a : of or relating to essential structure, function, or facts : **RADICAL** <*fundamental* change>; *also* : of or dealing with general principles rather than practical application <*fundamental* science>
 - b : adhering to fundamentalism
- III. of, relating to, or produced by the lowest component of a complex vibration
- IV. of central importance : PRINCIPAL <fundamental purpose>
- V. belonging to one's innate or ingrained characteristics : DEEP-ROOTED <her *fundamental* good humor>

Practical definition in physics

a "constant"

is

in the definition of a physical law

Time dependence ...

Which constants are necessary depends on the theory known at the time

Nineteenth centrury

- lots of constants for thermodynamics & dynamics

e.g. Boltzmann's constant, heat capacity, specific heat, latent heat, ideal gas constant, molar mass, Joule-Thomson coefficient, compressibility,

– no need for Planck's constant \hbar or fine structure constant α

According to discipline ...

Which constants are necessary depends on the theory considered

Mechanics

e.g gravitational acceleration ${m g}$ and gravitational constant ${m G}$

Thermodynamics

e.g. ideal gas constant **R**, Boltzmann's constant **k**

Electromagnetism

e.g. speed of light *c*, elementary charge *e*

Quantum mechanics

e.g. Planck's constant h, fine structure constant a

According to ease of use ...

List of constants is not absolute

e.g. book on relativistic physics might replace constants with equivalent ones:

 $m_e \rightarrow m_e c^2$

List depends on intended use

Will we ever know all?

End 19th century : all that seems necessary to describe nature are <u>classical mechanics</u>, <u>thermodynamics</u> and <u>electromagnetism</u>.

Maxwell (1871) : "... in a few years, all great physical constants will have been approximately estimated, ... and the only occupation which will be left to men of science will be to carry these measurements to another place of decimals."

What is "fundamental"?

1983 : Steven Weinberg

"Fundamental" constants

cannot be calculated

from other constants

"... not just because the calculation is too complicated (e.g. viscosity of water) but because we do not know of anything more fundamental (*sic!*)"

Closer look at electromagnetism

$$\begin{split} \hbar &= \frac{h}{2\pi} \qquad \alpha = \frac{e^2}{(4\pi\epsilon_0)\hbar c} = \frac{\mu_0 c e^2}{4\pi\hbar} = \sqrt{\frac{\mu_0}{\epsilon_0}} \frac{e^2}{\hbar c} \\ \epsilon_0 \mu_0 c^2 &= 1 \\ a_e &= C_e^{(2)} \left(\frac{\alpha}{\pi}\right) + C_e^{(4)} \left(\frac{\alpha}{\pi}\right)^2 + C_e^{(6)} \left(\frac{\alpha}{\pi}\right)^3 + C_e^{(8)} \left(\frac{\alpha}{\pi}\right)^4 + \dots \\ K_J &= \frac{e}{\pi\hbar} \\ K_J^2 R_K &= \frac{2}{\pi\hbar} \qquad R_\infty = \frac{\alpha^2 m_e c}{4\pi\hbar} = \frac{m_e e^4}{8\epsilon_0^2 h^3 c} \\ R_K &= \frac{\mu_0 c}{2\alpha} = \frac{2\pi\hbar}{e^2} \qquad R_y = h c R_\infty \end{split}$$

Which E&M constants fundamental?

- electric constant **E**₀
- magnetic constant μ_{o}
- С: speed of light
- electron charge е:
- α : fine structure constant
- *h* : Planck's constant
- \hbar : Planck's constant / 2π
- m_e electron mass
- $R_{_{\infty}}$: Rydberg constant
- Rydberg constant (in energy units) R_{y}
 - electron anomalous magnetic moment
- a_e: K_j: Josephson constant
- R_{κ} : von Klitzing constant

Selecting h, c & e as fundamental ...

... then you also need e.g. α and m_e

$$R_{K} = \frac{\mu_{0} c}{2 \alpha} = \frac{2 \pi \hbar}{e^{2}}$$

$$K_{J} = \frac{e}{\pi \hbar}$$

$$a_{e} = C_{e}^{(2)} \frac{\alpha}{\pi} + C_{e}^{(4)} \frac{\alpha}{\pi}^{2} + C_{e}^{(6)} \frac{\alpha}{\pi}^{3} + C_{e}^{(8)} \frac{\alpha}{\pi}^{4} + \dots$$

$$R_{\omega} = \frac{\alpha^{2} m_{e} c}{4 \pi \hbar} = \frac{m_{e} e^{4}}{8 \epsilon_{0}^{2} \hbar^{3} c}$$

$$K_{J}^{2} R_{K} = \frac{2}{\pi \hbar}$$

$$R_{\omega} = h c R_{\omega}$$

How to decide?

Choice of constants depends on

- measurability
- uniformity
- universality
- ease of use
- state of knowledge
- applicability

Hierarchy of constants

Classification by Lévy-Leblond [1979]

- A. Properties of particular physical objects
- B. Characteristics of classes of phenomena
- C. Universal constants
- D. Invisible constants
- E. Constants indistinguishable from zero

Hierarchy of constants

Examples

- A. Particle masses, magnetic moments
- B. Coupling constants, mixing angles
- C. Speed of light, Planck's constant, Gravitational constant
- D. Isotropy of space, equivalence inertial & gravitational mass, #dimensions, #flavors
- E. Photon mass, graviton mass, neutrality of matter, (neutrino mass)

Evolution

When introducing new, more unified or more fundamental, theories

- i. number of constants may change
- ii. hierarchy of fundamental constants time dependent
- iii.reflects our knowledge and ignorance

Constants may : emerge, progress, retrogress, transmute, disappear

fundamental theories \leftrightarrow fundamental constants

Most fundamental constants

Three "most fundamental" constants: **G**, **c** and **ħ** (class C)

Why? What is their role?

Related to evolution of physics & formulation of new theories

Constants \rightarrow domain of validity of theories

 $v \rightarrow c$: relativistic effects become important A $\approx \hbar$: quantum effects become important G > 0: gravitation effects become important

What about particles?

The Standard Model

Standard Model

Which are the fundamental parameters?

Standard Model : physics @ most fundamental level

Parameters cannot be related to more fundamental theory

Dimensions provided by **ħ**, **c** & **G**

Many <u>dimensionless</u> fundamental parameters

(these any observer can agree upon, regardless of their unit system)

Some hidden constants ...

SM parameters

Par	Meaning	Value	Par.	Meaning	Value
g	Weak coupling @ m_z	0.6520(1)	G _e	Electron Yukawa coupl.	2.94x10 ⁻⁶
θ _w	Weinberg angle	0.48290(5)	G _µ	Muon Yukawa coupl.	0.000607
9 _s	Strong coupling @ m_z	1.221(22)	G _T	Tauon Yukawa coupl.	0.0102156233
μ²	Quadratic Higgs coef.	~ -10 ⁻³³	G _{ve}	e-neutrino Yukawa coupl.	<1.7x10 ⁻¹¹
λ	Quartic Higgs coef.	~1?	$G_{_{\nu\mu}}$	µ-neutrino Yukawa coupl.	<1.1x10 ⁻⁶
$\sin \theta_{12}$	Quark CKM angle	0.2243(16)	G _{vt}	т-neutrino Yukawa coupl.	<0.10
$\sin \theta_{_{23}}$	Quark CKM angle	0.0413(15)	G _u	u-quark Yukawa coupl.	0.000016(7)
$\sin \theta_{_{13}}$	Quark CKM angle	0.0037(5)	$G_{_{d}}$	d-quark Yukawa coupl.	0.00003(2)
δ ₁₃	Quark CKM phase	1.05(24)	G _c	c-quark Yukawa coupl.	0.0072(6)
sin0' ₁₂	Neutrino MNS angle	0.55(6)	Gs	s-quark Yukawa coupl.	0.0006(2)
sin0' ₂₃	Neutrino MNS angle	≥0.94	G _t	t-quark Yukawa coupl.	1.002(29)
sin0' ₁₃	Neutrino MNS angle	≤0.22	G _b	b-quark Yukawa coupl.	0.026(3)
δ' ₁₃	Neutrino MNS phase	?	$\theta_{_{QCD}}$	CPV QCD vacuum phase	<10 ⁻⁹
Tegmark, Aquirre, Rees, Wilczek Phys. Rev. D73 023505 (2006)					

33

SM parameters

Fermion masses : m = Gv

Par	Meaning	Value	Par.	Meaning	Value
g	Weak coupling @ $\rm m_{_Z}$	0.6520(1)	G _e	Electron Yukawa coupl.	2.94x10 ⁻⁶
θ _w	Weinberg angle	0.48290(5)	G _µ	Muon Yukawa coupl.	0.000607
9 _s	Strong coupling @ m_z	1.221(22)	G,	Tauon Yukawa coupl.	0.0102156233
μ²	Quadratic Higgs coef.	~ -10 ⁻³³	G _{ve}	e-neutrino Yukawa coupl.	<1.7x10 ⁻¹¹
λ	Quartic Higgs coef.	~1?	$G_{_{v\mu}}$	µ-neutrino Yukawa coupl.	<1.1x10 ⁻⁶
$\sin \theta_{_{12}}$	Quark CKM angle	0.2243(16)	G _{vt}	т-neutrino Yukawa coupl.	<0.10
$\sin \theta_{_{23}}$	Quark CKM angle	0.0413(15)	G _u	u-quark Yukawa coupl.	0.000016(7)
$\sin \theta_{_{13}}$	Quark CKM angle	0.0037(5)	G _d	d-quark Yukawa coupl.	0.00003(2)
δ ₁₃	Quark CKM phase	1.05(24)	G _c	c-quark Yukawa coupl.	0.0072(6)
$\sin\theta'_{12}$	Neutrino MNS angle	0.55(6)	Gs	s-quark Yukawa coupl.	0.0006(2)
$\sin\theta'_{_{23}}$	Neutrino MNS angle	≥0.94	G _t	t-quark Yukawa coupl.	1.002(29)
sin0' ₁₃	Neutrino MNS angle	≤0.22	G _b	b-quark Yukawa coupl.	0.026(3)
δ' ₁₃	Neutrino MNS phase	?	$\theta_{_{QCD}}$	CPV QCD vacuum phase	<10 ⁻⁹

SM parameters

Coupling constants

Par	Meaning	Value	Par.	Meaning	Value
g	Weak coupling @ m _z	0.6520(1)	G _e	Electron Yukawa coupl.	2.94x10 ⁻⁶
θ _w	Weinberg angle	0.48290(5)	G _µ	Muon Yukawa coupl.	0.000607
9 _s	Strong coupling @ m_z	1.221(22)	G _T	Tauon Yukawa coupl.	0.0102156233
μ²	Quadratic Higgs coef.	~ -10 ⁻³³	G _{ve}	e-neutrino Yukawa coupl.	<1.7x10 ⁻¹¹
λ	Quartic Higgs coef.	~1?	$G_{_{v\mu}}$	µ-neutrino Yukawa coupl.	<1.1x10 ⁻⁶
$\sin \theta_{_{12}}$	Quark CKM angle	0.2243(16)	$G_{_{VT}}$	т-neutrino Yukawa coupl.	<0.10
$\sin \theta_{_{23}}$	Quark CKM angle	0.0413(15)	G _u	u-quark Yukawa coupl.	0.000016(7)
$\sin \theta_{_{13}}$	Quark CKM angle	0.0037(5)	$G_{_{d}}$	d-quark Yukawa coupl.	0.00003(2)
δ ₁₃	Quark CKM phase	1.05(24)	G _c	c-quark Yukawa coupl.	0.0072(6)
$\sin\theta'_{12}$	Neutrino MNS angle	0.55(6)	Gs	s-quark Yukawa coupl.	0.0006(2)
$\sin\theta'_{_{23}}$	Neutrino MNS angle	≥0.94	G _t	t-quark Yukawa coupl.	1.002(29)
sin0' ₁₃	Neutrino MNS angle	≤0.22	G _b	b-quark Yukawa coupl.	0.026(3)
δ' ₁₃	Neutrino MNS phase	?	$\theta_{_{\rm QCD}}$	CPV QCD vacuum phase	<10-9

35

SM parameters

Flavor mixing

Par	Meaning	Value	Par.	Meaning	Value
g	Weak coupling @ m_z	0.6520(1)	G _e	Electron Yukawa coupl.	2.94x10 ⁻⁶
θ	Weinberg angle	0.48290(5)	G _µ	Muon Yukawa coupl.	0.000607
9 _s	Strong coupling @ m_z	1.221(22)	G _T	Tauon Yukawa coupl.	0.0102156233
μ²	Quadratic Higgs coef.	~ -10 ⁻³³	$G_{_{ve}}$	e-neutrino Yukawa coupl.	<1.7x10 ⁻¹¹
λ	Quartic Higgs coef.	~1?	$G_{_{v\mu}}$	µ-neutrino Yukawa coupl.	<1.1x10 ⁻⁶
$\sin \theta_{_{12}}$	Quark CKM angle	0.2243(16)	G _{vt}	т-neutrino Yukawa coupl.	<0.10
$\sin \theta_{_{23}}$	Quark CKM angle	0.0413(15)	G _u	u-quark Yukawa coupl.	0.000016(7)
$\sin \theta_{_{13}}$	Quark CKM angle	0.0037(5)	G _d	d-quark Yukawa coupl.	0.00003(2)
δ ₁₃	Quark CKM phase	1.05(24)	G _c	c-quark Yukawa coupl.	0.0072(6)
$\sin\theta'_{12}$	Neutrino MNS angle	0.55(6)	G _s	s-quark Yukawa coupl.	0.0006(2)
$\sin\theta'_{_{23}}$	Neutrino MNS angle	≥0.94	G _t	t-quark Yukawa coupl.	1.002(29)
sinθ' ₁₃	Neutrino MNS angle	≤0.22	G _b	b-quark Yukawa coupl.	0.026(3)
δ' ₁₃	Neutrino MNS phase	?	$\theta_{_{\rm QCD}}$	CPV QCD vacuum phase	<10 ⁻⁹

SM parameters

CP violation

Par	Meaning	Value	Par.	Meaning	Value
g	Weak coupling @ m_z	0.6520(1)	G _e	Electron Yukawa coupl.	2.94x10 ⁻⁶
θ _w	Weinberg angle	0.48290(5)	G _µ	Muon Yukawa coupl.	0.000607
9 _s	Strong coupling @ $\rm m_{_Z}$	1.221(22)	G,	Tauon Yukawa coupl.	0.0102156233
μ²	Quadratic Higgs coef.	~ -10 ⁻³³	G _{ve}	e-neutrino Yukawa coupl.	<1.7x10 ⁻¹¹
λ	Quartic Higgs coef.	~1?	$G_{_{\nu\mu}}$	µ-neutrino Yukawa coupl.	<1.1x10 ⁻⁶
$\sin \theta_{12}$	Quark CKM angle	0.2243(16)	G _{vt}	т-neutrino Yukawa coupl.	<0.10
$\sin \theta_{_{23}}$	Quark CKM angle	0.0413(15)	G _u	u-quark Yukawa coupl.	0.000016(7)
$\sin \theta_{_{13}}$	Quark CKM angle	0.0037(5)	G _d	d-quark Yukawa coupl.	0.00003(2)
δ ₁₃	Quark CKM phase	1.05(24)	G _c	c-quark Yukawa coupl.	0.0072(6)
sin0' ₁₂	Neutrino MNS angle	0.55(6)	Gs	s-quark Yukawa coupl.	0.0006(2)
sin0' ₂₃	Neutrino MNS angle	≥0.94	G _t	t-quark Yukawa coupl.	1.002(29)
sin0' ₁₃	Neutrino MNS angle	≤0.22	G _b	b-quark Yukawa coupl.	0.026(3)
δ' ₁₃	Neutrino MNS phase	?	$\boldsymbol{\theta}_{_{\mathrm{QCD}}}$	CPV QCD vacuum phase	<10 ⁻⁹
Tegmark, Aquirre, Rees, Wilczek Phys. Rev. D73 023505 (2006)					
SM parameters

Mass generation via Higgs

Par	Meaning	Value	Par.	Meaning	Value
g	Weak coupling @ $\rm m_{_Z}$	0.6520(1)	$G_{_{e}}$	Electron Yukawa coupl.	2.94x10 ⁻⁶
θ _w	Weinberg angle	0.48290(5)	$G_{_{\!$	Muon Yukawa coupl.	0.000607
9 _s	Strong coupling @ m_z	1.221(22)	G,	Tauon Yukawa coupl.	0.0102156233
μ²	Quadratic Higgs coef.	~ -10 ⁻³³	$G_{_{ve}}$	e-neutrino Yukawa coupl.	<1.7x10 ⁻¹¹
λ	Quartic Higgs coef.	~1?	$G_{_{v\mu}}$	µ-neutrino Yukawa coupl.	<1.1x10 ⁻⁶
$\sin \theta_{_{12}}$	Quark CKM angle	0.2243(16)	G _{vt}	т-neutrino Yukawa coupl.	<0.10
$\sin \theta_{_{23}}$	Quark CKM angle	0.0413(15)	G _u	u-quark Yukawa coupl.	0.000016(7)
$\sin \theta_{_{13}}$	Quark CKM angle	0.0037(5)	$G_{_{d}}$	d-quark Yukawa coupl.	0.00003(2)
δ ₁₃	Quark CKM phase	1.05(24)	G _c	c-quark Yukawa coupl.	0.0072(6)
$\sin\theta'_{12}$	Neutrino MNS angle	0.55(6)	G_{s}	s-quark Yukawa coupl.	0.0006(2)
$\sin\theta'_{_{23}}$	Neutrino MNS angle	≥0.94	G _t	t-quark Yukawa coupl.	1.002(29)
sinθ' ₁₃	Neutrino MNS angle	≤0.22	G _b	b-quark Yukawa coupl.	0.026(3)
δ' ₁₃	Neutrino MNS phase	?	$\theta_{_{\rm QCD}}$	CPV QCD vacuum phase	<10 ⁻⁹

Tegmark, Aguirre, Rees, Wilczek Phys.Rev. D73, 023505 (2006)

Some statistics

Apparently there are 26 (some say 28) dimensionless parameters needed in the Standard Model.

- 12 are masses (w.r.t. to Higgs v.e.v.)
- *3 are coupling constants*
- 6 are related to flavor mixing
- *3 incorporate CP-violation*
- 2 are needed for Higgs physics
- (+2 *if neutrino's are Majorana particles*)

Some take this abundance of parameters as a hint that the Standard Model is only a low-energy limit of some more fundamental theory with (supposedly) fewer parameters.

(For those into SUSY: it has at least twice as many parameters)

Ease of use

What is the best set to use depends on what you're upto:

e.g. in gauge & scalar sectors of the SM we find

g, g', μ^2 , & h Easy for calculations

or

$\alpha,\,\theta_W,\,M_W,\,\&\,M_H$

or

 $\alpha, G_F, M_Z, \& M_H$ Easy to measure

Loops, running & renormalisation

Energy available in the process, or time/length scale at which you probe affects measured coupling constant

And beyond the SM

Potential SM extensions typically come with additional (for now "hidden") parameters

Precision frontier

Extremely precise calculations

QED/QFD : from first principles QCD : latQDC, EFT, χPT,

AND

Extremely precise measurements

Atomic, Nuclear, Particle physics techniques Symmetry violation Rare processes

and the 00

Outline

Constants of the Standard Model

What makes a measurement?

Selected experiments

Conclusion

Measurement & knowledge

Lord Kelvin : "When you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot measure it in numbers, your knowledge is of a meagre and unsatisfactory kind ..."

Heike Kamerlingh Onnes : "Through measurement to knowledge"

Measurement leads to the expression of characteristics of systems in terms of numbers

give reliable knowledge on objects or concepts

Measurement & knowledge

How is a numerical value obtained?

In practice:

Linked to the set up of methodologies, instruments and reference standards

Aim: achieve reliable comparisons

Express results in terms of identified units

Also linked to developments in mathematics, control and computer science

Physical measurement

Comparison of two physical systems only gives access to *dimensionless numbers*.

"This" is so many of "those"

One often used to realize system of units

How many units are needed?

Everything measurable needs (generally) a unit: Length, time, mass, current, velocity, voltage, temperature, entropy, area, volume, magnetization, resistance, capacitance, radioactivity, frequency,

Scientific measurement system

Scientific measurement system "Quantum SI" mo <0

Relies on fundamental constants

48

SI adopted worldwide (almost ...)

Towards "natural" units

The SI system of units is essentially a <u>practical</u> one in which each unit has a convenient magnitude for use "on the street", but

overall they do not have a natural basis

Consider communicating your mass and size to someone on a remote planet in a distant galaxy. "Meter" and "kilogram" would not be very useful for this purpose.

There are, however, physical quantities which come rather close to being the natural units of science, and these are termed the

fundamental physics constants

here we need to take a closer look at theory

Planck units

Setting the three constants to unity

$$c = \hbar = G = 1$$

Using SI-units $c = 299792458 \, m \cdot s^{-1}$ $\hbar = 1.054571628(53) \times 10^{-34} \, J \cdot s$ $G = 6.67428(67) \times 10^{-11} \, m^3 \cdot kg^{-1} \cdot s^{-2}$

the "natural" units for length, mass and time appear

$$l_{P} = \hbar / m_{P} c = \sqrt{\hbar G / c^{3}} = 1.6163 \times 10^{-35} m$$
$$m_{P} = \sqrt{\hbar c / G} = 2.1764 \times 10^{-8} kg$$
$$t_{P} = \sqrt{\hbar G / c^{5}} = 5.3912 \times 10^{-44} s$$

not particularly practical for everyday use ...

Planck rulers

SI "rulers"

Planck "ruler"

black hole with mass such that radius is equal to de Broglie wavelength

Need only ONE for length, mass and time!

Other "natural" units systems

Quantity / symbol	Planck	Stoney	Atomic	QCD
Speed of light in vacuum, c	1	1	1/α	1
Electric constant, $\boldsymbol{\epsilon}_{_0}$	1/4π	1/4π	1/4π	1/4πα
Magnetic constant, $\mu_0 = 1/\epsilon_0 c^2$	4π	4π	4πα²	4πα
Impedance of vacuum, $Z_0 = 1/\epsilon_0 c$	4π	4π	4πα	4πα
Planck's constant, ħ=h/2π	1	1/α	1	1
Elementary charge, e	$\sqrt{\alpha}$	1	1	1
Josephson constant, K _J = e/πħ	√α/π	α/π	1/π	1/π
Von Klitzing constant, $R_{\kappa} = 2\pi\hbar/e^2$	2π/α	2π/α	2π	2π
Gravitational constant, G	1	1	α _G	μ²α _G
Electron mass, m _e	$\sqrt{\alpha_{_{\rm G}}}$	√α _G /α	1	1/µ

- α : fine structure constant
- $\alpha_{_{\rm G}}$: gravitational coupling constant = $(m_{_{\rm Planck}}/m_{_{\rm Planck}})^2$
- μ : proton-to-electron mass ratio

Mass mystery ...

Units are an (arbitrary) choice, but they still affect a measurement ...

CODATA masses

The NIST Reference on Constants, Units, and Uncertainty

m _p	=	1.672	621	898(21)	x 10- ²⁷ kg	(1.2x10 ⁻⁸)
m _p	=	1.007	276	466 879	(91) u	(9.0x10 ⁻¹¹)
m _p ·c²	=	1.503	277	593(18)	x 10 ⁻¹⁰ J	(1.2x10 ⁻⁸)
m _p ·c²	=	0.938	272	0813(58) GeV	(6.2x10 ⁻⁹)
-						

m _e	=	9.109	383	56(11) x 10 ⁻³¹ kg	(1.2x10 ⁻⁸)
m _e	=	5.485	799	090 70(16) u	(2.9x10 ⁻¹¹)
m _e ·c²	=	8.187	105	65(10) x 10 ⁻¹⁴ J	(1.2x10 ⁻⁸)
m _e c²	=	0.510	998	9461(31) MeV	(6.2x10 ⁻⁹)

 $\begin{array}{ll} m_{\mu} &= 1.883\ 531\ 594(48)\ x\ 10^{-28}\ \text{kg} & (2.5x10^{-8}) \\ m_{\mu} &= 0.113\ 428\ 9257(25)\ \text{u} & (2.2x10^{-8}) \\ m_{\mu}\cdot c^2 &= 1.692\ 833\ 774(43)\ x\ 10^{-11}\ \text{J} & (2.5x10^{-8}) \\ m_{\mu}\cdot c^2 &= 105.658\ 3745(24)\ \text{MeV} & (2.3x10^{-8}) \end{array}$

54

Constants of the Standard Model

What makes a measurement?

Selected experiments

Conclusion

56

QFD has a rich phenomenology

The weak coupling constant is

 $G_F \simeq 1.17 \times 10^{-5} \, \mathrm{GeV}^{-2}$

WI is the only interaction

- changing flavor
- violating parity
- violating CP
- mediated by massive bosons
- affecting neutrinos

Many ad hoc inputs ...

Enrico Fermi

59

Principle of a lifetime measurement

What to do to get 1 ppm

Record 2x10¹² muon decay times to <2ps

The muLan experiment @ PSI

- most intense muon beam (2MW protons)
- Chop DC beam: 5µs on + 22µs off
- Eliminate muon polarization effects
 - "on" time = 5 spin cycles
 - magnetized stopper target
 - symmetric detector (170 elem.)
- ▶ Keep acceptance constant < 10⁻⁶/lifetime
- ▶ Record 2 x 10^{12} muons → 1 ppm statistics
- Blind analysis

Computational challange

- 0.2 PByte
- 80,000 CPU hours per data pass

muLan results

Phys. Rev. D 87, 052003 (2013)

Largest challenge : systematics

Effect uncertainty in ppm	R06	R07
Kicker stability	0.20	0.07
Spin precession or relaxation	0.10	0.20
Pileup	0.20	
Gain stability	0.25	
Upstream muon stops	0.10	
Timing stability	0.12	
Clock calibration	0.03	
Total systematic	0.42	0.42
Statistical uncertainty	1.14	1.68

Fermi coupling constant

$$\frac{1}{\tau_{\mu}^{th}} = \frac{G_F^2 m_{\mu}^5}{192 \pi^3} (1 + \Delta q) \quad [<0.3 \text{ ppm}]$$
+
$$\tau_{\mu}^{\exp} = 2.196 \,9803 (22) \mu s \quad [1 \text{ ppm}]$$
+
$$G_F = 1.166 \,378 \,8 (7) \times 10^{-5} \,\text{GeV}^{-2} \quad [0.6 \text{ ppm}]$$

PRL 106, 041803 (2011) PHYSICAL REVIEW LETTERS

week ending 28 JANUARY 2011

Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision

D. M. Webber,¹ V. Tishchenko,² Q. Peng,³ S. Battu,² R. M. Carey,³ D. B. Chitwood,¹ J. Crnkovic,¹ P. T. Debevec,¹ S. Dhamija,² W. Earle,³ A. Gafarov,³ K. Giovanetti,⁴ T. P. Gorringe,² F. E. Gray,⁵ Z. Hartwig,³ D. W. Hertzog,¹ B. Johnson,⁶ P. Kammel,¹ B. Kiburg,¹ S. Kizilgul,¹ J. Kunkle,¹ B. Lauss,⁷ I. Logashenko,³ K. R. Lynch,³ R. McNabb,¹ J. P. Miller,³ F. Mulhauser,^{1,7} C. J. G. Onderwater,^{1,8} J. Phillips,³ S. Rath,² B. L. Roberts,³ P. Winter,¹ and B. Wolfe¹

(MuLan Collaboration)

Closer look at the radiative corrections

Combining high & low energy

Muon lifetime

$$G_F = \frac{\sqrt{2} g^2}{8 M_W} (1 + \Delta r)$$

*m*_{top} predicted at 179±11 GeV/c²

 $CDF : m_{top} = 173.1 \pm 1.3 \text{ GeV/}c^2$

*m*_{top} now in global EW analysis

depend on m_{Z,} m_{Higgs}, m_t, α including 2nd order weak!

Boson masses (LEP)

$$G_{F} = \frac{\pi \alpha(0)}{\sqrt{2} M_{W}^{2} \left(1 + M_{W}^{2} / M_{Z}^{2}\right)} (1 + \Delta_{r})$$

Other tests: W.J. Marciano, J. Phys. G: Nucl. Part. Phys. 29 (2003) 23-29

QED : most precise QFT available

The EM coupling constant is
$$\alpha = \frac{e^2}{\hbar c} \simeq \frac{1}{137}$$

Smallness of α permits perturbative calculations

Very precise measurements and calculations possible, *e.g.*, hydrogen, muonium, positronium spectra and lepton anomalies

The Nobel Prize in Physics 1965

"for their fundamental work in quantum electrodynamics, with deep-ploughing consequences for the physics of elementary particles"

All QED observables of the form

$$A_{QED} = \sum_{n=1}^{\infty} A_i \left(\frac{\alpha}{\pi}\right)^n \qquad \frac{\alpha}{\pi} \simeq 2.3 \times 10^{-3}$$

EM interaction of a fermion

EM dipole moments

This differs from (1) by the two extra terms

$$rac{eh}{c}(\sigma,\mathbf{H})+rac{ieh}{c}
ho_1(\sigma,\mathbf{E})$$

in F. These two terms, when divided by the factor 2m, can be regarded as the additional potential energy of the electron due to its new degree of freedom. The electron will therefore behave as though it has a magnetic moment eh/2mc. σ

$$\vec{\mu} = g \frac{e\hbar}{2mc} \hat{\sigma} \qquad \vec{d} = \eta \frac{e\hbar}{2mc} \hat{\sigma}$$

$$g = 2(1+a) \qquad \eta = 0$$

$$\uparrow \qquad \Lambda nomaly \qquad P \& T conservation$$
This is where the physics is!

Radiative corrections

Electron anomaly in the SM

QM101 : "Geonium" atom

 $149GHz \leftrightarrow 0.6meV \leftrightarrow 7K$

One-electron quantum cyclotron

Resolve lowest cyclotron and spin states

- Quantum jump spectroscopy
- Cavity-controlled spontaneous emission
- Radiation field controlled by cylindrical trap cavity
- Cooling away of blackbody photons
- Synchronized electrons probe cavity radiation modes
- Elimination of nuclear paramagnetism
- One-particle self-excited oscillator

75 g/2 = 1.001 159 652 180 73(28) (0.28ppt)

Fine structure constant

$$a_{e}^{\exp} = g/2 - 1 = 0.00115965218073(28)$$
+
$$a_{e} = a_{1}\left(\frac{\alpha}{\pi}\right) + a_{2}\left(\frac{\alpha}{\pi}\right)^{2} + a_{3}\left(\frac{\alpha}{\pi}\right)^{3} + a_{4}\left(\frac{\alpha}{\pi}\right)^{4} + a_{5}\left(\frac{\alpha}{\pi}\right)^{5} + \cdots$$

$$\downarrow$$

$$\frac{1}{\alpha} = 137.035999084(51)[0.37 ppb]$$

D. Hanneke, S. Fogwell and G. Gabrielse, Phys. Rev. Lett. 100, 120801 (2008)

Beyond QED : muon anomaly

Generated via radiative corrections

$$a_{\mu} = \frac{a_{\mu}^{QED}}{a_{\mu}} + a_{\mu}^{QCD} + \frac{a_{\mu}^{QFD}}{a_{\mu}} + a_{\mu}^{new}$$

1,000,000 : 60 : 1

a : calibration point for SM (QED+QCD+QFD) Δa : calibration point for all new theories

QCD dominates theory uncertainty (~0.5ppm)

Larmor precession

Spin precession at rest in a magnetic field

Measure B in terms of proton NMR frequency

$$g_{\mu} = g_{p} \frac{\Omega_{\mu}}{\Omega_{p}} \frac{m_{\mu}}{m_{p}}$$

$$g_{p} = 5.585\ 694\ 713(46)$$

$$0.112\ 609\ 5261(29)$$
measure

Precession in a storage ring

$$\frac{d\vec{s}}{dt} = \frac{e}{mc}\vec{s} \times \left[\left(a + \frac{1}{\gamma} \right) \vec{B} + \frac{a\gamma}{\gamma+1} (\vec{\beta} \cdot \vec{B}) \vec{\beta} - \left(\frac{g}{2} - \frac{\gamma}{\gamma+1} \right) \vec{\beta} \times \vec{E} \right]$$

$$\frac{d\vec{\beta}}{dt} = \frac{e}{\gamma mc} \left[\vec{E} + \vec{\beta} \times \vec{B} - \vec{\beta} (\vec{\beta} \cdot \vec{E}) \right]$$

$$\omega_a = \omega_s - \omega_\beta = a \frac{e}{mc} \frac{B}{A}$$

Measure spin precession & magnetic field

Storage ring @ BNL

4D magnetic field tracking

Beam profile weighing & t interpolation

φ averaging & (x,y) multipole expansion

4D magnetic field tracking

Muon spin tracking

- e[±] emission correlated to µ spin
- \blacktriangleright E_{lab} \leftarrow boost \rightarrow θ_{CM}
- detect electron time & energy
- 24 Pb-fiber calos w/ WFD readout segmented scint. detectors
- trace back detector
- Fiber harps

Double blind analysis

$$R = \frac{\omega_a}{\omega_p} \qquad \qquad a_{\mu} = \frac{R}{\lambda - R} \qquad \qquad \lambda = \frac{\mu_{\mu}}{\mu_p}$$

- $\triangleright \omega_a$ and ω_p analyzed independently
 - └→ unknown offsets
- ► ω's analyzed independently by several groups (2-5)
 ↓ unknown offsets
- require internal consistency
 - $\rightarrow \chi^2$, insensitive to irrelevant variations, ...
- ► require mutual consistency (incl. systematics) $\mapsto \omega$'s equal within (highly correlated) statistics, ...
- obtain all systematics (incl. E-field, pitch, ...)
 understand differences, ...
- remove offset, do long-division and publish ho room for discussion!

Uncertainties

TABLE XI. Systematic errors for the magnetic field for the different run periods.

Source of errors	R99 [ppm]	R00 [ppm]	R01 [ppm]
Absolute calibration of standard probe	0.05	0.05	0.05
Calibration of trolley probes	0.20	0.15	0.09
Trolley measurements of B_0	0.10	0.10	0.05
Interpolation with fixed probes	0.15	0.10	0.07
Uncertainty from muon distribution	0.12	0.03	0.03
Inflector fringe field uncertainty	0.20		
Others ^a	0.15	0.10	0.10
Total systematic error on ω_p	0.4	0.24	0.17
Muon-averaged field [Hz]: $\tilde{\omega}_p/2\pi$	61791256	61791595	61791400

^aHigher multipoles, trolley temperature and its power supply voltage response, and eddy currents from the kicker.

$\sigma_{\rm syst} \omega_a$	R99 (ppm)	R00 (ppm)	R01 (ppm)
Pileup	0.13	0.13	0.08
AGS background	0.10	0.01	a
Lost muons	0.10	0.10	0.09
Timing shifts	0.10	0.02	а
E-field and pitch	0.08	0.03	a
Fitting/binning	0.07	0.06	a
CBO	0.05	0.21	0.07
Gain changes	0.02	0.13	0.12
Total for ω_a	0.3	0.31	0.21

TABLE XIV. Systematic errors for ω_a in the R99, R00 and R01 data periods.

^aIn R01, the AGS background, timing shifts, E field and vertical oscillations, beam debunching/randomization, binning and fitting procedure together equaled 0.11 ppm.

Storage ring results

	Year	a _u	σa _u	Ref.	
QED	1961	0.001145	0.000022	Charpak	
	1965	0.001162	0.00005	Charpak	
	1966	0.001165	0.00003	Farley	Ζ
	1969	0.001060	0.000067	Henry	Ŕ
	1972	0.00116616	0.0000031	Bailey	Щ
QUD	1975	0.001165895	0.00000027	Bailey	U
	1979	0.001165910	0.00000012	Bailey	
	1979	0.001165936	0.00000012	Bailey	
	1999	0.001165925	0.00000015	Carey	
	2000	0.0011659191	0.000000059	Brown	
QFD	2001	0.0011659202	0.000000015	Brown	Z
	2002	0.0011659204	0.000000009	Bennett	
	2004	0.0011659214	0.000000009	Bennett	
new?		a _u (expt.) - a _u (t	h) = (30±8) x ⁻	10 ⁻¹⁰ (3.6σ)	

Experiment: $\sigma_a/a = 0.54$ ppm**Theory:** $\sigma_a/a = 0.44$ ppm

Sensitivity for new physics

Some plausible scenarios (Snowmass)

Reach of g-2

 $\Delta a_{SUSY} \simeq sgn(\mu) 1.3 \times 10^{-9} \tan \beta \left(\frac{100 \, GeV}{\widetilde{m}}\right)^2$

The (g-2) discrepancy is consistent with other constraints on the SUSY LSP being the dark matter candidate.

With m_{LSP} known (LHC?), g-2 sensitive to tanβ

CMSSM calculation Following Ellis, Olive, Santoso, Spanos, from K. Olive

SUSY : g-2 & LHC

91

Permanent EDMs violate T/CP and P

 $d \neq 0 \rightarrow T \& P$ violation $\rightarrow CP$ violation

EDMs in the Standard Model : δ_{CP}

All CP-odd effects involve Jarlskog invariant:

$$J_{CP} = \sin^2 \theta_{12} \sin \theta_{13} \sin \theta_{23} \sin \delta_{CP} \sim 3 \times 10^{-5}$$

≠0 because of SM flavor structure (Nobel 2008)

$$d_n(SM) \sim (10^{-7})^2 \cdot J_{CP} \cdot \frac{e}{M_n} \sim 10^{-31} e \cdot cm$$

EDMs flavor-conserving \rightarrow multi-loop (≥3)

SM Predictions:

Quarks	•	~10 ^{-33…34} e·cm
Neutron	•	~10 ^{-31…32} e·cm
¹⁹⁹ Hg	•	~10 ^{-33…34} e∙cm
Electron	•	<10 ⁻⁴⁰ e∙cm

Standard Model CKM EDMs are (currently) unmeasurably small

eR

I.B. Khriplovich, S.K. Lamoreaux, CP Violation Without Strangeness, Springer, 1997

EDMs in the Standard Model : θ_{QCD}

QCD contains P- and T-odd term:

Naively, one would expect $\theta \sim O(1)$

Experimentally, $|\theta| < 10^{-9}$ (from the neutron EDM)

 $g_{\pi NN} \approx 13$

Strong CP problem

EDMs from New Physics

~ all "new physics" : extra CPV, often 1-loop

d(NP) >> d(SM)

e.g. SUSY :

$$d_n(NP) \sim \sin \delta_{CP} \left(\frac{1 \text{ TeV}}{M_{SUSY}}\right)^2 \times 10^{-25} e \cdot \text{cm}$$

SUSY CP Problem

Hg

Fine-tuning of phases

 θ_{μ}

π

0.1

 d_L ,--

- New physics expected at TeV scale (LHC!)
 current EDM expt^s sensitive at few TeV scale
- BAU \rightarrow additional sources of CPV?

Ultra-sensitive New Physics Probe

e.g. M.E. Pospelov and A. Ritz, AP318 (2005) 119

EDM Genealogy

Need multiple systems to unravel

EDM-induced spin precession

Prepare spin polarized ensemble

Interaction with electric field

Measure spin evolution -

Traditional technique for neutral systems

(Ń)

 $\frac{d\langle \vec{J}\rangle}{dt} = (\mu \vec{B} + d \vec{E}) \times \langle \hat{J} \rangle$

Ramsey's method w/ multiple cells

99

Ramsey's fringes

Sensitivity

General expression for the (statistical) uncertainty

 $\sigma_d \propto \frac{1}{P E \sqrt{N} T A}$

N: number of particles in experiment

- **P**: initial polarization of sample
- A: analyzing power of polarimeter
 - E: electric field in particle rest frame
 - T: characteristic time

Pillars of a sensitive experiment

- Strong source
- High polarization
- Efficient polarimeter
- High electric field strength
- Spin coherence, efficient storage

Equally important: understand systematic effects

101

FIG. 1. Schematic diagram of the experiment; not to scale.

Interpretation of ¹⁹⁹Hg EDM

|d_{Hg}| < 3.1x10⁻²⁹ e⋅cm (95% C.L.)

Parameter	¹⁹⁹ Hg bound
\tilde{d}_q (cm)	6×10^{-27}
$d_p \ (e \ \mathrm{cm})$	7.9×10^{-25}
\hat{C}_S	5.2×10^{-8}
C_P	5.1×10^{-7}
C_T	1.5×10^{-9}
$ar{ heta}_{QCD}$	3×10^{-10}
$d_n (e \operatorname{cm})$	5.8×10^{-26}
$d_e \ (e \ \mathrm{cm})$	3×10^{-27}

 $\delta v_{stat} = 0.13 \text{ nHz} (7.5 \text{ ppt})$

1 cycle per 244 years

W. C. Griffith, et al., Phys. Rev. Lett. 102, 101601 (2009)

BSM reach

$$d_n(NP) \sim \sin \delta_{CP} \left(\frac{1 \ TeV}{M_{SUSY}} \right)^2 \times 10^{-25} e \cdot cm$$

SUSY CP Problem

Efforts Worldwide

105

An undoubtedly incomplete list; inspired by Dave DeMille & Rob Timmermans

Electroweak unification

S. Kumar, W. Marciano, Annu. Rev. of Nucl. Part. Sci. 63, 237 (2013) H. Davoudiasl, Hye-Sung Lee, W. Marciano, arXiv. 1402.3620 (2014)

Atomic parity violation in the SM

Atomic states acquire tiny admixture of opposite-parity states

Recent Theory work:
Dzuba, Flambaum
Derevianko, Porsev et al.
Safronova et al.
Timmermans et al.
Sahoo et al.

(just a few examples)

Phys. Rev. A83, 052513 (2011) ; Phys. Rev. A85,012515 1-5 (2012)

Phys.Rev. D 82, 036008 (2010) ; Phys. Rev. Lett. 102, 181601 (2009)

Can. Jour. Phys. 89, 371 (2011) ; Phys. Rev. A 79, 062505 (2009)

Phys. Rev. A79, 052512 (2009) ; Phys. Rev A 78, 050501 (2008)

Phys. Rev. A 83, 030502 (2011) ; Pram. Jour. Phys. 75, 1041 (2010)

108
Ra+ atomic parity violation

$$|7S_{1/2}\rangle \rightarrow |7\tilde{S}_{1/2}\rangle = |7S_{1/2}\rangle + \varepsilon |nP_{1/2}\rangle$$

Stronger mixing for smaller $\Delta E = E(7S_{\frac{1}{2}})-E(nP_{\frac{1}{2}})$

Intrinsic sensitivity of Ra+

Bouchiat & Bouchiat (1974): "stronger than Z³" 2000 55 56 Ra⁺ 1500 Cs Ba (S1/2 |Hw|p1/2) 1000 Z³ K_{rel} 87 88 Ra 500 Ba Sr⁺ Be⁺Mg⁺Ca⁺ 20 40 60 80 100 0 Ζ $E1^{APV} = 46.4(1.4) \times 10^{-11} i e a_0 (-Q_W/N)$

 $Q_W = -N + (1 - 4\sin^2\theta_W)Z + rad \cdot corr \cdot + new physics$

Uncertainty for Ra⁺ now ~ 3%. Need <1% for SM test

L.W. Wansbeek et al., Phys. Rev. A 78, 050501(R) (2008)

Barium/Radium APV setup

Single Ion

Single ion sufficient Localize $<< \lambda$ 10 days $\rightarrow 1/5$ Cs

111

Quantum jump spectroscopy

112

BSM from APV : an example

Extra Z' boson in SO(10) GUTs

$$\delta Q_W \simeq (2N+Z) a'_e(\xi) \nu'_d(\xi) (\frac{M_Z^2}{M_Z^2})$$

London & Rosner (1986) Marciano & Rosner (1990) Altarelli et al. (1991)

Cesium APV Tevatron LHC Radium APV

arXiv:1111.4566 arXiv:1111.2172 arXiv:1203.1320

Reach of APV

TABLE I: Mass bounds from various APV observables. The second column contain the mass bounds from the actual measurement in Eqn. 1 at 95% CL. The remaining columns contain the masses that future APV experiments will be able to exclude, given a measurement that is in agreement with the SM prediction.

Model	$Q_W(^{133}_{55}\text{Cs}) \ 0.48\%$	$Q_W(^{208}_{87}{ m Fr}) 0.1\%$	$\mathcal{R}_{\mathrm{Fr}}(121,122)$	$\mathcal{R}_{\mathrm{Fr}}(121,122)$	$\mathcal{R}_{\mathrm{Yb}}(98,100)$	$\mathcal{R}_{\mathrm{Yb}}(98,100)$	Q_W^p 4.1%
	95% CL	95% CL	0.3%, 95% CL	0.1%, 95% CL	0.3%, 95% CL	0.1%, 95% CL	95% CL
$E_6 \eta$	485	997	339	585	337	581	356
$E_6 \chi$	969	1993	679	1170	674	1162	712
${ m E}_6 \psi$	0	0	0	0	0	0	0
E ₆ I	1083	2228	759	1308	754	1299	796
${ m E}_6 sq$	1110	2283	778	1340	772	1331	815
$E_6 N$	593	1220	416	716	413	712	436
Left Right (LR)	1033	2117	0	0	0	0	352
Alternate LR (ALR)	741	1527	701	1210	696	1202	772
UUM	505	¹⁰¹² C	$\lambda//c^2$ ³	1651	946	1640	1124
\mathbf{SSM}	1033	2117	= V/C-	0	0	0	352
TC1	520	1073	552	954	549	010	A F
Littlest Higgs (LH)	505	1012	953	1651	946	16	
Simplest LH (SLH)	1589	3274	1409	2433	1400	24	
Anom. Free LH (AFLH)	1320	2718	1051	1812	1043	18-	💓 💓 (e
331 2U1D	968	1993	770	1329	765	152	5 Pe 10
331 1U2D	1589	3274	1409	2433	1400		
ETC	245	490	461	800	458	794	
TC2	872	1800	926	1601	920	1590	1054

Reach of APV

Sensitivity for light dark matter

Outline

Constants of the Standard Model

What makes a measurement?

Selected experiments

Conclusion

Finale

Sensitive experiments are needed to find new physics

Fundamental phenomena can be studied

- directly & selectively in HE experiments (production)
- indirectly & collectively in LE experiments (radiative correction)
- All well motivated, none more justified than others
- **Thorough theoretical understanding** of "obscuring" but known phenomena is indispensable for precision SM tests and sensitive searches for NP

Low energy experiments

- define the SM
- confirm SM predictions
- search for NP

 α, G_F

sin²θ_W, a_μ CPV, dark matter

Together with LHC *et al.* a new generation of low energy precision experiments may soon show **proof of new physics**!

Let's keep digging

"This could be the discovery of the century. Depending, of course, on how far down it goes."

118

Future

Several searches on-going for decades (APV, LFV, EDMs, ...)

Timescale : year – decade (mu2e, g-2, ...)

Collaboration : 2 – 100's persons

```
Funding : 0.1 – 100M€
```

Expect great synergy from high-Intensity machines (Project-X, J-PARC, ...)

Will depend on what is found at LHC

Generic discovery potential far beyond LHC++/LC/µµcollider/...

Complementary to direct searches