

BND SCHOOL

Belgian Dutch German graduate school in particle physics

Accelerators
 Part 2 of 3: Lattice, Longitudinal Motion, Limitations

Rende Steerenberg BE-OP
CERN - Geneva

Topics

- A Brief Recap and Transverse Optics
- Longitudinal Motion
- Main Diagnostics Tools
- Possible Limitations

A brief recap and then we continue on transverse optics

Magnetic Element \& Rigidity

Dipole magnets

Quadrupole magnets

$$
F=q \stackrel{\rightharpoonup}{v} \times \vec{B}=\frac{m v^{2}}{\rho}
$$

$$
B \rho[\mathrm{Tm}]=\frac{m v}{q}=\frac{p[\mathrm{GeV} / \mathrm{c}]}{q}
$$

$$
B \rho=3.3356 p
$$

- Increasing the energy requires increasing the magnetic field with $\mathrm{B} \rho$ to maintain radius and same focusing
- The magnets are arranged in cell, such as a FODO lattice

Hill's Equation

- Hill's equation describes the horizontal and vertical betatron oscillations

$$
\frac{d^{2} x}{d s^{2}}+K(s) x=0
$$

Position:

$$
x(s)=\sqrt{\varepsilon \beta_{s}} \cos (\varphi(s)+\varphi)
$$

Angle:

$$
x^{\prime}=-\alpha \sqrt{\varepsilon / \beta} \cos (\varphi)-\sqrt{\varepsilon / \beta} \sin (\varphi) \varphi
$$

- ε and φ are constants determined by the initial conditions
- $\beta(\mathbf{s})$ is the periodic envelope function given by the lattice configuration

$$
Q_{x / y}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d s}{\beta_{x / y}(s)}
$$

- \mathbf{Q}_{x} and \mathbf{Q}_{y} are the horizontal and vertical tunes: the number of oscillations per turn around the machine

Betatron Oscillations \& Envelope

- The $\boldsymbol{\beta}$ function is the envelope function within which all particles oscillate
- The shape of the $\boldsymbol{\beta}$ function is determined by the lattice

FODO Lattice \& Phase Space

- Horizontal and vertical phase space
- $\mathrm{Q}_{\mathrm{h}}=3.5$ means 3.5 horizontal betatron oscillations per turn around the machine, hence 3.5 turns on the phase space ellipse
- Each particle, depending on it's initial conditions will turn on it's own ellipse in phase space
- Calculating a single FODO Lattice and repeat it several time
- Make adaptations where you have insertion devices e.g. experiment, injection, extraction etc.

Let's continue....

Momentum Compaction Factor

- The change in orbit length for particles with different momentum than the average momentum
- This is expressed as the momentum compaction factor, $\boldsymbol{\alpha}_{\mathrm{p}}$, where:

$$
\frac{\Delta r}{r}=\alpha_{p} \frac{\Delta p}{p}
$$

- α_{p} expresses the change in the radius of the closed orbit for a particle as a a function of the its momentum

Dispersion

- A particle beam has a momentum spread that in a homogenous dipole field will translate in a beam position spread at the exit of a magnet

- The beam will have a finite horizontal size due to it's momentum spread, unless we install and dispersion suppressor to create dispersion free regions e.g. for experiments

Chromaticity

- The chromaticity relates the tune spread of the transverse motion with the momentum spread in the beam.

$$
\frac{\Delta Q_{h / v}}{Q_{h / v}}=\xi_{h / v} \frac{\Delta p}{p}
$$

Q1: How to Measure Chromaticity

- Looking at the formula for Chromaticity, could you think about how to measure the actual chromaticity in you accelerator?

$$
\frac{\Delta Q_{h / v}}{Q_{h / v}}=\xi_{h / v} \frac{\Delta p}{p}
$$

- What beam parameter would you change ?
- Any idea how?
- What beam parameter would you observe ?
- Any idea how?

Q1: How to Measure Chromaticity

- Looking at the formula for Chromaticity, could you think about how to measure the actual chromaticity in you accelerator ?

$$
\frac{\Delta Q_{h / v}}{Q_{h / v}}=\xi_{h / v} \frac{\Delta p}{p}
$$

- What beam parameter would you change?
- Change the average momentum of the beam and you beam will move coherently as a single particle with a different momentum
- Any idea how?
- Add an offset to the RF system to slightly increase the beam momentum at a constant magnetic field
- What beam parameter would you observe ?
- You would need to observe the change in beam tune for a change in beam momentum
- Any idea how?
- Measuring the beam position over many turns and make an FFT that will show the change in frequency

Chromaticity Correction

$$
\frac{\Delta Q}{Q}=\underbrace{\frac{1}{4 \pi} l \beta(s) \frac{d^{2} B_{y}}{d x^{2}} \frac{D(s)}{(B \rho) Q}}_{\substack{\text { Chromaticity Control } \\ \text { through sextupoles }}} \frac{\Delta p}{p}
$$

Longitudinal Motion

Motion in the Longitudinal Plane

- What happens when particle momentum increases in a constant magnetic field?
- Travel faster (initially)
- Follow a longer orbit
- Hence a momentum change influence on the revolution frequency

$$
\frac{d f}{f}=\frac{d v}{v}-\frac{d r}{r}
$$

- From the momentum compaction factor we have: $\frac{\Delta r}{r}=\alpha_{p} \frac{\Delta p}{p}$
. Therefore: $\frac{d f}{f}=\frac{d v}{v}-\alpha_{p} \frac{d p}{p}$

Revolution Frequency - Momentum

$$
\frac{d f}{f}=\frac{d v}{v}-\alpha_{p} \frac{d p}{p} \quad \frac{d v}{v}=\frac{d \beta}{\beta} \Leftrightarrow \beta=\frac{v}{c}
$$

From the relativity theory: $\quad p=\frac{E_{0} \beta \gamma}{c}$
We can get: $\frac{d v}{v}=\frac{d \beta}{\beta}=\frac{1}{\gamma^{2}} \frac{d p}{p}$

Resulting in : $\frac{d f}{f}=\left[\frac{1}{\gamma^{2}}-\alpha_{p}\right] \frac{d p}{p}$

Transition

$$
\frac{d f}{f}=\left[\frac{1}{\gamma^{2}}-\alpha_{p}\right] \frac{d p}{p}
$$

- Low momentum $(\beta \ll 1 \& \gamma$ is small $) \rightarrow \frac{1}{\gamma^{2}}>\alpha_{0}$
- High momentum $(\beta \approx 1 \& \gamma \gg 1) \rightarrow$

$$
\frac{1}{\gamma^{2}}<\alpha_{p}
$$

- Transition momentum \rightarrow

Frequency Slip Factor

$$
\frac{d f}{f}=\left[\frac{1}{\gamma^{2}}-\alpha_{p}\right] \frac{d p}{p}=\left[\frac{1}{\gamma^{2}}-\frac{1}{\gamma_{t r}^{2}}\right] \frac{d p}{p}=\eta \frac{d p}{p}
$$

- Below transition: $\frac{1}{\gamma^{2}}>\alpha_{p} \Rightarrow \eta>0$
- Transition: $\frac{1}{\gamma^{2}}=\alpha_{p} \Rightarrow \eta=0$
- Above transition: $\frac{1}{\gamma^{2}}<\alpha_{p} \Rightarrow \eta<0$
- Transition is very important in hadron machines
- CERN PS: γ_{tr} is at $\sim 6 \mathrm{GeV} / \mathrm{c}$ (injecting at $2.12 \mathrm{GeV} / \mathrm{c} \rightarrow$ below)
- LHC : $\gamma_{\text {tr }}$ is at $\sim 55 \mathrm{GeV} / \mathrm{c}$ (injecting at $450 \mathrm{GeV} / \mathrm{c} \rightarrow$ above)
- Transition does not exist in lepton machines, why?

RF Cavities

Variable frequency cavity (CERN - PS)

Super conducting fixed frequency cavity (LHC)

RF Cavity

- Charged particles are accelerated by a longitudinal electric field
- The electric field needs to alternate with the revolution frequency

Low Momentum Particle Motion

- Lets see what a low energy particle does with this oscillating voltage in the cavity

- Lets see what a low energy particle does with this oscillating voltage in the cavity

Longitudinal Motion Below Transition

....after many turns...

- Particle B has made 1 full oscillation around particle A
- The amplitude depends on the initial phase
- This are Synchrotron Oscillations
- Phase Stability: "off-momentum" particles are contained

Stationary Bunch \& Bucket

- Bucket area = longitudinal Acceptance [eVs]
- Bunch area = longitudinal beam emittance $=\pi . \Delta \mathrm{E} . \Delta \mathrm{t} / 4[\mathrm{eVs}]$

What About Beyond Transition

- Until now we have seen how things look like below transition

Higher energy \Rightarrow faster orbit \Rightarrow higher $\mathrm{F}_{\mathrm{rev}} \Rightarrow$ next time particle will be earlier. Lower energy \Rightarrow slower orbit \Rightarrow lower $\mathrm{F}_{\mathrm{rev}} \Rightarrow$ next time particle will be later.

- What will happen above transition ?

Higher energy \Rightarrow longer orbit \Rightarrow lower $\mathrm{F}_{\mathrm{rev}} \Rightarrow$ next time particle will be later.
Lower energy \Rightarrow shorter orbit \Rightarrow higher $\mathrm{F}_{\mathrm{rev}} \Rightarrow$ next time particle will be earlier.

Longitudinal Motion Beyond Transition

Longitudinal Motion Beyond Transition

Rende Steerenberg
CERN - Geneva
BND Graduate School
6 September 2017

Longitudinal Motion Beyond Transition

Before \& Beyond Transition

Synchrotron Oscillation

- On each turn the phase, Φ, of a particle w.r.t. the RF waveform changes due to the synchrotron oscillations.

$$
\frac{d \phi}{d t}=2 \pi h \Delta f_{m}
$$

$$
\frac{d f_{m}}{f_{m}}=-\eta \frac{d E}{E}
$$

- Combining this with the above

$$
\therefore \frac{d \phi}{d t}=\frac{-2 \pi h \eta}{E} \cdot d E \cdot f_{r e v}
$$

- This can be written as:

$$
\frac{d^{2} \phi}{d t^{2}}=\frac{-2 \pi h \eta}{E} \cdot f_{\text {rev }} \frac{d E}{d t}
$$

Synchrotron Oscillation

- So, we have: $\frac{d^{2} \phi}{d t^{2}}=\frac{-2 \pi h \eta}{E} \cdot f_{\text {rev }} \frac{d E}{d t}$
- Where dE is just the energy gain or loss due to the RF system during each turn

Synchrotron Oscillation

$$
\frac{d^{2} \phi}{d t^{2}}=\frac{-2 \pi h \eta}{E} \cdot f_{\text {rev }} \frac{d E}{d t} \text { and } d E=V \sin \phi \rightarrow \frac{d E}{d t}=f_{r e v} V \sin \phi
$$

- If Φ is small then $\sin \Phi=\Phi$

$$
\frac{d^{2} \phi}{d t^{2}}+\left(\frac{2 \pi h \eta}{E} \cdot f_{\text {rev }}{ }^{2} \cdot V\right) \phi=0
$$

- This is a SHM where the synchrotron oscillation frequency is given by:

$$
\frac{d^{2} \phi}{d t^{2}}=\frac{-2 \pi h \eta}{E} \cdot f_{r e v}^{2} \cdot V \cdot \sin \phi
$$

$$
\begin{aligned}
& \text { Synchrotron } \\
& \text { tune Qs }
\end{aligned}
$$

Acceleration

- Increase the magnetic field slightly on each turn.
- The particles will follow a shorter orbit. ($f_{\text {rev }}<f_{\text {synch }}$)
- Beyond transition, early arrival in the cavity causes a gain in energy each turn.

- We change the phase of the cavity such that the new synchronous particle is at Φ_{s} and therefore always sees an accelerating voltage
- $\mathrm{V}_{\mathrm{s}}=\mathrm{V} \sin \Phi_{\mathrm{s}}=\mathrm{V} \Gamma=$ energy gain/turn $=\mathrm{dE}$

Accelerating Bucket

Accelerating Bucket

- The modification of the RF bucket reduces the acceptance
- The faster we accelerate (increasing $\sin \Phi_{\mathrm{s}}$) the smaller the acceptance
- Faster acceleration also modifies the synchrotron tune.
- For a stationary bucket $(\Phi \mathrm{s}=0)$ we had:

$$
\left(\sqrt{\frac{2 \pi h \eta}{E}}\right) \cdot f_{r e v}
$$

- For a moving bucket ($\Phi \mathrm{s} \neq 0$) this becomes:

$$
\left(\sqrt{\frac{2 \pi h \eta}{E}}\right) \cdot f_{r e v} \cos \phi
$$

Harmonics \& Buckets

Frequency of cavity voltage

- We will have: h buckets
- Doing this dynamically, we can perform bunch splitting

Bunch Splitting

80 bunches (7 PSB b.)

Split in four at flat top

Standard: 72 bunches @ 25 ns BCMS: 48 bunches @ 25 ns

The PS defines the longitudinal beam characteristics

RF Beam Control

Main Diagnostics Tools

Beam Current \& Position

Beam intensity or current measurement:
 - Working as classical transformer
 - The beam acts as a primary winding

Correcting orbit using automated beam steering

Transverse Beam Profile Monitor

- Transverse beam profile/size measurement:
- Secondary EMission Grids (SEM-Grid)
- Based on integration of induced current

Transverse Beam Profile Measurement

- (Fast) wire scanner
- Uses photo multipliers to measure scintillator light produced by secondary particles

BND Graduate School
6 September 2017

Wall Current Monitor

- A circulating bunch creates an image current in vacuum chamber.

- The induced image current is the same size but has the opposite sign to the bunch current.

Longitudinal TomoScope

- Make use of the synchrotron motion that turns the "patient" in the Wall Current monitor

Possible Limitations

Space Charge

- Between two charged particles in a beam we have different forces:

$$
\beta=1
$$

Coulomb repulsion

Magnetic attraction

Space Charge

- At low energies, which means $\beta \ll 1$, the force is mainly repulsive \Rightarrow defocusing
- It is zero at the centre of the beam and maximum at the edge of the beam

Laslett Tune Shift

- For the non-uniform beam distribution, this non-linear defocusing means the ΔQ is a function of x (transverse position)
- This leads to a spread of tune shift across the beam
- This tune shift is called the 'LASLETT tune shift'

- This tune spread cannot be corrected and does get very large at high intensity and low momentum

Imperfections \& Resonances

- Machines and elements cannot be built and aligned with infinite perfection
- Same phase and frequency for driving force and the system can cause resonances and be destructive
- We have to ask ourselves:

- What will happen to the betatron oscillations due to the different field errors.
- Therefore we need to consider errors in dipoles, quadrupoles, sextupoles, etc...

Phase Space \& Betatron Tune

- If we unfold a trajectory of a particle that makes one turn in our machine with a tune of $Q=3.333$, we get:

Normalised phase space

Resonance

- If the phase advance per turn is 120° then the betatron oscillation will repeat itself after 3 turns.
- This could correspond to $\mathrm{Q}=3.333$ or $3 \mathrm{Q}=10$
- But also $\mathrm{Q}=2.333$ or $3 \mathrm{Q}=7$
- The order of a resonance is defined as:

$$
n \times Q=\text { integer }
$$

Quadrupole (defl. \propto position)

- For $\underline{\mathbf{Q}=2.50}$: Oscillation induced by the quadrupole kick grows on each turn and the particle is lost
(2 $2^{\text {nd }}$ order resonance $2 \mathrm{Q}=5$)
- For $\underline{\mathbf{Q}=2.33 \text { : Oscillation is cancelled out every third turn, and therefore }}$ the particle motion is stable.

A more rigorous approach (1)

- Let us try to find a mathematical expression for the amplitude growth in the case of a quadrupole error:

A more rigorous approach (1)

- So we have: $\Delta \mathrm{a}=l \cdot \beta \cdot \sin (\theta) \mathrm{a} \cdot \mathrm{k} \cdot \cos (\theta)$
- Each turn θ advances by $2 \pi Q$
- On the $n^{\text {th }}$ turn $\theta=\theta+2 n \pi Q$

$$
\operatorname{Sin}(\theta) \operatorname{Cos}(\theta)=1 / 2 \operatorname{Sin}(2 \theta)
$$

- Over many turns:

$$
\frac{\Delta a}{a}=\frac{\ell \beta k}{2} \sum_{n=1}^{\infty} \sin (2(\theta+2 n \pi Q))
$$

This term will be 'zero' as it decomposes in Sin and Cos terms and will give a series of + and - that cancel out in all cases where the fractional tune $q \neq 0.5$

- So, for $q=0.5$ the phase term, $2(\theta+2 n \pi Q)$ is constant:

$$
\sum_{n=1}^{\infty} \sin (2(\theta+2 n \pi Q))=\infty \quad \text { and thus: } \quad \frac{\Delta a}{a}=\infty
$$

- So, resonance for $q=0.5$

Resonances \& Multipoles

- Quadrupoles excite $\underline{\mathbf{2}^{\text {nd }}}$ order resonances $(q=0.5)$
- Sextupoles excite $\underline{1^{\text {st }}}$ and $\underline{3^{\text {rd }}}$ order resonances $(q=0.0 \& q=0.33)$
- Octupoles excite $\underline{2}^{\text {nd }}$ and $\underline{4}^{\text {th }}$ order resonances ($q=0.25 \& q=0.5$)
- This is true for small amplitude particles and low strength excitations
- However, for stronger excitations higher order resonance's can be excited which can be highly nonlinear

Resonance \& Tune Diagram

A Measured Tune Diagram

- Move a large emittance low intensity beam around in this tune diagram and measure the beam losses

Collective Effects

- Induced currents in the vacuum chamber (impedance) can result in electric and magnetic fields acting back on the bunch or beam

Coupled Bunch Instabilities

Head-Tail Instabilities

Cures for Collective Effects

- Ensure a spread in betratron/synchrotron frequencies
- Increase Chromaticity
- Apply Octupole magnets (Landau Damping)
- Reduce impedance of your machine
- Avoid higher harmonic modes in cavities
- Apply transverse and longitudinal feedback systems
(2)

