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Topics
• A Brief Recap and Transverse Optics

• Longitudinal Motion

• Main Diagnostics Tools

• Possible Limitations
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A brief recap and then we continue 
on transverse optics
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Magnetic Element & Rigidity

• Increasing the energy requires increasing the magnetic 
field with B𝜌 to maintain radius and same focusing 

• The magnets are arranged in cell, such as a FODO lattice
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Hill’s Equation
• Hill’s equation describes the horizontal and vertical betatron oscillations
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• 𝜀 and 𝜑 are constants determined by the initial conditions
• 𝛽(s) is the periodic envelope function given by the lattice configuration
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• Qx and Qy are the horizontal and vertical tunes: the number of oscillations 
per turn around the machine



Betatron Oscillations & Envelope

• The 𝜷 function is the envelope function within which all particles oscillate
• The shape of the 𝜷 function is determined by the lattice
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FODO Lattice & Phase Space
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QF QD • Calculating a single FODO Lattice 
and repeat it several time

• Make adaptations where you have 
insertion devices e.g. experiment, 
injection, extraction etc.

x’

x
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ge /

−α ε / β
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−α ε /γ
• Horizontal and vertical phase space
• Qh = 3.5 means 3.5 horizontal 

betatron oscillations per turn around 
the machine, hence 3.5 turns on the 
phase space ellipse

• Each particle, depending on it’s initial 
conditions will turn on it’s own ellipse 
in phase space 



Let’s continue….
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Momentum Compaction Factor
• The change in orbit length for particles with different 

momentum than the average momentum
• This is expressed as the momentum compaction factor, 𝛂p, 

where:
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• 𝛂p expresses the change in the radius of the closed 
orbit for a particle as a a function of the its momentum



Dispersion

• The beam will have a finite horizontal size due to it’s momentum spread, unless we 
install and dispersion suppressor to create dispersion free regions e.g. for experiments
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• A particle beam has a momentum spread that in a homogenous dipole field will translate 
in a beam position spread at the exit of a magnet



Chromaticity
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• The chromaticity relates the tune spread of the transverse motion 
with the momentum spread in the beam.

p0

A particle with a higher momentum 
as the central momentum will be 

deviated less in the quadrupole and 
will have a lower betatron tune

A particle with a lower momentum 
as the central momentum will be 
deviated more in the quadrupole 

and will have a higher betatron tune

p > p0

p < p0

QF

∆𝑄] ^⁄

𝑄] ^⁄
= 	 𝜉] ^⁄ 	

∆𝑝
𝑝



Q1: How to Measure Chromaticity
• Looking at the formula for Chromaticity, could 

you think about how to measure the actual 
chromaticity in you accelerator ?

• What beam parameter would you change ?
• Any idea how ?

• What beam parameter would you observe ?
• Any idea how ?
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Q1: How to Measure Chromaticity
• Looking at the formula for Chromaticity, could you think about how to 

measure the actual chromaticity in you accelerator ?

• What beam parameter would you change ?
• Change the average momentum of the beam and you beam will move 

coherently as a single particle with a different momentum
• Any idea how ?
• Add an offset to the RF system to slightly increase the beam momentum at a 

constant magnetic field

• What beam parameter would you observe ?
• You would need to observe the change in beam tune for a change in 

beam momentum 
• Any idea how ?
• Measuring the beam position over many turns and make an FFT that will show 

the change in frequency
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Chromaticity Correction
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Chromaticity Control 
through sextupoles



Longitudinal Motion
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Motion in the Longitudinal Plane
• What happens when particle momentum increases in a constant 

magnetic field?
• Travel faster (initially)
• Follow a longer orbit

• Hence a momentum change influence on the revolution frequency
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• From the momentum compaction factor we have:

• Therefore:



Revolution Frequency - Momentum

From the relativity theory:
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We can get:



Transition

• Low momentum (𝛽 << 1 & 𝛾 is small) à

• High momentum (𝛽 ≈ 1 & 𝛾 >> 1) à

• Transition momentum à
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Frequency Slip Factor
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𝛾+ > 𝛼[ 			⟹ 			𝜂 > 0• Below transition:

1
𝛾+ = 𝛼[ 			⟹ 			𝜂 = 0• Transition:

1
𝛾+ < 𝛼[ 			⟹ 			𝜂 < 0• Above transition:

• Transition is very important in hadron machines
• CERN PS: 𝛾tr is at ~ 6 GeV/c (injecting at 2.12 GeV/c à below)
• LHC : 𝛾tr is at ~ 55 GeV/c (injecting at 450 GeV/c à above)

• Transition does not exist in lepton machines, why …..?



RF Cavities
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Variable frequency cavity 
(CERN – PS)

Super conducting fixed frequency cavity
(LHC)



RF Cavity
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• Charged particles are accelerated by a longitudinal electric field
• The electric field needs to alternate with the revolution frequency



Low Momentum Particle Motion
• Lets see what a low energy particle does with 

this oscillating voltage in the cavity
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1st revolution period

V

time

2nd revolution period

V

• Lets see what a low energy particle does with 
this oscillating voltage in the cavity



Longitudinal Motion Below Transition
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….after many turns…
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100st revolution period
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….after many turns…
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….after many turns…
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400st revolution period
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….after many turns…
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….after many turns…
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….after many turns…
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….after many turns…
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….after many turns…
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….after many turns…
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900st revolution period

V

time

A

B

• Particle B has made 1 full oscillation around particle A
• The amplitude depends on the initial phase

• This are Synchrotron Oscillations 
• Phase Stability: “off-momentum” particles are contained



Stationary Bunch & Bucket

• Bucket area = longitudinal Acceptance [eVs]
• Bunch area = longitudinal beam emittance = 𝜋.∆E.∆t/4  [eVs]
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What About Beyond Transition
• Until now we have seen how things look like 

below transition
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Higher energy ] faster orbit ] higher Frev ] next time particle will be earlier.

Lower energy ] slower orbit ] lower Frev ] next time particle will be later.

• What will happen above transition ?

Higher energy ] longer orbit ] lower Frev ] next time particle will be later. 

Lower energy ] shorter orbit ] higher Frev ] next time particle will be earlier. 



Longitudinal Motion Beyond Transition
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V Phase w.r.t. RF 
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particle
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∆E

∆t (or 𝛷)

V

Longitudinal Motion Beyond Transition
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∆E

∆t (or 𝛷)

V

Longitudinal Motion Beyond Transition
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∆E

∆t (or 𝛷)

V

Longitudinal Motion Beyond Transition
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∆E

∆t (or 𝛷)

V

Longitudinal Motion Beyond Transition
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∆E

∆t (or 𝛷)

V

Longitudinal Motion Beyond Transition
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∆E

∆t (or ∆)

V

Longitudinal Motion Beyond Transition
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∆E

∆t (or 𝛷)

V

Longitudinal Motion Beyond Transition
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∆E

∆t (or 𝛷)

V

Longitudinal Motion Beyond Transition

Rende Steerenberg         
CERN - Geneva

BND Graduate School                           
6 September 2017 44



Before & Beyond Transition
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Before transition

Stable, synchronous
position

E

∆t (or 𝛷)

After transition

E

∆t (or 𝛷)



Synchrotron Oscillation
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• On each turn the phase, 𝛷, of a particle w.r.t. the RF 
waveform changes due to the synchrotron 
oscillations. 

rev
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dt
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Change in 
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• We know that 

• Combining this with the above 

• This can be written as: 



Synchrotron Oscillation
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• So, we have:
dt
dEf

E
h

dt
d

rev ××
-

=
hpf 2

2

2

• Where dE is just the energy gain or loss due to the RF system during 
each turn

𝛷

V
Synchronous 

particle 
dE = zero

V

∆t (or 𝛷)

dE = V.sin𝛷



Synchrotron Oscillation
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• If 𝛷 is small then sin𝛷=𝛷
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• This is a SHM where the synchrotron oscillation 
frequency is given by: 
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Acceleration
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• Increase the magnetic field slightly on each turn.
• The particles will follow a shorter orbit. (frev < fsynch)
• Beyond transition, early arrival in the cavity causes a gain in energy 

each turn.

• We change the phase of the cavity such that the new synchronous 
particle is at 𝛷s and therefore always sees an accelerating voltage

• Vs = Vsin𝛷s = V𝛤 = energy gain/turn = dE

𝛷

V
dE = V.sin𝛷s

∆t (or 𝛷)



Accelerating Bucket
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Accelerating Bucket
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• The modification of the RF bucket reduces the acceptance
• The faster we accelerate (increasing sin 𝛷s ) the smaller the 

acceptance
• Faster acceleration also modifies the synchrotron tune.
• For a stationary bucket (𝛷s = 0) we had:

• For a moving bucket (𝛷s ≠ 0) this becomes:

rev
f

E
h

×÷÷
ø

ö
çç
è

æ hp2

s
rev
f
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h fhp cos2

×÷÷
ø

ö
çç
è
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𝑓hp = ℎ	×	𝑓hr^

Harmonics & Buckets
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1 Trev

• We will have: h buckets
• Doing this dynamically, we can perform 

bunch splitting

Harmonic 
number

Frequency of 
cavity voltage

Variable 
for 
b < 1

Split	in	four	at	flat	top

25 ns

26
 G

eV
/c



72 bunches

Eject 36 or

h = 7 or 9

h = 21

h
= 84

Eject 24 or
48 bunches

Controlled blow-ups

gtr

Split	in	four	at	flat	top

25 ns

26
 G

eV
/c

BCMS	(8	PSB	b.)Standard	(6	PSB	b.)

8b4e	(7	PSB	b.) 80	bunches	(7	PSB	b.)

Bunch Splitting
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Standard: 72 bunches @ 25 ns
BCMS: 48 bunches @ 25 ns

The PS defines the longitudinal 
beam characteristics



RF Beam Control
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Radial Position 
regulation

Phase 
regulationBeam phase and 

position data
Cavity voltage and phase 
(frequency) data

Beam

Beam Position
Monitor

Radio frequency
Cavity



Main Diagnostics Tools
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Beam Current & Position

Rende Steerenberg         
CERN - Geneva

BND Graduate School                           
6 September 2017 56

Beam intensity or current measurement:
• Working as classical transformer
• The beam acts as a primary winding

Beam position/orbit measurement:

Correcting orbit using automated beam steering



Transverse Beam Profile Monitor
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• Transverse beam profile/size measurement:
• Secondary EMission Grids (SEM-Grid)
• Based on integration of induced current



Transverse Beam Profile Measurement

• (Fast) wire scanner
• Uses photo multipliers to 

measure scintillator light 
produced by secondary 
particles
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be /



Wall Current Monitor
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• A circulating bunch creates an image current 
in vacuum chamber.

--
--

-

++

+ ++
+

bunch
vacuum chamber

induced charge

§ The induced image current is the same size but has the 
opposite sign to the bunch current.

resistor

Insulator
(ceramic)+ +



Longitudinal TomoScope

• Make use of the synchrotron motion that turns the “patient” 
in the Wall Current monitor
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Possible Limitations
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Space Charge
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• Between two charged particles in a beam we have 
different forces:

Coulomb
repulsion

Magnetic 
attraction

I=ev

𝛽

𝛽=1

+

+

magnetic

coulombforce

total 
force

0



Space Charge
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• At low energies, which means β<<1, the force is mainly 
repulsive ⇒ defocusing

• It is zero at the centre of the beam and maximum at the 
edge of the beam

++++++

++++++++
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++
+++

+ +
++

+

+
++

+++
+

++++++++
+++

++++++ +
+++
+ +++

+
+ +
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+
+
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++
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x

x

Linear

Non-linear

Defocusing force

Non-uniform 
density 

distribution

y



Laslett Tune Shift
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32
,

0
, 4 gbpe vh
vh

NrQ -»D

• For the non-uniform beam distribution, this non-linear 
defocusing means the ΔQ is a function of x (transverse 
position)

• This leads to a spread of tune shift across the beam
• This tune shift is called the ‘LASLETT tune shift’

• This tune spread cannot be corrected and does get very large at high 
intensity and low momentum

Relativistic parameters

Beam intensity

Transverse emittance



Imperfections & Resonances
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• Same phase and frequency for 
driving force and the system can 
cause resonances and be destructive

• Machines and elements cannot be built and aligned with 
infinite perfection

• We have to ask ourselves:
• What will happen to the betatron oscillations due to the different 

field errors.

• Therefore we need to consider errors in dipoles, quadrupoles, 
sextupoles, etc…



Phase Space & Betatron Tune
• If we unfold a trajectory of a particle that makes one turn in our machine 

with a tune of Q = 3.333, we get:
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0 2𝜋

y

𝛽x’

x

2πq

Normalised phase space

• This is the same as going 3.333 time around 
on the circle in phase space

• The net result is 0.333 times around the 
circular trajectory in the normalised phase 
space

• q is the fractional part of Q
• So here Q= 3.333 and q = 0.333



Resonance
• If the phase advance per turn is 120º then the betatron oscillation will repeat 

itself after 3 turns.
• This could correspond to Q = 3.333 or 3Q = 10
• But also Q = 2.333 or 3Q = 7
• The order of a resonance is defined as: 
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𝑛	×	𝑄 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟	

1st turn

2nd turn

3rd turn

2πq = 2π/3



Quadrupole (defl.∝ position)

• For Q = 2.50: Oscillation induced by the quadrupole kick grows on each 
turn and the particle is lost 

(2nd order resonance 2Q = 5)
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Q = 2.50 1st turn

2nd turn

3rd turn

4th turn

Q = 2.33

• For Q = 2.33: Oscillation is cancelled out every third turn, and therefore 
the particle motion is stable.



A more rigorous approach (1)
• Let us try to find a mathematical expression for the amplitude 

growth in the case of a quadrupole error:
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y’b

y

a

Dby’

Da
2πDQ

θ

θ

2πQ = phase angle over 1 turn = θ
Δβy’ = kick
a = old amplitude
Δa = change in amplitude
2πΔQ = change in phase

y does not change at the kick

y = a cos(𝜃)

In a quadrupole Δy’ = lky

Only if 2πΔQ is smallSo we have:

Δa = βΔy’ sin(𝜃) = lβ sin(𝜃) a k cos(𝜃)



A more rigorous approach (1)
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• Each turn θ advances by 2πQ
• On the nth turn θ = θ + 2nπQ 

• So, for q = 0.5 the phase term, 2(θ + 2nπQ) is constant:
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and thus:

Sin(θ)Cos(θ) = 1/2 Sin (2θ)

This term will be ‘zero’ as it decomposes in Sin and 
Cos terms and will give a series of + and – that cancel 

out in all cases where the fractional tune q ≠ 0.5 

• So, resonance for q = 0.5



Resonances & Multipoles
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• Quadrupoles excite 2nd order resonances (q = 0.5)

• Sextupoles excite 1st and 3rd order resonances (q = 0.0 & q = 0.33)

• Octupoles excite 2nd and 4th order resonances (q = 0.25 & q = 0.5)

• This is true for small amplitude particles and low 
strength excitations

• However, for stronger excitations higher order 
resonance’s can be excited which can be highly non-
linear



Resonance & Tune Diagram
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During acceleration we 
change the horizontal 
and vertical tune 
to a place where the 
beam is the least 
influenced by 
resonances.

injection

ejection



A Measured Tune Diagram

• Move a large emittance low intensity beam around in this tune 
diagram and measure the beam losses
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Collective Effects
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• Induced currents in the vacuum chamber (impedance) can result in 
electric and magnetic fields acting back on the bunch or beam

Coupled Bunch Instabilities

Head-Tail Instabilities



Cures for Collective Effects
• Ensure a spread in betratron/synchrotron 

frequencies
• Increase Chromaticity
• Apply Octupole magnets (Landau Damping)

• Reduce impedance of your machine
• Avoid higher harmonic modes in cavities
• Apply transverse and longitudinal feedback 

systems
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