## BND Lectures 2017

## Quantum Field Theory

Exercises for the tutorial Alberto Mariotti

1. By operating with $\gamma^{\nu} \partial_{\nu}$ on the Dirac equation

$$
\begin{equation*}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0 \tag{1}
\end{equation*}
$$

prove that the components of $\psi$ satisfies the Klein-Gordon equation.
2. Show that the Dirac equation

$$
\begin{equation*}
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0 \tag{2}
\end{equation*}
$$

is Lorentz invariant, reminding that under Lorentz transformation

$$
\begin{equation*}
\psi(x) \rightarrow \Lambda_{1 / 2} \psi\left(\Lambda^{-1} x\right) \quad \partial_{\mu} \rightarrow\left(\Lambda^{-1}\right)_{\mu}^{\nu} \partial_{\nu} \tag{3}
\end{equation*}
$$

with $\Lambda_{1 / 2}=\exp \left(-\frac{i}{2} w_{\mu \nu} S^{\mu \nu}\right)$ and using $\Lambda_{1 / 2}^{-1} \gamma^{\mu} \Lambda_{1 / 2}=\Lambda_{\nu}^{\mu} \gamma^{\nu}$.
3. Derive the equation of motion for the following Lagrangians using the Euler-Lagrangian equation
(a) $\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{m^{2}}{2} \phi^{2}+\frac{\lambda}{4} \phi^{4}$
(b) $\mathcal{L}=\left(\partial_{\mu} \Phi\right)^{*} \partial^{\mu} \Phi-m^{2} \Phi^{*} \Phi+\lambda\left(\Phi^{*} \Phi\right)^{2}$
(c) $\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{m^{2}}{2} \phi^{2}+\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi-\lambda \bar{\psi} \psi \phi$
(d) $\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}$ with $D_{\mu}=\partial_{\mu}+i e A_{\mu}$
4. Using Noether theorem compute the conserved charge of the $U(1)_{V}$ global symmetry of the Dirac equation

$$
\begin{equation*}
\psi \rightarrow e^{i \alpha} \psi \quad \bar{\psi} \rightarrow \bar{\psi} e^{-i \alpha} \tag{4}
\end{equation*}
$$

5. Consider a Lagrangian describing a free complex scalar field. Show that the current

$$
\begin{equation*}
j_{\mu}=i\left(\Phi \partial_{\mu} \Phi^{*}-\Phi^{*} \partial_{\mu} \Phi\right) \tag{5}
\end{equation*}
$$

is conserved (using the equations of motion).
6. Show that the QED Lagrangian (eqn 3 d ) is invariant under gauge transformation $\left(\psi \rightarrow e^{i e \alpha(x)} \psi(x), A_{\mu} \rightarrow A_{\mu}-\partial_{\mu} \alpha\right)$
7. Consider a quantum real scalar field and its expansion in terms of creation and annihilation operators $a_{p}^{\dagger}$ and $a_{p}$. Assuming the following commutation relation

$$
\begin{equation*}
\left[a_{p}, a_{q}^{\dagger}\right]=(2 \pi)^{3} \delta^{(3)}(\vec{p}-\vec{q}) \tag{6}
\end{equation*}
$$

compute the following commutators

$$
\begin{equation*}
[\phi(t, \vec{x}), \pi(t, \vec{y})] \quad, \quad[\phi(t, \vec{x}), \phi(t, \vec{y})] \tag{7}
\end{equation*}
$$

8. Consider a quantum complex scalar field. Compute the conserved charge associated to the conserved current (5) in terms of creation and annihilation operators (be careful with normal ordering), finding

$$
\begin{equation*}
Q=\int \frac{d^{3} p}{(2 \pi)^{3}}\left(b_{p}^{\dagger} b_{p}-c_{p}^{\dagger} c_{p}\right) \tag{8}
\end{equation*}
$$

9. Verify that

$$
\begin{equation*}
\psi(x)=e^{-i p \cdot x} u(p) \quad u(p)=\binom{\sqrt{p \cdot \sigma} \xi}{\sqrt{p \cdot \bar{\sigma}} \xi} \tag{9}
\end{equation*}
$$

solves the dirac equation.
10. Prove that

$$
\begin{equation*}
\gamma^{\mu} \gamma_{\mu}=4 \quad \gamma^{\mu} \gamma^{\nu} \gamma_{\mu}=-2 \gamma^{\nu} \quad \gamma^{\mu} \gamma^{\sigma} \gamma^{\rho} \gamma_{\mu}=4 \eta^{\sigma \rho} \quad\left(\gamma^{\mu}\right)^{\dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0} \tag{10}
\end{equation*}
$$

11. Show that $P_{R}=\frac{1}{2}\left(1+\gamma^{5}\right)$ and $P_{L}=\frac{1}{2}\left(1-\gamma^{5}\right)$ are projectors.
12. Consider a Dirac field. Compute the conserved charge associated to the symmetry (4) in terms of creation and annihilation operators (be careful with normal ordering and anticommutation), finding

$$
\begin{equation*}
Q=\int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{s}\left[\left(a_{p}^{s}\right)^{\dagger} a_{p}^{s}-\left(b_{p}^{s}\right)^{\dagger} b_{p}^{s}\right] \tag{11}
\end{equation*}
$$

13. Suppose to work in $d$ dimensions. The action is $S=\int d^{d} x \mathcal{L}$. The canonical mass dimension of fields is set by the kinetic term which is the same of dimension $d=3+1$ that we saw in the lecture. Show that the canonical mass dimension of scalar, Dirac and gauge fields are

$$
\begin{equation*}
[\phi]=\frac{d-2}{2} \quad\left[A_{\mu}\right]=\frac{d-2}{2} \quad[\psi]=\frac{d-1}{2} \tag{12}
\end{equation*}
$$

Hence, given these results, what are the dimensions of the following operators? Which of them is marginal/relevant/irrelevant in e.g. $\mathrm{d}=2+1$ ?
(a) $\mathcal{L}=-e \bar{\psi} \gamma^{\mu} \psi A_{\mu}$
(b) $\mathcal{L}=-y \bar{\psi} \psi \phi$
(c) $\mathcal{L}=-\lambda_{n} \phi^{n}$ with integer $n$

Comment with respect to the $d=3+1$ case that we know.
14. Show that the sum of the Mandelstam variables in a 2 to 2 scattering $a b \rightarrow c d$ satisfies the following identity

$$
\begin{align*}
& s=\left(p_{1}+p_{2}\right)^{2} \quad t=\left(p_{1}-p_{3}\right)^{2} \quad u=\left(p_{1}-p_{4}\right)^{2}  \tag{13}\\
& s+u+t=m_{a}^{2}+m_{b}^{2}+m_{c}^{2}+m_{d}^{2} \tag{14}
\end{align*}
$$

15. Consider a two body decay of an heavy particle with mass $M_{a}, a \rightarrow b c$. Show that the momenta of the two daughter particles is

$$
\begin{equation*}
p^{*}=\frac{1}{2 M_{a}} \sqrt{\left(M_{a}^{2}-\left(m_{b}+m_{c}\right)^{2}\right)\left(M_{a}^{2}-\left(m_{b}-m_{c}\right)^{2}\right)} \tag{15}
\end{equation*}
$$

16. Show that the two body phase space including the four momentum conservation for a 2 to 2 process in the center of mass frame

$$
\begin{equation*}
\frac{d^{3} p_{1}}{2 E_{1}} \frac{d^{3} p_{2}}{2 E_{2}} \delta^{(4)}\left(P_{i}-p_{1}-p_{2}\right) \tag{16}
\end{equation*}
$$

can be simplified to

$$
\begin{equation*}
\frac{p^{*}}{4 \sqrt{s}} d \Omega \tag{17}
\end{equation*}
$$

where $p^{*}=\left|\vec{p}_{1}\right|=\left|\vec{p}_{2}\right|$ is the outgoing particle momentum in the c.o.m. frame.

Hint: use the delta function relation

$$
\begin{equation*}
\delta(f(x))=\left|\frac{\partial f(x)}{\partial x}\right|_{x=x_{0}}^{-1} \delta\left(x-x_{0}\right) \tag{18}
\end{equation*}
$$

17. Verify that the Feynman propagator for the Dirac field is a Green function of the Dirac equation
18. Consider a theory with two real scalar fields with Lagrangian (with $m_{A}>2 m_{B}$ )

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi_{A} \partial^{\mu} \phi_{A}+\partial_{\mu} \phi_{B} \partial^{\mu} \phi_{B}\right)-\frac{1}{2}\left(m_{A}^{2} \phi_{A}^{2}+m_{B}^{2} \phi_{B}^{2}\right)-\frac{\mu}{2} \phi_{A} \phi_{B}^{2} \tag{19}
\end{equation*}
$$

Compute the decay rate of the heavy real scalar into a pair of light real scalars $\phi_{A} \rightarrow \phi_{B} \phi_{B}$, finding

$$
\begin{equation*}
\Gamma\left[\phi_{A} \rightarrow \phi_{B} \phi_{B}\right]=\frac{\mu^{2}}{32 \pi m_{A}} \sqrt{1-\frac{4 m_{B}^{2}}{m_{A}^{2}}} \tag{20}
\end{equation*}
$$

19. Consider a theory with a real scalar of mass $M$ coupled to a fermion with mass $m$ with interaction term

$$
\begin{equation*}
\mathcal{L} \supset-y \phi \bar{\psi} \psi \tag{21}
\end{equation*}
$$

Assuming $M>2 m$ compute the decay rate of the scalar into a fermionantifermion pair

$$
\begin{equation*}
\Gamma[\phi \rightarrow \psi \bar{\psi}]=\frac{y^{2} M}{8 \pi}\left(1-\frac{4 m^{2}}{M^{2}}\right)^{3 / 2} \tag{22}
\end{equation*}
$$

20. Compute the QED cross section $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$
21. Compute the QED cross section $e^{-} \mu^{-} \rightarrow e^{-} \mu^{-}$
22. Compute the QED Moeller scattering cross section $e^{+} e^{-} \rightarrow e^{+} e^{-}$starting from the expression given in the lectures.
