

Tracking – 2 Basic Principles of Detectors

Jochen Kaminski University of Bonn

BND – summer school Callantsoog, Netherlands 4.-6.9.2017

Overview Course

Lecture 1: Tracking - Basics and Reconstruction

Lecture 2: Basic Principle of Detectors Energy Loss Drift and Diffusion Gas Amplification Signal Generation

Lecture 3: Gaseous Detectors

Lecture 4: Semiconductor Detectors

Detection Principles of Charged Particles

- Particle passing the detector volume
- Ionizing the gas atoms along its path
- If an electric field is applied the charges are separated
- They drift towards the electrodes
- The signal is amplified and readout by the electronics

Detection Principle of Neutral Particles

Convert particles into charged particles by some specific processes:

- Photons: depending on energy there are different processes
 Low energy: photoelectric effect e⁻ are hit from central shells of atoms.
 Medium energy: Compton effect photon scatters with quasi free e⁻
 High energy: Pair production photon 'decays' into e⁺e⁻
- Neutrons:

Slow neutrons have high cross section for nuclear reactions inducing α /p-emission, e.g. ³He+n \rightarrow ³H+¹H or ¹⁰B + n $\rightarrow \alpha$ + Li Fast neutrons can kick out low *Z* nuclei (e.g. H) from material

• Neutrino:

'Inverse β -decay' converting a nucleus and ejecting an e⁻

• π^0 : decay in two photons

Energy Loss of Heavy Charged Particles

Heavy charged particles are not stopped by a single or a few interactions, but they loose energy quasi continuously by many interactions.

Interactions that take place are mostly based on electromagnetic interactions:

- Inelastic collisions with e⁻ of atomic shells: excitation and ionization
- Bremsstrahlung
- Elastic scattering off nuclei
- Cerenkov and transition radiation
- Nuclear reactions (only non-electromagnetic interaction!)

Energy loss is described by Bethe-Bloch formula. -*dE/dx* is also called stopping power.

Derivation of Bethe-Bloch-Formula

1913: first calculation of *dE/dx* by Bohr using a classical picture 1930/1933: quantum-mechanical calculation by Bethe and Bloch Later: Improved and refined calculation in particular of low/high energies

Energy loss occurs by single stochastic interactions of the incident particle with atoms.

It depends on the material type A, mass M and velocity β of the particle.

Calculation of Cross Section (I)

Considering only elastic em. interactions with a particle quasi free and at rest (i.e. $v_M >> v_e$, $\Delta T >> T_{bind}$, $M >> m_e$) \rightarrow Rutherford cross section

$$\frac{d\sigma}{dQ^2} = \frac{4\pi z^2 \alpha^2 \hbar^2 c^2}{\beta^2} \frac{1}{Q^4}$$

Using the collision kinematics, one can transform the momentum transfer into the energy transfer: $Q^2 = -(p_p - p_p')^2 = 2m_p c^2 T$.

$$\frac{d\sigma}{dT} = \frac{2\pi z^2 \alpha^2 \hbar^2}{\beta^2 m_e} \frac{1}{T^2}$$

Rutherford cross section holds only for two particles with spin 0. But the electron has spin $\frac{1}{2}$: \rightarrow Mott cross section

$$\frac{d\sigma}{dT} = \frac{2\pi z^2 \alpha^2 \hbar^2}{\beta^2 m_e T^2} \left(1 - \beta^2 \frac{T}{T_{max}} \right)$$

Calculation of Cross Section (II)

Doing the integration from T_{min} to T_{max} :

$$-\left\langle \frac{dE}{dx} \right\rangle = n_e \cdot \int_{T_{min}}^{T_{max}} T \frac{2\pi z^2 \alpha^2 \hbar^2}{\beta^2 m_e T^2} \left(1 - \beta^2 \frac{T}{T_{max}} \right) dT = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \int_{T_{min}}^{T_{max}} \left(\frac{1}{T} - \beta^2 \frac{1}{T_{max}} \right) dT = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \int_{T_{min}}^{T_{max}} \left(\frac{1}{T} - \beta^2 \frac{1}{T_{max}} \right) dT = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \int_{T_{min}}^{T_{max}} \left(\frac{1}{T} - \beta^2 \frac{1}{T_{max}} \right) dT = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \int_{T_{min}}^{T_{max}} \left(\frac{1}{T} - \beta^2 \frac{1}{T_{max}} \right) dT = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \int_{T_{min}}^{T_{max}} \left(\frac{1}{T} - \beta^2 \frac{1}{T_{max}} \right) dT = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \int_{T_{min}}^{T_{max}} \left(\frac{1}{T} - \beta^2 \frac{1}{T_{max}} \right) dT = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \int_{T_{min}}^{T_{max}} \left(\frac{1}{T} - \beta^2 \frac{1}{T_{max}} \right) dT = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \int_{T_{min}}^{T_{max}} \left(\frac{1}{T} - \beta^2 \frac{1}{T_{max}} \right) dT = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \int_{T_{min}}^{T_{max}} \left(\frac{1}{T} - \beta^2 \frac{1}{T_{max}} \right) dT = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \int_{T_{min}}^{T_{max}} \left(\frac{1}{T} - \beta^2 \frac{1}{T_{max}} \right) dT = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \int_{T_{min}}^{T_{max}} \left(\frac{1}{T} - \beta^2 \frac{1}{T_{max}} \right) dT = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \int_{T_{min}}^{T_{max}} \left(\frac{1}{T} - \beta^2 \frac{1}{T_{max}} \right) dT = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \int_{T_{min}}^{T_{max}} \left(\frac{1}{T} - \beta^2 \frac{1}{T_{max}} \right) dT = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \int_{T_{min}}^{T_{max}} \left(\frac{1}{T} - \beta^2 \frac{1}{T_{max}} \right) dT = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \int_{T_{min}}^{T_{max}} \left(\frac{1}{T} - \beta^2 \frac{1}{T_{max}} \right) dT = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \int_{T_{min}}^{T_{max}} \left(\frac{1}{T} - \beta^2 \frac{1}{T_{max}} \right) dT = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \int_{T_{min}}^{T_{max}} \left(\frac{1}{T} - \beta^2 \frac{1}{T_{max}} \right) dT = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \int_{T_{min}}^{T_{max}} \left(\frac{1}{T} - \beta^2 \frac{1}{T_{max}} \right) dT = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \int_{T_{max}}^{T_{max}} \left(\frac{1}{T} - \beta^2 \frac{1}{T_{max}} \right) dT = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \int_{T_{max}}^{T_{max}} \left(\frac{1}{T} - \beta^2 \frac{1}{T_{max}} \right) dT = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \int_{T_{max}}^{T_{ma$$

$$= \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \left(\ln T - \beta^2 \frac{T}{T_{max}} \right) \Big|_{T_{min}}^{T_{max}} = \frac{2\pi z^2 \alpha^2 \hbar^2 n_e}{\beta^2 m_e} \cdot \left(\ln T_{max} - \ln T_{min} - \beta^2 \frac{(T_{max} - T_{min})}{T_{max}} \right)$$

with $T_{max} - T_{min} \approx T_{max}$ and and the electron density $n_e = Z \rho N_A / A$

$$-\left\langle \frac{dE}{dx} \right\rangle = \frac{2\pi z^2 \alpha^2 \hbar^2 Z \rho N_A}{\beta^2 m_e A} \cdot \left(\ln \frac{T_{max}}{T_{min}} - \beta^2 \right)$$

universität**bonn**

Barkas & Berger 1964 Bichsel 1992 0 10 20 30 40 50 60 70 80 90 100 Z

universität**bo**r

universität**bon**r

200

100

70

50

30

20

10

 $\mathbf{2}$

 $dE/dx imes X_0$ (MeV)

Copper

 $X_0 = 12.86 \text{ g cm}^{-2}$ $E_c = 19.63 \text{ MeV}$

5

Rossi:

Ionization per X_0

= electron energy

10

20

Electron energy (MeV)

EXOC DIONS

50

Ionization

Brems = ionization

100

Brens

Bremsstrahlung

For high energies, particles can radiate of photons in the electrical field of a nucleus. Energy dependence $dE/dx \propto Z^2 E/M^2$

PDG2016

200

Previous definition of the critical energy:

$$\left(\left.\frac{dE}{dx}\right|_{E_C}\right)_{ion} = \left(\left.\frac{dE}{dx}\right|_{E_C}\right)_{brem}$$

New definition according to Rossi

$$\left(\left.\frac{dE}{dx}\right|_{E_C}\right)_{ion} \cdot X_0 = -E_c$$

For this approximation numbers can be given:

 $610 \, \mathrm{MeV}$ in liquids and solids $E_c \approx$ Z + 1.24 $710 {
m MeV}$ in gases $E_c \approx \frac{1}{Z+0.92}$

Delta-Electrons (I)

High energetic particles can transfer a lot of energy in some collisions to the electrons. This creates δ -electrons, which have a lot of kinetic energy and can ionize atoms themselves.

Sorting out the 4-momenta, one gets a relation of the kinetic energy and the angle of emission:

$$T(\theta) = \frac{2m_e c^2 \beta^2 \gamma^2 \cos^2 \theta}{\gamma^2 \left(1 - \beta^2 \cos^2 \theta\right) + 2\gamma \frac{m_e}{M} + \frac{m_e^2}{M^2}} \stackrel{\gamma \gg 1}{\to} \frac{2m_e c^2}{\tan^2 \theta}$$

 δ -electrons deposit energy some distance from the original track \rightarrow degrade performance of tracking detectors.

Delta-Electrons (II)

y wire

Important is the number of the electrons:

$$\frac{d^2N}{dxdT} = n_e \frac{d\sigma}{dT} = \frac{1}{2} K \frac{Z}{A} \rho \frac{z^2}{\beta^2} \frac{F(T)}{T^2} \xrightarrow{T(\theta)} \frac{d^2N}{dxd\cos\theta} = \frac{1}{2} K \frac{Z}{A} \rho z^2 \frac{1}{\cos^3\theta} \frac{1}{m_e c^2} \approx 0.15 \frac{\mathrm{cm}^2}{\mathrm{g}} z^2 \rho \frac{1}{\cos^3\theta} \frac{1}{\mathrm{cm}^2} = \frac{1}{2} K \frac{Z}{A} \rho z^2 \frac{1}{\cos^3\theta} \frac{1}{\mathrm{cm}^2} = \frac{1}{2} K \frac{Z}{A} \rho z^2 \frac{1}{\mathrm{cm}^2} \frac{1}{\mathrm{cm}^2} = \frac{1}{2} K \frac{Z}{A} \rho z^2 \frac{1}{\mathrm{cm}^2} \frac{1}{\mathrm{cm}^2} = \frac{1}{2} K \frac{Z}{A} \rho z^2 \frac{1}{\mathrm{cm}^2} \frac$$

$$\stackrel{\text{integrating}}{\to} N = \frac{1}{2} K \frac{Z}{A} \rho \frac{z^2}{\beta^2} \left(\frac{1}{T_{min}} - \frac{1}{T_{max}} \right) \approx 0.077 \ \frac{\text{MeV} \,\text{cm}^2}{\text{g}} z^2 \rho \Delta x \frac{1}{T_{min}}$$

- Rate changes rapidly over many orders of magnitude
- 1-1 relation between T and θ
- Almost all δs at an angle of 90°

The Bethe-Bloch formula gives the average energy loss over a short distance Δx .

The actual energy loss over Δx is random, since it is the sum of single energy transfers.

$$\Delta E = \sum_{n=1}^{N} T_n$$

<u>Number of interactions N:</u> For thin absorbers N follows the Poisson distribution

$$\frac{\sigma_N}{N} = \frac{\sqrt{N}}{N} = \frac{1}{\sqrt{N}}$$

<u>Energy transfer δE_{n} </u>: The distribution follows $1/T^{2}$

$$\frac{d^2N}{dxdT} = n_e \frac{d\sigma}{dT} = \frac{1}{2} K \frac{Z}{A} \rho \frac{z^2}{\beta^2} \frac{F(T)}{T^2}$$

Energy Fluctuations (II)

Combining both effects, the distribution of the resulting energy loss varies strongly with the detector thickness and the particle energy: The parameter

$$\kappa = \frac{\xi}{T_{max}} = \frac{\frac{1}{2}K\frac{Z}{A}\rho\frac{z^2}{\beta^2}\Delta x}{T_{max}}$$
 determines the shape.

For $\kappa \ge 1$ symmetric, for $\kappa \ll 1$ strongly asymmetric

The latter case can be described by the Landau distribution.

$$f_L(\lambda) = \frac{1}{\pi} \int_0^\infty e^{-t \ln t - \lambda t} \sin(\pi t) dt$$

It assumes:

universitä

L)
$$T_{max} \rightarrow \infty$$

2) Electrons are free (no shell effects) 3) $\Delta E \ll E$

$$=>\lambda_{max}=-0.22278, FWHM_{\lambda}=4.018$$
$$\lambda = \lambda(\Delta E_{w}, \xi) = \frac{\Delta E - \Delta E_{w}}{2} - 0.22278$$

Energy fluctuations (III)

∆E of 0.05 cm thick Ar filled detector

$\Delta \textbf{E}$ of 0.1 cm thick Ar filled detector

△E of 1 cm thick Ar filled detector

Landau distribution assumes $T_{max} \rightarrow$ => problematic Vavilov developed a generalization.

Also Moyal distribution is often used as approximation:

$$f_M(\lambda) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(\lambda + e^{-\lambda})}$$

None of those agree perfectly, because shell effects are neglected.

 ∞

Radiation Length

Integrating the dE/dx of the Bremsstrahlung spectrum over all energies yields:

where X_{α} is call radiation length

$$oX_0 = \frac{716.408 \text{ g cm}^{-2}A}{Z(Z+1) \ln \frac{287}{\sqrt{Z}}}$$

Integrating over *x* gives $E(x) = E_0 e^{-\frac{x}{X_0}}$

which indicates one of the definitions of X_{0} : the path length, until electrons have only 1/e of the original energy. However, X_{o} is an important measure for many em. processes that take place in the electric field of nuclei, e.g. multiple scattering or pair production from photons, etc.

Impact on Tracking Detectors

Energy loss is the most important process for detecting particles, since it generates electrical charges, which can be amplified, readout and digitized. Things to keep in mind:

- A higher *N* is better for a precise position measurement (statistics)
- Actually it is not the number of electrons, but the number of primary interactions
- Av. ionization energy higher than shell levels (Ar: $E_1=11-15 \text{ eV}$, $W_1=26 \text{ eV}$)
- Particle identification can be done by momentum and dE/dx
- \bullet $\delta\text{-}electrons$ degrade the position resolution of tracking detectors
- Multiple scattering and Bremsstrahlung degrade performance of tracking detectors

= use a short radiation length of detector in particular low Z material

Numbers for Standard Detectors

	Z	A	ρ	$\left. \frac{dE}{dx} \right _{min}$	X_0	E_C
argon	18	40	$1.66 \frac{mg}{cm^3}$	$2.5 \frac{\text{keV}}{\text{cm}}$	$11763~{\rm cm}$	$38 { m MeV}$
silicon	14	28	$2.33 \frac{g}{cm^3}$	$3870 \frac{\text{keV}}{\text{cm}}$	$9.36~\mathrm{cm}$	$40.2 { m MeV}$

Drift and Diffusion

Areas with different concentrations of some type of gas aim for equilibrium => diffusion Same happens if a number of electrons/ions is released in the gas Requirements: a) $T>0 \rightarrow$

$$E_{th} = \frac{3}{2}kT = \frac{1}{2}m \langle v_{th} \rangle^2 \quad \Rightarrow \quad \langle v_{th} \rangle = \sqrt{\frac{3kT}{m}}$$

For Ar atoms at 300 K this gives $\langle v_{th} \rangle \sim 5$ mm/µs

b) conc. gradient *dn/dx*

Diffusion Equation

For a certain distribution f(r, v, t), the density ρ and number N is given by

$$\rho(\vec{r},t) = \int f(\vec{r},\vec{v},t) d^3v \qquad \qquad N(t) = \int \rho(\vec{r},t) d^3r$$

If *N* is constant, then the continuity equation holds for any area:

$$\frac{\partial \rho}{\partial t} + \nabla \vec{j}_D = 0$$

The diffusion current density j_D is proportional to $\nabla \rho$: $\vec{j}_D = -D \vec{\nabla} \rho$ This gives the diffusion equation (Fick's law)

$$\frac{\partial \rho}{\partial t} - D\Delta \rho = 0$$

with the solution

$$p(\vec{r},t)) = \frac{N}{(4\pi Dt)^{\frac{3}{2}}} e^{-\frac{\vec{r}^2}{4Dt}}$$

ρ

This is a Gaussian distribution with the width D, which is the diffusion constant.

universitätbo

Diffusion Constant

$$\frac{\partial \left\langle x^2 \right\rangle}{\partial t} = \frac{\partial}{\partial t} \left(\frac{1}{N} \int x^2 \rho(\vec{r}, t) d^3 \vec{r} \right) = 2D$$

Integrating over time: $\langle x^2 \rangle = 2Dt$ $\sigma_x = \sigma_y = \sigma_z = \sqrt{2Dt}$

$$D = \frac{1}{3} \left\langle \lambda \cdot v_{th} \right\rangle = \frac{1}{3} \frac{1}{n\sigma} \sqrt{\frac{3kT}{m}} \approx \frac{1}{3} \frac{kT}{p\sigma} \sqrt{\frac{3kT}{m}} = \frac{kT}{p\sigma} \sqrt{\frac{(kT)^3}{3m}}$$

<u>Ions</u>: Diffusion almost independent of gas $D \approx 0.1 \text{ cm}^2/\text{s} \Rightarrow \sigma \approx 140 \mu\text{m}$ after 1ms

Gas	λ _{ion} (cm)	D _{ion} (cm²/s)	μ _{ion} (cm²/Vs)
H ₂	1.8 x 10 ⁻⁵	0.34	13.0
He	2.8 x 10 ⁻⁵	0.26	10.2
Ar	1.0 x 10 ⁻⁵	0.04	1.7
O ₂	1.0 x 10 ⁻⁵	0.06	2.2
Si (holes)	2.4 x 10 ⁻⁶	12	450

Example

Ar/CO₂ (70 : 30) Drift field: 500 V/cm Drift distance: \sim 3 to 4 cm $D \approx 140 \ \mu m/\sqrt{cm}$

 Ar/iC_4H_{10} (97.7 : 2.3) Drift field: 500 V/cm Drift distance: 3 cm $D \approx 700 \,\mu\text{m}/\sqrt{\text{cm}}$ 250 -120100 200 **FoT** [Taktzyklen] 80 150 Pixel Y 60 100 40 50 20 50 200 250 Ό 100150Pixel X

Drift

If an electric field is applied, we have a superposition of a drift movement and diffusion.

Drift can be described by the following equation of motion (Langevin equation): $d\vec{x}$

$$m\frac{d\vec{v}}{dt} = e\vec{E} + e\left(\vec{v}\times\vec{B}\right) - K\vec{v}$$

where v is the drift velocity. The stationary solution is:

$$\vec{v} = \frac{e}{m}\tau \left|\vec{E}\right| \frac{1}{1+\omega^2\tau^2} \left(\hat{E} + \omega\tau \left(\hat{E} \times \hat{B}\right) + \omega^2\tau^2 \left(\hat{E} \cdot \hat{B}\right)\hat{B}\right)$$

with the collision time $\tau = m/K$ and the cyclotron frequency $\omega = eB/m$.

Drift in Electrical Fields

$$\vec{v} = \frac{e}{m}\tau \left| \vec{E} \right| \frac{1}{1+\omega^2\tau^2} \left(\hat{E} + \omega\tau \left(\hat{E} \times \hat{B} \right) + \omega^2\tau^2 \left(\hat{E} \cdot \hat{B} \right) \hat{B} \right)$$

If B = 0 then $\omega = 0$, the equation then simplifies to

$$\vec{v} = \frac{e}{m}\tau \left| \vec{E} \right| \hat{E} \equiv \mu \vec{E}$$

where $\mu = e\tau/m$ is called mobility.

The concept works reasonably good for ions (i.e. mobility is constant). But it does not work for electrons (strongly gas and E dependent): Elastic cross section exhibit maxima and minima because of quantum mechanical interferences with the wave functions of shell electrons saui 1977 (Ramsauer effect).

 \rightarrow The cross section is large (resonant) when de Broglie wave length (~1/p) in the order of the size of the atom.

Mobility of ions

Drift velocity of electrons

$$\vec{v} = \frac{e}{m}\tau \left|\vec{E}\right| \frac{1}{1+\omega^2\tau^2} \left(\hat{E} + \omega\tau \left(\hat{E} \times \hat{B}\right) + \omega^2\tau^2 \left(\hat{E} \cdot \hat{B}\right)\hat{B}\right)$$

Motion difficult to describe in general, but in special cases:
1) B||E: second term is 0 → no change in direction of drift
2) B⊥E: third term is 0 → But direction of drift changes! Lorentz forces deviates particles during flight

Diffusion in Magnetic Fields

Since
$$\omega = eB/m$$
 and $m_{ion} \approx 10^4 \cdot m_e$

$$\omega_e \tau_e \approx 10^4 \cdot \omega_{ions} \tau_{ions}$$

There is basically no impact on ions, but significant impact on electron movement. Diffusion is reduced:

$$D_T(\omega) = \frac{D_T(0)}{1 + \omega^2 \tau^2}$$
$$D_L(\omega) = D_L(0)$$

Reduction of electron diffusion due to magnetic field

Simulation

Transport properties (v_{drift} , D, attachment, gas amplification) can be very well simulated by dedicated simulation tools: For gas properties: Magboltz (in fortran) http://magboltz.web.cern.ch/magboltz/ For detector behavior: Garfield++ (in C++) https://garfieldpp.web.cern.ch/garfieldpp/

Gas Amplification

Simple Picture

If free electrons enter an area with high electrical fields, they can gain enough energy between two collisions with atoms to ionize them.

An avalanche of electrons is developed.

Wire-based Tubes

The cylindrical geometry of a wire-based tube detector is optimal:

- 1) Natural transition from a low electric field to a high electric field (geometry!)
- 2) Needs only one HV channel
- 3) Large volume read out by 1 single channel
- 4) Low capacitance (\rightarrow low noise)

Mathematical Description

Gas amplification is defined as an increase of charge by dn, while the charge n is passing through a layer dx:

 $dn=n\alpha dx$

Integrating gives:

$$n=n_0 e^{\alpha x}$$

The definition of the gas gain is then $G = n/n_0 = e^{\alpha x}$

More general:

universitätbo

$$G = \frac{n}{n_0} = e^{\int_{x_i}^{x_f} \alpha(E(x))dx}$$

where $\alpha = \sigma_{ion} n = 1/\lambda_{ion}$ is the first Townsend coefficient. It gives the number of generated free electrons/ions per unit of length.

Typical values of G are $2000 - 10^6$.

Fluctuations of Gas Gain

Of course the gas gain of a single electron also varies because of statistical processes.

If a sufficiently high field is applied, the probability, that no ionization during the drift path s happens is: $P(1,s)=e^{-\alpha s}$ (only one electron after s) for exactly one ionization: $P(2,s)=e^{-\alpha s}(1-e^{-\alpha s})$ (two electrons after s) for exactly *n*-1 ionizations: $P(n,s)=e^{-\alpha s}(1-e^{-\alpha s})^{n-1}$ (*n* electrons after s) Redefining $e^{\alpha s}=n$ as the average number of electrons, one gets $P(n,s)=1/n (1-1/n)^{n-1} \approx e^{-n/n}/n$ (Furry's law) For high gas gains a peak shaped distribution develops:

$$P(x,\theta) = [x(\theta+1)]^{\theta} e^{-x(\theta+1)}$$

This is the Polya-distribution and in general describes the gas amplification.

Signal Generation

Induction of Charge

A charge moving towards a metal plane induces a current in the plane.

In the same way the signal of a detector starts as soon as charges are created and start to move to the readout electrodes.

Ramow's Theorem (I)

Setup, where inner conductor U=0 V, outer one connected to supply with U. \rightarrow Charge q moves in the electric field.

Work is given by $dW_q + dW_U + dW_E = 0$

→ power supply provides $dW_{U} = U dQ$,

The electrical field can be split in two components E_0 and E_q . The work done on the q is given by its motion in E_0 : $dW_q = qE_0 dr$, But the electric fields don't change their energy content: $dW_E = dW_{E0} + dW_{Eq} = 0$. $=> dW_q + dW_U + dW_E = qE_0 dr + U dQ = 0$ E_0 scales with U, but its form depends only on geometry: $\phi_w = \phi_0 / U$ $E_w = -\nabla \phi_w$. The induced charge is then $dQ = -\frac{\vec{E}}{U}d\vec{r} = -q\vec{E}_w d\vec{r}$ $i_S = -\frac{dQ}{dt} = q\vec{E}_w \vec{v}$ with $\vec{v} = \frac{d\vec{r}}{dt}$

Multi-Electrode Problem

If we are interested in reading out U_1 only

 \rightarrow use superposition principle for the potentials of all electrodes

Potential ϕ_i of each electrode can be calculated independently by setting the voltage of all electrodes to 0 V, except the one under investigation: U This can be done independently of U~1 \rightarrow weighting potential ϕ_w .

Summary

Induced charge

$$dQ = -q\vec{E}_w d\vec{r}$$

- Induced signal current $i_S = q \vec{E}_w \vec{v}$
- Weighting field E_w tells how q(t) couples to an electrode and is independent of U or E_o , but depends only on the electrode geometry $[E_w]=1/m$
- Weighting field is derived by putting all electrodes to 0V except one $\rightarrow 1$
- v(t) describes the movement of q and thus the time dependence of the pulse shape; it depends on U or E_0 .
- Both charges induce signal an both/all electrodes
- On every electrode the total charge $Q_S^{tot} = Q_S^- + Q_S^+ = -Ne$ is induced.

ion o 🔓 e

x=d

x=0

x₀= d/2

+HV

d

Example: Two Parallel Plates (I)

Assuming infinitely long plates, the electric field is homogenous

 $\vec{E} = -\frac{U}{d}\vec{e}_x$ $C = \frac{\epsilon\epsilon_0 A}{d}$ And the weighting field is $\vec{E}_w = -\frac{1}{J}\vec{e}_x$

Resulting in a current for both charges:

$$i_{S}^{\pm} = q^{\pm} \vec{E}_{w} \vec{v}^{\pm} = -\frac{q^{\pm}}{d} \frac{\vec{x}}{x} \vec{v}^{\pm} = \frac{e}{d} v^{\pm}$$

Both charges contribute with the same polarity to
 E-field the signal on the readout electrode.

Integrating over the total drift time: $T^+ = x_0^{-1}/v^+$ and $T^- = (d-x_0^{-1})/v^-$ gives the total charge:

$$Q_S^{tot} = Q_S^- + Q_S^+ = -\frac{e}{d} \left(\int_0^{T^-} v^- dt + \int_0^{T^+} v^+ dt \right) = -\frac{e}{d} v^- \left(\frac{d - x_0}{v^-} \right) - \frac{e}{d} v^+ \left(\frac{x_0}{v^+} \right) = -e$$

 $q^{+} + q^{-}$

universität**bonn**

Example: Two Parallel Plates (II)

48

The voltage signal can be derived from

$$du_{S}^{\pm} = \frac{1}{C_{D}} dQ_{S}^{\pm} = -\frac{e}{C_{D}} \vec{E}_{w} d\vec{r} = -\frac{e}{C_{D} d} v^{\pm} dt$$
Which gives:
for $0 < t < T^{-}$:
 $u_{s}(t) = -\frac{e}{C_{D} d} (v^{-} + v^{+}) t$
for $T^{-} < t < T^{+}$:
 $u_{s}(t) = -\frac{e}{C_{D} d} (d - x_{o} + v^{+} t)$
for $t > T^{+}$:
 $u_{s}(t) = -\frac{e}{C_{D} d}$
Signal depends on the relative

Signal depends on the relative drift velocities v^+ and v^- and the position of creation x_0^- .

1.)
$$v^{-} \approx 4v^{+}$$
, $x_{0} = d/2$:

A track gives a continuous distribution of N charges: $\rho(x) = Ne/d dx$

$$i_{S}^{-}(t) = \frac{v^{-}}{d} \int_{v^{-}t}^{d} \frac{Ne}{d} dx = \frac{v^{-}}{d} \frac{Ne}{d} d - \frac{v^{-}}{d} \frac{Ne}{d} v^{-}t = \frac{1}{T^{-}} Ne - \frac{1}{T^{-}} Ne \frac{v^{-}t}{d} = \frac{Ne}{T^{-}} \left(1 - \frac{t}{T^{-}}\right)$$

$$i_{S}^{+}(t) = \frac{v^{+}}{d} \int_{0}^{d-v^{+}t} \frac{Ne}{d} dx = \frac{1}{T^{+}} Ne\left(\frac{d-v^{+}t}{d} - 0\right) = \frac{Ne}{T^{+}} \left(1 - \frac{t}{T^{+}}\right)$$

The voltage signals is then

$$u_{S}^{\pm}(t) = \frac{Q_{S}^{\pm}}{C} = -\frac{1}{C} \int_{0}^{t} i_{S}^{\pm}(t') dt' = -\frac{Ne}{C} \left(\frac{t}{T^{\pm}} - \frac{1}{2} \left(\frac{t}{T^{\pm}}\right)^{2}\right)$$

Segmented Electrode (II)

- For small pixels/thin strips, the weighting field reaches over the next electrode. Therefore, also neighboring electrodes also see some induced signal, even if they are not hit.
- At the beginning (charge far away), neighboring pixel sees almost as much signal as the central pixel
- When charge is close to readout plane, the induced signal on neighboring electrodes decreases.
- Most of the charge is induced, when pixel is near to the pixel because the weighting field is most dense there. \rightarrow Small pixel effect.

universitätbo

Literature

- 1.) Hermann Kolanoski, Norbert Wermes, Teilchendetektoren, Springer ISBN 13: 9783662453490
- 2.) Fabio Sauli, Gaseous Radiation Detectors, Cambridge, ISBN: 9781107337701
- 3.) Fabio Sauli, Principles of operation of multiwire proportional and drift chambers, CERN-77-09
- 4.) Blum, Riegler, Rolandi, Particle Detection with Drift Chambers, Springer, ISBN 978-3-540-76683-4
- 5.) PDG, The review of particle physics, http://pdg.lbl.gov/
- 6.) Various web pages for pictures
- 7.) lecture notes of Prof. N. Wermes

Hermann Kolanoski Norbert Wermes

Teilchendetektoren