Searching for Gravitational Waves in LIGO Data Lecture 3

Astrophysical Sources of Gravitational Radiation

Main LIGO-Virgo Searches

Gravitational Wave Transients Searches
1.1 Compact Binary Coalescences
1.2 Generic Transients

2. Persistent Gravitational Wave Searches2.1 Stochastic Background2.2 Spinning Neutron Stars

Data Centers for Searches

1.1 Compact Binary Coalescences

Dynamical Spacetime

Courtesy: SXS Collaboration

Matched-Filter Searches

Formal Definition of Matched Filter

Cross-correlate data with template, weighted by detector noise:

$$Z(t) = A \int_{\infty}^{\infty} \frac{\tilde{s}(f)\tilde{h}^*(f)e^{2\pi i ft}}{S_n(f)} df$$

Cross-correlate template with template, weighted by detector noise:

$$\sigma^2 = 2 \int_0^\infty \frac{\tilde{h}(f)\tilde{h}^*(f)}{S_n(f)} df$$

Normalize output of optimal filter:

$$\rho(t) = \frac{|Z(t)|}{\sigma}$$

Signal-based Vetoes

Time-frequency Spectrograms: Glitches versus Signals

Messick, et al, arXiv 1604.04324

Likelihood Parameters

Estimating the Background

Two Methods 1. Time-shift 2. Non-coincident Triggers

The Time-shift Method

Determine the rate by which detector noise produces an event with a detection statistic value equal to or higher than the candidate event.

The Time-shift Method

The Time-shift Method

Background Noise Model

 $\ln P(\text{SNR}, \chi^2/\text{SNR}^2|\text{noise})$ in L1

Signal Model

 $\ln P(\chi^2/\mathrm{SNR}^2|\mathrm{SNR},\mathrm{signal})$ in L1

Evolution of Noise Model with Mass

The search background is calculated separately for each mass and chi bin.

The Problem with the Timeshift Method

For a strong signal, the timeshift method is very unlikely to ever produce a timeshift coincidence at the same level of significance or higher.

1.2 Generic Transients

Burst Sources of Gravitational Waves

09/1994 I987a debris evolution animation

Transient GW astronomy using minimal assumptions. Sources could include:

- core collapse SN
- merger phase of binary compact objects
- NS instabilities
- accretion disk instabilities
- fall back accretion, cosmic string cusps/kinks
- unexpected...

Burst Search Method

Coherent excess power search in different detectors.

Require coincidence but do not enforce any particular time-frequency or phase evolution.

Search in time windows covering 10 ms-1000s.

Search in frequency bands covering 20Hz-5000Hz.

Burst Search Method

Some examples of excess power in the timefrequency domain:

2.1 Stochastic Background

What is a stochastic background?

- Stochastic (random) background of gravitational radiation
- Can arise from superposition of large number of unresolved GW sources
 - 1. Cosmological origin
 - 2. Astrophysical origin
- Strength of background measured as gravitational wave energy density $\rho_{\rm GW}$

Cosmic Microwave Background

- 1965 Penzias and Wilson accidently discovered Cosmic Microwave Background (CMB), leftover radiation from 380,000 years Big Bang
- 1978 awarded Nobel prize

- CMB as seen by Planck, an ESA observatory
- Wavelengths of photons are greatly redshifted (1mm)
- Effective temperature ~ 2.7K
- Can be detected by far-infrared and radio telescopes

GW spectrum:
$$\Omega_{\rm GW}(f) = \frac{f}{\rho_c} \frac{\mathrm{d}\rho_{\rm GW}}{\mathrm{d}f}$$

Critical energy density of universe: $\rho_c = \frac{3c^2H_0^2}{8\pi G}$

Big-Bang-Nucleosynthesis:

abundances of light nuclei produced

Cosmic Microwave Background Measurements: structure of CMB and matter power spectra

Inflation: measuring GWs can test for "stiffness" in early universe

Models of Cosmic Strings: topological defects in early universe

Astrophysical Gravitational Wave Backgrounds

- Produced by an extremely large number of weak, independent, and unresolved gravity-wave sources
 - Binary black holes and/or neutron stars
 - Supernovae
 - White dwarf binaries

For example, the expected contribution from double white dwarfs for LISA

Astrophysical Gravitational Wave Backgrounds

Detecting Stochastic Backgrounds

Cross-correlation of two interferometers' data streams multiplied by a filter function:

$$Y = \int_{-\infty}^{+\infty} df \int_{-\infty}^{+\infty} df' \delta_T (f - f') \tilde{s}_1(f)^* \tilde{s}_2(f') \tilde{Q}(f')$$

Detecting Stochastic Backgrounds

The filter function has the form:

$$\tilde{Q}(f) = N \frac{\gamma(f)\Omega_{\rm GW}(f)H_0^2}{f^3 P_1(f)P_2(f)}$$

overlap reduction function: $\gamma(f)$

power law template for GW spectrum: $\Omega_{\rm GW}(f) = \Omega_{\alpha} \left(f/100 \, {\rm Hz} \right)^{\alpha}$ present value of Hubble parameter: H_0

noise in detector 1: $P_1(f)$

noise in detector 2: $P_2(f)$

Purpose: Enhance SNR at frequencies where signal is strong and suppress SNR at frequencies where detector noise is large.

Overlap Reduction Function

Signal in two detectors will not be exactly the same because: i) time delay between detectors ii) non-alignment of detector

2.2 Spinning Neutron Stars

Continuous Gravitational Wave Searches

Non-axisymmetric rotating neutron stars; asymmetry could arise from:

- equatorial ellipticity (mm-high mountain) $f_{\rm GW}=2f_{\rm rot}$
- free precession around rotation axis
- excitation of long-lasting oscillations
- deformation due to matter accretion

Continuous Gravitational Wave Searches

Continuous signal with $h \propto \epsilon$ $SNR \propto \frac{h}{\sqrt{S_n}} \sqrt{T}$

Equatorial ellipticity $\epsilon = \frac{I_{XX} - I_{YY}}{I_{ZZ}}$

Maximum Deformations

 $\epsilon < 10^{-5}$ Normal Neutron Star $\epsilon < 10^{-3}$ Hybrid Neutron Star $\epsilon < 10^{-1}$ Extreme Quark Star

Complications with "Continuous" Waves

Nearly monochromatic, continuous signal but could have:

- relative velocity between source/detector (Doppler Effect)
- amplitude modulation due to antenna sensitivity of detector
- frequency and phase evolution

Blind Continuous Gravitational Wave Searches

Break up data into segments and Fourier transform each segment:

Search over parameter space of angles to source, spindown parameters, etc.

Blind Continuous Gravitational Wave Searches

Keep frequency-time bins where power exceeds a given threshold:

 ρ_{th}

Use pattern recognition to see if some of the bins fall along a curve:

Frequency

Einstein@home

https://einsteinathome.org

Einstein@Home uses your computer's idle time to search for weak astrophysical signals from spinning neutron stars (often called pulsars) using data from the LIGO gravitational-wave detectors, the Arecibo radio telescope, and the Fermi gamma-ray satellite.

Einstein@Home volunteers have already discovered about fifty new neutron stars, and we hope to find many more.