Pixel TPC simulation and reconstruction

Kees Ligtenberg, Peter Kluit, Jan Timmermans

ILD Software and Technical Meeting Lyon

25 April 2017

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 1 / 21

<ロト < 同ト < 三ト < 三ト < 三日 < つへの</p>

Outline

1 Introduction

2 SimulationPads

- Pixels

- Pads
- Pixels

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 2 / 21

三日 のへの

イロト イポト イヨト イヨト

Readout of the ILD TPC

Baseline TPC endplate

- Micromegas or GEM amplification
- $\bullet\,$ Readout with $\simeq 6 mm \, \times 1 mm$ sized pads

Endplate with timepix3 chip with integrated grid under development

- Integrated amplification grid
- Readout with a 256 \times 256 grid of 55 $\mu{\rm m}$ \times 55 $\mu{\rm m}$ pixels
- New timepix3 chip offers improved time resolution and data-acquisition

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

▶ < 돌 ▶ 돌|= ∽ < ↔ 25 April 2017 3 / 21

Simulation of pads within ilcsoft version 01-17-09, ILD_o1_v5

Volumes are organised as tube shaped layers, there are no pad columns

- Detector is described by DD4HEP geometry
- Pads have ideal 100% coverage
- Geant4 processes interactions of particle(s) from gun or event
- Single hit in TPC is deposited if energy is above threshold (32eV) in a single pad. Position of pad centre crossing is recorded
- Diffusion and hit resolution is simulated by smearing the hits by the expected resolution in $r\phi$ and z directions

Sar

Simulation of pixels

- Pixels are described by the same cylindrical volumes in DD4HEP
- Pixels also have ideal 100% coverage
- Multiple hits per row can be deposited
- In order to simulate diffusion, hits are smeared transverse to track in x, y and z directions
- Interpolate the track with a parabola over a volume of 0.99 mm (18 pixel rows)

Pixel TPC simulation and reconstruction

25 April 2017 5 / 21

Distribution of hits along the track

- Ionization in gas follows roughly a Landau distribution
- Approximate by a combination of a Poisson and a triangle (for now)

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 6 / 21

Pad simulation of a 700 MeV muon

Simulated pad hits are only at layer centre crossing

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 7 / 21

Sac

Pixel simulation of a 700 MeV muon

Interpolated pixel hits are placed everywhere along the track

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 8 / 21

Simulation of pad hits compared to pixel hits

Pad hits	Pixel hits
6 mm imes 1 mm	$55 \mu { m m} imes 55 \mu { m m}$
Exactly one hit per layer	Multiple or no hits per layer
22 electrons per hit	1 electron per hit
Only diffusion in $r\phi$ and z	Diffusion in x, y and z
${\sim}200$ hits per track	${\sim}10$ 000 hits per track

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 9 / 21

-

Tracker hits

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 10 / 21

= = ~ ~ ~

-

-

- Seed finding
 - Uses nearest neighbour clustering by distance in a pad row range of 15 rows

Seeds

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 10 / 21

Seed fit and extended

- Seed finding
 - Uses nearest neighbour clustering by distance in a pad row range of 15 rows
- ② Fit track to seeds
 - use first, middle and last hit to initialise track parameters
- ③ Extend track inwards (and outwards)
 - Uses Kalman filter (Kaltest) in MarlinTrk

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 10 / 21

Track fit

- Seed finding
 - Uses nearest neighbour clustering by distance in a pad row range of 15 rows
- ② Fit track to seeds
 - use first, middle and last hit to initialise track parameters
- ③ Extend track inwards (and outwards)
 - Uses Kalman filter (Kaltest) in MarlinTrk
- ④ Merge split segments

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 10 / 21

Fit tracks by Extended Kalman filter

Fit track by an Extended Kalman Filter: a recursive fitting algorithm working in steps:

- Predict state at next site using propagator $\boldsymbol{a}_k^{k-1} = \boldsymbol{f}_k(\boldsymbol{a}_k)$
 - \boldsymbol{a}_k contains track parameters $(\boldsymbol{d}_{\rho}, \phi_0, \kappa, \boldsymbol{d}_z, \tan \lambda)$
- Update with measurement m_k using state-to-measurement projector $h_k(a_k^{k-1})$
 - Add hit and update if $\chi^2 < \chi^2_{\text{threshold}}(=35)$
 - m_k are coordinates of a cylindrical surface $(r\phi, z)$

ヘロット 4 目 ト 4 日 ト 4 日 ト 4 日 ト クタマ

Issues when applying pad-track-reconstruction to pixel-hits

- Seed finding: CPU time of nearest neighbour clustering scales as *O*(*N*²)
 Unsuitable for many thousands of pixel hits
- Track fit: initialise Kalman filter with first, middle and last hit 3 hits do not fix the track tight enough, first hits can pull the track fit in the wrong direction

• Hits restricted to a cylindrical surface For pixel another representation is more suitable

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 12 / 21

EL NOR

Track finding for pixel TPC

- Perform clustering by ϕ (Hough-transform like)
 - Fill histogram of hits by ϕ in pad row range of 750 pixel rows
 - ► Maximum bin is cluster with track candidate if more than 200 hits
 - construct a straight line from the detector center to the average position
 - Cut hits on distance from this line (10mm in $r\phi$ and 3mm rz)
 - initialise track fit with this line

ヘロット 4 目 ト 4 日 ト 4 日 ト 4 日 ト クタマ

Track fitting for pixel hits

Define alternative measure with \boldsymbol{m}_k as a function of \boldsymbol{a}_k^{k-1}

$$m{m}_k(m{a}_k^{k-1}) = egin{pmatrix} d_0 \ z \end{pmatrix} = egin{pmatrix} \Delta x \sin(\phi_{ ext{track}}) - \Delta y \cos(\phi_{ ext{track}})) \ Z_{ ext{hit}} + ext{tan} \lambda(\Delta x \cos(\phi_{ ext{track}}) + \Delta y \sin(\phi_{ ext{track}}))), \end{pmatrix}$$

The distance to the track d_0 better represents the measurement

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 14 / 21

= = 990

Fit of straight track

50 GeV muon

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 15 / 21

・ロト < 団ト < 団ト < 団ト < ロト

Fit of curled track

 $1 \ {\rm GeV}$ muon without energy loss

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 16 / 21

三日 のへで

イロト イロト イヨト イヨト

Fit of curled track

 $1 \ {\rm GeV}$ muon without energy loss

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 17 / 21

Momentum resolution from track fit

50 GeV muon

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 18 / 21

Pull of $1/p_T$ from 8 × 1000 tracks of 50 GeV muons

Pixel TPC simulation and reconstruction

25 April 2017 19 / 21

1

Distortion of σ of pull

 p_T difference between input and fit to unsmeared hits is ~ 40 MeV σ of pull is increased by precision settings or a bug in the code

Conclusion

- A muon track was successfully simulated and reconstructed with a pixel readout
- First estimates of the pixel readout performance show a factor $\sim 2-6$ improvement over to the pad readout
- Next steps:
 - Fix pull of track fit
 - Do delta rejection using an algorithm
 - Continue studies of performance of pixel readout
 - Investigate dE/dx performance
 - ▶ Implement an endplate layout with more realistic coverage (~ 80%)
 - Simulate and reconstruct physics events with a pixel readout

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 21 / 21

Momentum resolution from track fit covariance matrix ⁵⁰ GeV muon

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 22 / 21

Extended Kalman filter

Recursive fitting algorithm to find state vector \boldsymbol{a}_k and covariance \boldsymbol{C}_k at site k from a series of measurements \boldsymbol{m}_k by procedure:

Predict

•
$$\boldsymbol{a}_k^{k-1} = \boldsymbol{f}_{k-1}(\boldsymbol{a}_{k-1})$$
, where $\boldsymbol{f}_k(\boldsymbol{a}_k)$ is the state-propagator

- ► $\boldsymbol{C}_{k}^{k-1} = \boldsymbol{F}_{k-1} \boldsymbol{C}_{k-1} \boldsymbol{F}_{k-1}^{T} + \boldsymbol{Q}_{k-1}$, where $\boldsymbol{F}_{k-1} = \frac{\partial \boldsymbol{f}_{k-1}}{\partial \boldsymbol{a}_{k-1}}$, and \boldsymbol{Q}_{k} the covariance of the process noise
- Update

See: Keisuke Fujii, Extended Kalman Filter, The AFCA-SIM-J Group

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 23 / 21

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Parabolic interpolation

The position $\mathbf{x}(t)$ between the points \mathbf{x}_1 and \mathbf{x}_2 is parametrised as a function of $0 \ge t \ge 1$

$$\mathbf{x}(t) = \mathbf{x}_1 + t(\mathbf{x}_2 - \mathbf{x}_1) + 4t(1 - t)\Delta \mathbf{s},$$
 (1)

where $\Delta \boldsymbol{s}$ is the deflection midway given by

$$|\Delta \boldsymbol{s}| = \frac{|\boldsymbol{x}_2 - \boldsymbol{x}_1|}{4} \sin(\Delta \phi_{12}/2).$$
(2)

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 24 / 21

Diffusion and hit resolution is simulated by smearing the hits by the expected resolution in TPCDigiProcessor

$$a = \sigma_{r\phi0}^2 + \sigma_{\phi0}^2 \sin^2(\phi_{pad})$$
$$b = \frac{D_{r\phi}^2}{N_{Eff}} \sin(\theta_{pad}) \left(\frac{6 \text{ mm}}{h_{pad}}\right) \left(\frac{4.0 \text{ T}}{B}\right)$$
$$\sigma_{r\phi} = \sqrt{a + bL}$$
$$\sigma_z = \sqrt{\sigma_{z0}^2 + D_z^2 L}$$

$$\sigma_{r\phi 0} = 0.05 \text{ mm}$$
 $\sigma_{z0} = 0.4 \text{ mm}$ $\sigma_{\phi 0} = 0.9 \text{ mm}$
 $D_{r\phi} = 0.025 \text{mm} / \sqrt{\text{cm}}$ $D_z = 0.08 \text{mm} / \sqrt{\text{cm}}$ $N_{\text{Eff}} = 22.$

Kees Ligtenberg (Nikhef)

,

Pixel TPC simulation and reconstruction

25 April 2017 25 / 21

・ロト・4日ト・4日ト・4日ト・4日ト

Simulating 55 \times 55 $\mu {\rm m}^2$ pixels as small pads costs too much processing time

Processing time increases rapidly at smaller pixel sizes

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 26 / 21

Distribution of hits along the track

Distribute hits with a $P(N_{\text{hits}} = N) \simeq 0.1 \cdot \frac{2N}{N_{\text{total}}^2}$ chance to deposit multiple hits

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 27 / 21

Track fitting for pads

Track fit: For curled (low momentum) tracks, cluster inward and outward parts separately and merge

Pixel TPC simulation and reconstruction

25 April 2017 28 / 21

Curled segements in schematic pad layout

Kees Ligtenberg (Nikhef)

Pixel TPC simulation and reconstruction

25 April 2017 29 / 21

-

Image: A match a ma

= 990