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Abstract

We derive closed-form expressions for the normalized spatial cross–correlations of displace-
ment components in a homogeneous isotropic medium for three scenarios: (i) pure P-wave
(longitudinal) plane-wave fields, (ii) pure S-wave (transverse) plane-wave fields with random
polarization in the transverse plane, and (iii) an incoherent mixture of P and S fields. The
results are expressed in terms of spherical Bessel functions j0 and j2 and are directly applicable
for validating numerical simulations of isotropic body-wave ambient fields.

1 Definitions and assumptions

Let u(x, ω) be the frequency-domain displacement field at angular frequency ω with implicit time
dependence e−iωt. Consider two receivers separated by

r = x2 − x1, d = ∥r∥, r̂ = r/d. (1)

Define the (cross-)spectral density tensor

Cij(r;ω) = ⟨ui(x1, ω)u
∗
j (x2, ω)⟩, (2)

where ⟨·⟩ denotes an ensemble average (over directions, phases, and realizations).
We will focus on the normalized (dimensionless) correlation (often called coherence in this

context):

CCij(r;ω) ≡
Cij(r;ω)√

Cii(0;ω)Cjj(0;ω)
. (3)

For an isotropic homogeneous field, Cii(0;ω) is the same at both receivers, so the denominator
reduces to Cii(0;ω) if i = j, and (3) becomes

CCii(r;ω) =
Cii(r;ω)

Cii(0;ω)
. (4)

Isotropic plane-wave field model. We represent the field as a superposition of plane waves
with random phases and isotropically distributed propagation directions n̂:

u(x, ω) =

∫
dΩn̂ A(n̂, ω)p(n̂, ω) eik n̂·x, (5)

where k = ω/v is the wavenumber for the relevant wave type, and p is the polarization vector. For
P waves, p = n̂; for S waves, p ⊥ n̂.
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We assume (i) different directions are uncorrelated, (ii) random phases remove cross-terms, and
(iii) amplitudes are direction-independent in expectation. Under these assumptions, the correlation
tensor reduces (up to an overall factor) to an angular average of the form

Cij(r) ∝
∫

dΩn̂

4π
Qij(n̂) e

ik n̂·r, (6)

where Qij depends on wave type and polarization statistics.

2 Key angular identities

By isotropy we may align coordinates so that r̂ is the polar axis. Then

n̂ · r̂ = µ = cos θ, n̂ · r = dµ, eikn̂·r = eikdµ, (7)

and dΩ = sin θ dθ dϕ.

2.1 Plane-wave expansion and orthogonality

Use the plane-wave expansion in Legendre polynomials:

eixµ =
∞∑
ℓ=0

(2ℓ+ 1)iℓjℓ(x)Pℓ(µ), (8)

where jℓ are spherical Bessel functions and Pℓ are Legendre polynomials.
Using orthogonality, ∫ 1

−1
Pℓ(µ)Pm(µ) dµ =

2

2ℓ+ 1
δℓm, (9)

one obtains the identity ∫ 1

−1
Pℓ(µ) e

ixµ dµ = 2iℓjℓ(x). (10)

2.2 The needed scalar integrals

Define x ≡ kd.

Zeroth-order integral.

I0(x) ≡
∫

dΩ

4π
eixµ =

1

2

∫ 1

−1
eixµ dµ = j0(x). (11)

Second-moment integral. We need ⟨µ2eixµ⟩. Use

µ2 =
1

3
+

2

3
P2(µ), P2(µ) =

1

2
(3µ2 − 1). (12)

Then ∫ 1

−1
µ2eixµ dµ =

1

3

∫ 1

−1
eixµ dµ+

2

3

∫ 1

−1
P2(µ)e

ixµ dµ (13)

=
1

3
· 2j0(x) +

2

3
· 2i2j2(x) =

2

3
j0(x)−

4

3
j2(x). (14)
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Averaging over solid angle gives∫
dΩ

4π
µ2eixµ =

1

2

∫ 1

−1
µ2eixµ dµ =

1

3
j0(x)−

2

3
j2(x). (15)

Complementary integral for 1− µ2. Since 1− µ2 = sin2 θ,∫
dΩ

4π
(1− µ2)eixµ = I0(x)− (15) = j0(x)−

(
1

3
j0(x)−

2

3
j2(x)

)
(16)

=
2

3
j0(x) +

2

3
j2(x). (17)

3 Pure P-wave field

For a P wave, polarization is longitudinal:

p = n̂, Q
(P )
ij (n̂) = n̂in̂j . (18)

Thus

C
(P )
ij (r) ∝

∫
dΩ

4π
n̂in̂j e

ixµ. (19)

3.1 Tensor reduction by symmetry

By isotropy about r̂, the integral must be of the form∫
dΩ

4π
n̂in̂j e

ixµ = A(x)δij +B(x)r̂ir̂j . (20)

Determine A,B by contractions.

Trace. Using n̂in̂i = 1,

3A(x) +B(x) =

∫
dΩ

4π
eixµ = j0(x). (21)

Projection along r̂.

A(x) +B(x) = r̂ir̂j

∫
dΩ

4π
n̂in̂j e

ixµ =

∫
dΩ

4π
(n̂ · r̂)2eixµ =

∫
dΩ

4π
µ2eixµ. (22)

Using (15),

A(x) +B(x) =
1

3
j0(x)−

2

3
j2(x). (23)

Solving yields

A(x) =
1

3

(
j0(x) + j2(x)

)
, B(x) = −j2(x), (24)

so the P-wave tensor is

C
(P )
ij (r) ∝ 1

3

(
j0 + j2

)
δij − j2 r̂ir̂j . (25)
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3.2 Component form and normalization

Choose r̂ = x̂ = (1, 0, 0) (receivers separated along x). Then

C(P )
xx (d) ∝ A+B =

1

3

(
j0 − 2j2

)
, (26)

C(P )
yy (d) ∝ A =

1

3

(
j0 + j2

)
, (27)

C(P )
zz (d) ∝ A =

1

3

(
j0 + j2

)
, (28)

where jℓ ≡ jℓ(x) and x = kd.
At zero separation d → 0, j0(0) = 1, j2(0) = 0, hence

C(P )
xx (0) = C(P )

yy (0) = C(P )
zz (0) ∝ 1

3
. (29)

Using the normalized definition (4) gives the familiar pure-P results:

CC(P )
xx (d) = j0(x)− 2j2(x), CC(P )

yy (d) = CC(P )
zz (d) = j0(x) + j2(x). (30)

4 Pure S-wave field with random transverse polarization

For S waves, p ⊥ n̂ and polarization is random in the plane transverse to n̂. We will show
(Appendix A) that 〈

pipj
〉
⊥ =

1

2

(
δij − n̂in̂j

)
. (31)

Thus in (6),

Q
(S)
ij (n̂) =

1

2

(
δij − n̂in̂j

)
, (32)

and

C
(S)
ij (r) ∝ 1

2

[
δij

∫
dΩ

4π
eixµ −

∫
dΩ

4π
n̂in̂je

ixµ

]
. (33)

Using I0 = j0 and the P-wave tensor integral (25),

C
(S)
ij (r) ∝ 1

2

[
δijj0 −

(
1

3
(j0 + j2)δij − j2r̂ir̂j

)]
(34)

=

(
1

3
j0 −

1

6
j2

)
δij +

1

2
j2 r̂ir̂j . (35)

4.1 Component form and normalization

With r̂ = x̂,

C(S)
xx (d) ∝

(
1

3
j0 −

1

6
j2

)
+

1

2
j2 =

1

3

(
j0 + j2

)
, (36)

C(S)
yy (d) ∝ 1

3
j0 −

1

6
j2 =

1

3

(
j0 −

1

2
j2

)
, (37)

C(S)
zz (d) ∝ 1

3

(
j0 −

1

2
j2

)
. (38)
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At d → 0, again C
(S)
ii (0) ∝ 1/3, hence the normalized S-wave results are:

CC(S)
xx (d) = j0(x) + j2(x), CC(S)

yy (d) = CC(S)
zz (d) = j0(x)−

1

2
j2(x). (39)

5 Incoherent mixture of P and S fields

Assume the total field is a sum of statistically independent P and S contributions:

u = u(P ) + u(S), ⟨u(P )
i u

(S)∗
j ⟩ = 0. (40)

Then the total correlation tensor is a power-weighted sum:

C
(mix)
ij (d) = EP C

(P )
ij (d) + ES C

(S)
ij (d), (41)

where EP and ES are proportional to the mean squared amplitudes (energy/variance) of the re-
spective parts. Define the mixture ratio

p ≡ ES

EP
. (42)

5.1 Normalization of the mixture

For each of the pure fields we found Cii(0) ∝ 1/3. Therefore

C
(mix)
ii (0) = EP

1

3
+ ES

1

3
=

EP + ES

3
. (43)

Hence the normalized component correlations are simply the weighted average of normalized pure-
field correlations:

CC
(mix)
ii (d) =

EP CC
(P )
ii (d) + ES CC

(S)
ii (d)

EP + ES
=

CC
(P )
ii (d) + pCC

(S)
ii (d)

1 + p
. (44)

5.2 Final mixture formulas (baseline along x)

Let xP = kPd = (ω/vP )d and xS = kSd = (ω/vS)d, and denote j
(P )
ℓ ≡ jℓ(xP ) and j

(S)
ℓ ≡ jℓ(xS).

Using the pure-field results in (44):

CC(mix)
xx (d) =

(
j
(P )
0 − 2j

(P )
2

)
+ p

(
j
(S)
0 + j

(S)
2

)
1 + p

(45)

CC(mix)
yy (d) = CC(mix)

zz (d) =

(
j
(P )
0 + j

(P )
2

)
+ p

(
j
(S)
0 − 1

2j
(S)
2

)
1 + p

(46)

Special cases.

• Pure P (p = 0): CCxx = j
(P )
0 − 2j

(P )
2 , CCyy = CCzz = j

(P )
0 + j

(P )
2 .

• Pure S (p → ∞): CCxx = j
(S)
0 + j

(S)
2 , CCyy = CCzz = j

(S)
0 − 1

2j
(S)
2 .
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• Equal energies (p = 1) gives the mixture used in many numerical tests when P and S source
counts and amplitude statistics match.

• Equipartition in the classical elastic sense corresponds to a specific energy partition across
wave types and polarizations; in one common idealized limit the directional anisotropy cancels
and CCxx ≈ CCyy ≈ CCzz ≈ j0.

6 Mapping to arbitrary receiver orientation

The preceding component formulas assumed r̂ = x̂. For an arbitrary receiver separation direction
r̂, the tensor forms (25) and (35) may be used directly. Alternatively, for any separation direction,
the parallel component is the component along r̂ and the two perpendicular components lie in the
orthogonal plane.

A Polarization average for S waves

For a given propagation direction n̂, an S-wave polarization vector p lies in the plane orthogonal
to n̂:

p · n̂ = 0, ∥p∥ = 1.

Assume p is uniformly distributed over that transverse plane (random “mix angle”).
Let Pij be the projector onto the plane orthogonal to n̂:

Pij = δij − n̂in̂j . (47)

This projector satisfies Pijn̂j = 0 and tr(P ) = 2 (two transverse degrees of freedom).
Uniformity in the transverse plane implies the second moment ⟨pipj⟩⊥ must be proportional to

Pij :
⟨pipj⟩⊥ = αPij . (48)

Determine α by taking the trace:

⟨pipi⟩⊥ = 1 = α tr(P ) = α · 2, (49)

so α = 1/2. Therefore,

⟨pipj⟩⊥ =
1

2
(δij − n̂in̂j) . (50)

This is the polarization tensor used in the main text for isotropic S-wave fields with random
transverse polarizations.

B Useful spherical Bessel functions

The first two spherical Bessel functions appearing in the correlation structure are

j0(x) =
sinx

x
, (51)

j2(x) =

(
3

x3
− 1

x

)
sinx− 3

x2
cosx. (52)

They satisfy j0(0) = 1 and j2(0) = 0, ensuring CCii(0) = 1 after normalization.
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