

Cross–Correlation Structure of Isotropic Body–Wave Fields (P, S, and P–S Mixtures)

Soumen Koley
University of Liege

Abstract

We derive closed-form expressions for the normalized spatial cross-correlations of displacement components in a homogeneous isotropic medium for three scenarios: (i) pure P-wave (longitudinal) plane-wave fields, (ii) pure S-wave (transverse) plane-wave fields with random polarization in the transverse plane, and (iii) an incoherent mixture of P and S fields. The results are expressed in terms of spherical Bessel functions j_0 and j_2 and are directly applicable for validating numerical simulations of isotropic body-wave ambient fields.

1 Definitions and assumptions

Let $\mathbf{u}(\mathbf{x}, \omega)$ be the frequency-domain displacement field at angular frequency ω with implicit time dependence $e^{-i\omega t}$. Consider two receivers separated by

$$\mathbf{r} = \mathbf{x}_2 - \mathbf{x}_1, \quad d = \|\mathbf{r}\|, \quad \hat{\mathbf{r}} = \mathbf{r}/d. \quad (1)$$

Define the (cross-)spectral density tensor

$$C_{ij}(\mathbf{r}; \omega) = \langle u_i(\mathbf{x}_1, \omega) u_j^*(\mathbf{x}_2, \omega) \rangle, \quad (2)$$

where $\langle \cdot \rangle$ denotes an ensemble average (over directions, phases, and realizations).

We will focus on the *normalized* (dimensionless) correlation (often called coherence in this context):

$$\text{CC}_{ij}(\mathbf{r}; \omega) \equiv \frac{C_{ij}(\mathbf{r}; \omega)}{\sqrt{C_{ii}(\mathbf{0}; \omega) C_{jj}(\mathbf{0}; \omega)}}. \quad (3)$$

For an isotropic homogeneous field, $C_{ii}(\mathbf{0}; \omega)$ is the same at both receivers, so the denominator reduces to $C_{ii}(\mathbf{0}; \omega)$ if $i = j$, and (3) becomes

$$\text{CC}_{ii}(\mathbf{r}; \omega) = \frac{C_{ii}(\mathbf{r}; \omega)}{C_{ii}(\mathbf{0}; \omega)}. \quad (4)$$

Isotropic plane-wave field model. We represent the field as a superposition of plane waves with random phases and isotropically distributed propagation directions $\hat{\mathbf{n}}$:

$$\mathbf{u}(\mathbf{x}, \omega) = \int d\Omega_{\hat{\mathbf{n}}} A(\hat{\mathbf{n}}, \omega) \mathbf{p}(\hat{\mathbf{n}}, \omega) e^{ik\hat{\mathbf{n}} \cdot \mathbf{x}}, \quad (5)$$

where $k = \omega/v$ is the wavenumber for the relevant wave type, and \mathbf{p} is the polarization vector. For P waves, $\mathbf{p} = \hat{\mathbf{n}}$; for S waves, $\mathbf{p} \perp \hat{\mathbf{n}}$.

We assume (i) different directions are uncorrelated, (ii) random phases remove cross-terms, and (iii) amplitudes are direction-independent in expectation. Under these assumptions, the correlation tensor reduces (up to an overall factor) to an angular average of the form

$$C_{ij}(\mathbf{r}) \propto \int \frac{d\Omega_{\hat{n}}}{4\pi} Q_{ij}(\hat{n}) e^{ik\hat{n}\cdot\mathbf{r}}, \quad (6)$$

where Q_{ij} depends on wave type and polarization statistics.

2 Key angular identities

By isotropy we may align coordinates so that $\hat{\mathbf{r}}$ is the polar axis. Then

$$\hat{n} \cdot \hat{r} = \mu = \cos \theta, \quad \hat{n} \cdot \mathbf{r} = d\mu, \quad e^{ik\hat{n}\cdot\mathbf{r}} = e^{ikd\mu}, \quad (7)$$

and $d\Omega = \sin \theta d\theta d\phi$.

2.1 Plane-wave expansion and orthogonality

Use the plane-wave expansion in Legendre polynomials:

$$e^{ix\mu} = \sum_{\ell=0}^{\infty} (2\ell+1) i^{\ell} j_{\ell}(x) P_{\ell}(\mu), \quad (8)$$

where j_{ℓ} are spherical Bessel functions and P_{ℓ} are Legendre polynomials.

Using orthogonality,

$$\int_{-1}^1 P_{\ell}(\mu) P_m(\mu) d\mu = \frac{2}{2\ell+1} \delta_{\ell m}, \quad (9)$$

one obtains the identity

$$\int_{-1}^1 P_{\ell}(\mu) e^{ix\mu} d\mu = 2i^{\ell} j_{\ell}(x). \quad (10)$$

2.2 The needed scalar integrals

Define $x \equiv kd$.

Zeroth-order integral.

$$I_0(x) \equiv \int \frac{d\Omega}{4\pi} e^{ix\mu} = \frac{1}{2} \int_{-1}^1 e^{ix\mu} d\mu = j_0(x). \quad (11)$$

Second-moment integral. We need $\langle \mu^2 e^{ix\mu} \rangle$. Use

$$\mu^2 = \frac{1}{3} + \frac{2}{3} P_2(\mu), \quad P_2(\mu) = \frac{1}{2}(3\mu^2 - 1). \quad (12)$$

Then

$$\int_{-1}^1 \mu^2 e^{ix\mu} d\mu = \frac{1}{3} \int_{-1}^1 e^{ix\mu} d\mu + \frac{2}{3} \int_{-1}^1 P_2(\mu) e^{ix\mu} d\mu \quad (13)$$

$$= \frac{1}{3} \cdot 2j_0(x) + \frac{2}{3} \cdot 2i^2 j_2(x) = \frac{2}{3} j_0(x) - \frac{4}{3} j_2(x). \quad (14)$$

Averaging over solid angle gives

$$\int \frac{d\Omega}{4\pi} \mu^2 e^{ix\mu} = \frac{1}{2} \int_{-1}^1 \mu^2 e^{ix\mu} d\mu = \frac{1}{3} j_0(x) - \frac{2}{3} j_2(x). \quad (15)$$

Complementary integral for $1 - \mu^2$. Since $1 - \mu^2 = \sin^2 \theta$,

$$\int \frac{d\Omega}{4\pi} (1 - \mu^2) e^{ix\mu} = I_0(x) - (15) = j_0(x) - \left(\frac{1}{3} j_0(x) - \frac{2}{3} j_2(x) \right) \quad (16)$$

$$= \frac{2}{3} j_0(x) + \frac{2}{3} j_2(x). \quad (17)$$

3 Pure P-wave field

For a P wave, polarization is longitudinal:

$$\mathbf{p} = \hat{\mathbf{n}}, \quad Q_{ij}^{(P)}(\hat{n}) = \hat{n}_i \hat{n}_j. \quad (18)$$

Thus

$$C_{ij}^{(P)}(\mathbf{r}) \propto \int \frac{d\Omega}{4\pi} \hat{n}_i \hat{n}_j e^{ix\mu}. \quad (19)$$

3.1 Tensor reduction by symmetry

By isotropy about \hat{r} , the integral must be of the form

$$\int \frac{d\Omega}{4\pi} \hat{n}_i \hat{n}_j e^{ix\mu} = A(x) \delta_{ij} + B(x) \hat{r}_i \hat{r}_j. \quad (20)$$

Determine A, B by contractions.

Trace. Using $\hat{n}_i \hat{n}_i = 1$,

$$3A(x) + B(x) = \int \frac{d\Omega}{4\pi} e^{ix\mu} = j_0(x). \quad (21)$$

Projection along \hat{r} .

$$A(x) + B(x) = \hat{r}_i \hat{r}_j \int \frac{d\Omega}{4\pi} \hat{n}_i \hat{n}_j e^{ix\mu} = \int \frac{d\Omega}{4\pi} (\hat{n} \cdot \hat{r})^2 e^{ix\mu} = \int \frac{d\Omega}{4\pi} \mu^2 e^{ix\mu}. \quad (22)$$

Using (15),

$$A(x) + B(x) = \frac{1}{3} j_0(x) - \frac{2}{3} j_2(x). \quad (23)$$

Solving yields

$$A(x) = \frac{1}{3} (j_0(x) + j_2(x)), \quad B(x) = -j_2(x), \quad (24)$$

so the P-wave tensor is

$$C_{ij}^{(P)}(\mathbf{r}) \propto \frac{1}{3} (j_0 + j_2) \delta_{ij} - j_2 \hat{r}_i \hat{r}_j. \quad (25)$$

3.2 Component form and normalization

Choose $\hat{r} = \hat{x} = (1, 0, 0)$ (receivers separated along x). Then

$$C_{xx}^{(P)}(d) \propto A + B = \frac{1}{3}(j_0 - 2j_2), \quad (26)$$

$$C_{yy}^{(P)}(d) \propto A = \frac{1}{3}(j_0 + j_2), \quad (27)$$

$$C_{zz}^{(P)}(d) \propto A = \frac{1}{3}(j_0 + j_2), \quad (28)$$

where $j_\ell \equiv j_\ell(x)$ and $x = kd$.

At zero separation $d \rightarrow 0$, $j_0(0) = 1$, $j_2(0) = 0$, hence

$$C_{xx}^{(P)}(0) = C_{yy}^{(P)}(0) = C_{zz}^{(P)}(0) \propto \frac{1}{3}. \quad (29)$$

Using the normalized definition (4) gives the familiar pure-P results:

$$\boxed{\text{CC}_{xx}^{(P)}(d) = j_0(x) - 2j_2(x), \quad \text{CC}_{yy}^{(P)}(d) = \text{CC}_{zz}^{(P)}(d) = j_0(x) + j_2(x).} \quad (30)$$

4 Pure S-wave field with random transverse polarization

For S waves, $\mathbf{p} \perp \hat{n}$ and polarization is random in the plane transverse to \hat{n} . We will show (Appendix A) that

$$\langle p_i p_j \rangle_\perp = \frac{1}{2}(\delta_{ij} - \hat{n}_i \hat{n}_j). \quad (31)$$

Thus in (6),

$$Q_{ij}^{(S)}(\hat{n}) = \frac{1}{2}(\delta_{ij} - \hat{n}_i \hat{n}_j), \quad (32)$$

and

$$C_{ij}^{(S)}(\mathbf{r}) \propto \frac{1}{2} \left[\delta_{ij} \int \frac{d\Omega}{4\pi} e^{ix\mu} - \int \frac{d\Omega}{4\pi} \hat{n}_i \hat{n}_j e^{ix\mu} \right]. \quad (33)$$

Using $I_0 = j_0$ and the P-wave tensor integral (25),

$$C_{ij}^{(S)}(\mathbf{r}) \propto \frac{1}{2} \left[\delta_{ij} j_0 - \left(\frac{1}{3}(j_0 + j_2) \delta_{ij} - j_2 \hat{r}_i \hat{r}_j \right) \right] \quad (34)$$

$$= \left(\frac{1}{3} j_0 - \frac{1}{6} j_2 \right) \delta_{ij} + \frac{1}{2} j_2 \hat{r}_i \hat{r}_j. \quad (35)$$

4.1 Component form and normalization

With $\hat{r} = \hat{x}$,

$$C_{xx}^{(S)}(d) \propto \left(\frac{1}{3} j_0 - \frac{1}{6} j_2 \right) + \frac{1}{2} j_2 = \frac{1}{3}(j_0 + j_2), \quad (36)$$

$$C_{yy}^{(S)}(d) \propto \frac{1}{3} j_0 - \frac{1}{6} j_2 = \frac{1}{3} \left(j_0 - \frac{1}{2} j_2 \right), \quad (37)$$

$$C_{zz}^{(S)}(d) \propto \frac{1}{3} \left(j_0 - \frac{1}{2} j_2 \right). \quad (38)$$

At $d \rightarrow 0$, again $C_{ii}^{(S)}(0) \propto 1/3$, hence the normalized S-wave results are:

$$\boxed{\text{CC}_{xx}^{(S)}(d) = j_0(x) + j_2(x), \quad \text{CC}_{yy}^{(S)}(d) = \text{CC}_{zz}^{(S)}(d) = j_0(x) - \frac{1}{2}j_2(x).} \quad (39)$$

5 Incoherent mixture of P and S fields

Assume the total field is a sum of statistically independent P and S contributions:

$$\mathbf{u} = \mathbf{u}^{(P)} + \mathbf{u}^{(S)}, \quad \langle u_i^{(P)} u_j^{(S)*} \rangle = 0. \quad (40)$$

Then the total correlation tensor is a power-weighted sum:

$$C_{ij}^{(mix)}(d) = E_P C_{ij}^{(P)}(d) + E_S C_{ij}^{(S)}(d), \quad (41)$$

where E_P and E_S are proportional to the mean squared amplitudes (energy/variance) of the respective parts. Define the mixture ratio

$$p \equiv \frac{E_S}{E_P}. \quad (42)$$

5.1 Normalization of the mixture

For each of the pure fields we found $C_{ii}(0) \propto 1/3$. Therefore

$$C_{ii}^{(mix)}(0) = E_P \frac{1}{3} + E_S \frac{1}{3} = \frac{E_P + E_S}{3}. \quad (43)$$

Hence the normalized component correlations are simply the weighted average of normalized pure-field correlations:

$$\text{CC}_{ii}^{(mix)}(d) = \frac{E_P \text{CC}_{ii}^{(P)}(d) + E_S \text{CC}_{ii}^{(S)}(d)}{E_P + E_S} = \frac{\text{CC}_{ii}^{(P)}(d) + p \text{CC}_{ii}^{(S)}(d)}{1 + p}. \quad (44)$$

5.2 Final mixture formulas (baseline along x)

Let $x_P = k_P d = (\omega/v_P)d$ and $x_S = k_S d = (\omega/v_S)d$, and denote $j_\ell^{(P)} \equiv j_\ell(x_P)$ and $j_\ell^{(S)} \equiv j_\ell(x_S)$.

Using the pure-field results in (44):

$$\boxed{\text{CC}_{xx}^{(mix)}(d) = \frac{(j_0^{(P)} - 2j_2^{(P)}) + p(j_0^{(S)} + j_2^{(S)})}{1 + p}} \quad (45)$$

$$\boxed{\text{CC}_{yy}^{(mix)}(d) = \text{CC}_{zz}^{(mix)}(d) = \frac{(j_0^{(P)} + j_2^{(P)}) + p(j_0^{(S)} - \frac{1}{2}j_2^{(S)})}{1 + p}} \quad (46)$$

Special cases.

- Pure P ($p = 0$): $\text{CC}_{xx} = j_0^{(P)} - 2j_2^{(P)}$, $\text{CC}_{yy} = \text{CC}_{zz} = j_0^{(P)} + j_2^{(P)}$.
- Pure S ($p \rightarrow \infty$): $\text{CC}_{xx} = j_0^{(S)} + j_2^{(S)}$, $\text{CC}_{yy} = \text{CC}_{zz} = j_0^{(S)} - \frac{1}{2}j_2^{(S)}$.

- Equal energies ($p = 1$) gives the mixture used in many numerical tests when P and S source counts and amplitude statistics match.
- Equipartition in the classical elastic sense corresponds to a specific energy partition across wave types and polarizations; in one common idealized limit the directional anisotropy cancels and $\text{CC}_{xx} \approx \text{CC}_{yy} \approx \text{CC}_{zz} \approx j_0$.

6 Mapping to arbitrary receiver orientation

The preceding component formulas assumed $\hat{r} = \hat{x}$. For an arbitrary receiver separation direction \hat{r} , the tensor forms (25) and (35) may be used directly. Alternatively, for any separation direction, the *parallel* component is the component along \hat{r} and the two *perpendicular* components lie in the orthogonal plane.

A Polarization average for S waves

For a given propagation direction \hat{n} , an S-wave polarization vector \mathbf{p} lies in the plane orthogonal to \hat{n} :

$$\mathbf{p} \cdot \hat{n} = 0, \quad \|\mathbf{p}\| = 1.$$

Assume \mathbf{p} is uniformly distributed over that transverse plane (random “mix angle”).

Let P_{ij} be the projector onto the plane orthogonal to \hat{n} :

$$P_{ij} = \delta_{ij} - \hat{n}_i \hat{n}_j. \quad (47)$$

This projector satisfies $P_{ij} \hat{n}_j = 0$ and $\text{tr}(P) = 2$ (two transverse degrees of freedom).

Uniformity in the transverse plane implies the second moment $\langle p_i p_j \rangle_{\perp}$ must be proportional to P_{ij} :

$$\langle p_i p_j \rangle_{\perp} = \alpha P_{ij}. \quad (48)$$

Determine α by taking the trace:

$$\langle p_i p_j \rangle_{\perp} = 1 = \alpha \text{tr}(P) = \alpha \cdot 2, \quad (49)$$

so $\alpha = 1/2$. Therefore,

$$\langle p_i p_j \rangle_{\perp} = \frac{1}{2} (\delta_{ij} - \hat{n}_i \hat{n}_j).$$

(50)

This is the polarization tensor used in the main text for isotropic S-wave fields with random transverse polarizations.

B Useful spherical Bessel functions

The first two spherical Bessel functions appearing in the correlation structure are

$$j_0(x) = \frac{\sin x}{x}, \quad (51)$$

$$j_2(x) = \left(\frac{3}{x^3} - \frac{1}{x} \right) \sin x - \frac{3}{x^2} \cos x. \quad (52)$$

They satisfy $j_0(0) = 1$ and $j_2(0) = 0$, ensuring $\text{CC}_{ii}(0) = 1$ after normalization.