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Abstract

We derive closed-form expressions for the normalized spatial cross—correlations of displace-
ment components in a homogeneous isotropic medium for three scenarios: (i) pure P-wave
(longitudinal) plane-wave fields, (ii) pure S-wave (transverse) plane-wave fields with random
polarization in the transverse plane, and (iii) an incoherent mixture of P and S fields. The
results are expressed in terms of spherical Bessel functions jy and j; and are directly applicable
for validating numerical simulations of isotropic body-wave ambient fields.

1 Definitions and assumptions

Let u(x,w) be the frequency-domain displacement field at angular frequency w with implicit time
dependence e~**. Consider two receivers separated by

r =X — Xi, d=|rl, r=r/d. (1)
Define the (cross-)spectral density tensor
Cij(r;w) = (ui(x1,w) uj(x2, w)), (2)

where (-) denotes an ensemble average (over directions, phases, and realizations).
We will focus on the normalized (dimensionless) correlation (often called coherence in this
context):

Cij(r;w)
VCii(0;w) Cj(0; w)
For an isotropic homogeneous field, C;;(0;w) is the same at both receivers, so the denominator
reduces to C;;(0;w) if i = j, and becomes

CCij(r;w) (3)

CCii(r;w) = g(“’) (4)

Isotropic plane-wave field model. We represent the field as a superposition of plane waves
with random phases and isotropically distributed propagation directions n:

u(x,w) = /dQﬁ A, w) p(f,w) eF (5)

where k = w/v is the wavenumber for the relevant wave type, and p is the polarization vector. For
P waves, p = n; for S waves, p L 7.



We assume (i) different directions are uncorrelated, (ii) random phases remove cross-terms, and
(iii) amplitudes are direction-independent in expectation. Under these assumptions, the correlation

tensor reduces (up to an overall factor) to an angular average of the form

Cie) x [ T2 Qu e

where Q;; depends on wave type and polarization statistics.

2 Key angular identities

By isotropy we may align coordinates so that t is the polar axis. Then
fL-TA':/,L:COSH, ’fl'r:d/,[/, eikﬁT:eikdu,

and d) = sin 6 df d¢.

2.1 Plane-wave expansion and orthogonality

Use the plane-wave expansion in Legendre polynomials:

oo

et = (20 + 1) jo(x) Po(p),

=0

where j, are spherical Bessel functions and P, are Legendre polynomials.

Using orthogonality,
2
Py(p w)dp=——4
/ Z n = 20+ 1 Im
one obtains the identity

1
| 2w e dp =21t 0)

-1

2.2 The needed scalar integrals

Define x = kd.

Zeroth-order integral.

dQ T 1 ! LT —
nw) = [ Tem =5 [ emau= o)

Second-moment integral. We need (u2e’™). Use

Then

(6)

(11)

(12)

(13)

(14)



Averaging over solid angle gives

dQ 5 1[N o 1, 2.
R T = — T d = — _ .
/47” e 2/1u e dp 330(96) 332(90)
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Complementary integral for 1 — 2. Since 1 — p? = sin?6,

/Zli(l — ,u2)ei:w = Io(z) — (15) = jo(=) — <z1))j0($) B ?)jQ(m))
— %jo(x) + ng(x).

3 Pure P-wave field

For a P wave, polarization is longitudinal:

Thus

3.1 Tensor reduction by symmetry

By isotropy about 7, the integral must be of the form

a . . .
/47( i et = A(z)él] + B(.T)’I“ﬂ‘j.
Determine A, B by contractions.
Trace. Using n;n; =1,
ds2
3A(z) + B(x) = / - e = jo(x)

Projection along 7.

s : ig) , Q
A(z) + B(x) _fifj/4ﬁiﬁj el _/(ﬁ-f)%w —/,uQe””“.
7 T

Using ((17)),
Afw) + B@) = 3jo(a) — 2 ja(w).
Solving yields
Aw) = 3 (of@) + o(e)),  B@) = —ia(a)
so the P-wave tensor is

1, . A
Cz‘(f)(r) x g(]o + J2)dij — Ja Pit'y.



3.2 Component form and normalization

Choose 7 = & = (1,0,0) (receivers separated along x). Then

1
Ci(d) < A+ B = 2 (jo — 2j2), (26)
1, ,
Ci(d) o A = 2 (jo+ j2). (27)
1
CH(d) o A = 3 (jo + 7o), (28)

where j; = jo(z) and x = kd.
At zero separation d — 0, jo(0) = 1, j2(0) = 0, hence

1

CL(0) = C(0) = CLD(0) o 5. (29)
Using the normalized definition gives the familiar pure-P results:
CC(d) = jo(x) = 2ja(w),  CCHI(d) = CCLEN(d) = jo() + ja(w). (30)

4 Pure S-wave field with random transverse polarization

For S waves, p L n and polarization is random in the plane transverse to n. We will show
(Appendix [A]) that

1 L
(pips), =5 <5z“ - nmg) (31)
Thus in @,
(8)ay _ L \
Q) = 5 (8 — uny ). (32)
and 1 a0 4o
() 2ls f B i B o iwp
Gy (r) o 5 [5”/47r€ /47rnmje ] : (33)
Using Iy = jo and the P-wave tensor integral ,
() 1 . 1, . PR
ij (r) oc 5 |00 — 5(]0 + j2)0ij — Jofit (34)
1. 1, ..
= <3]0 - 6]2) dij + 52Tl (35)

4.1 Component form and normalization

With 7 = z,
1 1 1 1
Cra’ (d) o (3‘70 6]2) t502 =3 (jo + j2), (36)
1 1 1 1
S . .
Cg(;y)(d) X 5.70 - 6]2 =3 <]0 - 2]2) ) (37)
Ci(d) o ! Jo — 1j2 (38)
zZz 3 2



At d — 0, again CZ.(Z.S)(O) o 1/3, hence the normalized S-wave results are:

CO(d) = jow) + o), CCY(A) = CCE(d) = jox) — (). (39)

5 Incoherent mixture of P and S fields

Assume the total field is a sum of statistically independent P and S contributions:

u=u®) +ul <ugp)u§s)*> = 0. (40)

Then the total correlation tensor is a power-weighted sum:

mix S
CM(d) = Ep O (d) + Es ) (d), (41)

where Ep and Eg are proportional to the mean squared amplitudes (energy/variance) of the re-
spective parts. Define the mixture ratio

p=—. (42)

5.1 Normalization of the mixture

For each of the pure fields we found Cy;(0) o< 1/3. Therefore

e I 1 Ep+E
C{MN(0) = Ep + Fs = % (43)

Hence the normalized component correlations are simply the weighted average of normalized pure-
field correlations:

_ BpCC(d) + Bs OO (d) _ i) +pCC(d) )

ccm®) (g

5.2 Final mixture formulas (baseline along )

Let xp = kpd = (w/vp)d and g = kgd = (w/vg)d, and denote jép) = je(zp) and jés) = je(zg).

Using the pure-field results in :

(P) (P) (5) | 5(9)
. -2
chzgz:c)(d) _ (]0 J2 ) +p(JO + 2 ) (45)
1+p
(P) | -(P) (S) _ 1:(9)
(mix) _ (mix) _ (jO +J2 ) +p(=70 —2J2 )
CCyy" (d) = CC1™(d) 15 p (46)

Special cases.

e Pure P (p =0): CC,, =i\ =257 cc,, = cC.. =57 + 5{7.

e Pure S (p — 00): CCyy = j(()s) —{—ng), CCyy =CC,; = jés) — %jés).



e Equal energies (p = 1) gives the mixture used in many numerical tests when P and S source
counts and amplitude statistics match.

e Equipartition in the classical elastic sense corresponds to a specific energy partition across
wave types and polarizations; in one common idealized limit the directional anisotropy cancels
and CC,, =~ CCyy, =~ CC., = jo.

6 Mapping to arbitrary receiver orientation

The preceding component formulas assumed 7 = &. For an arbitrary receiver separation direction
7, the tensor forms and may be used directly. Alternatively, for any separation direction,
the parallel component is the component along 7 and the two perpendicular components lie in the
orthogonal plane.

A Polarization average for S waves

For a given propagation direction 7, an S-wave polarization vector p lies in the plane orthogonal
to n:
p-n=0, |pl| = 1.

Assume p is uniformly distributed over that transverse plane (random “mix angle”).
Let P;; be the projector onto the plane orthogonal to 7:

Pij = 5@' — ﬁiﬁj. (47)

This projector satisfies P;jjn; = 0 and tr(P) = 2 (two transverse degrees of freedom).
Uniformity in the transverse plane implies the second moment (p;p;) | must be proportional to
Pijl

(pipj) L = a By (48)
Determine o by taking the trace:
(pipi)r =1l=atr(P)=a-2, (49)
so a = 1/2. Therefore,
(pipj) L = % (i — M) . (50)

This is the polarization tensor used in the main text for isotropic S-wave fields with random
transverse polarizations.

B Useful spherical Bessel functions

The first two spherical Bessel functions appearing in the correlation structure are

. sinz

Jo(x) = —, (51)
x
3 1 3

Jo(x) = (x?’ - 1‘) sinx — 42 08T (52)

They satisfy jo(0) = 1 and j2(0) = 0, ensuring CC;;(0) = 1 after normalization.
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