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1 Introduction

In this note we compare synthetic seismograms generated using two widely used numerical solvers
for elastic wave propagation: SALVUS and QSEIS. Our aim is to assess whether both codes pro-
duce consistent wavefields in a controlled, idealized configuration, and to identify and explain any
systematic differences that arise from differences in source representation rather than physics.

We focus first on the simplest configuration: a homogeneous elastic half-space with constant VP ,
VS , and density. In this setting, the Green’s functions are known analytically, there is no velocity
contrast, no scattering, and therefore no dispersion of body or surface waves. Any differences
observed between synthetic seismograms must therefore originate from the source-time function,
numerical implementation, or convention rather than from propagation physics.

2 Solvers and Source-Time Functions

Both codes solve the 3-D elastic wave equation but employ different numerical strategies.

• SALVUS solves the full wave equation in the time domain using high-order finite elements.
The user supplies an arbitrary source-time function. For this study, a broadband pulse with
nearly flat amplitude in 2Hz to 10Hz was used.

• QSEIS solves the wave equation using a frequency-domain reflectivity method. When no
source-time function is supplied, QSEIS uses a default “delta-like” pulse given by

w(t) =
2

τ
sin2

(
πt

τ

)
, 0 < t < τ, (1)

where τ is the pulse duration. In practice, τ is specified in samples and converted to seconds
by τ = nsam∆t.

For the default choice nsam = 4 and ∆t = 0.02 s, the pulse duration is τ = 0.08 s, and its center
of energy is approximately τ/2 = 0.04 s. Thus the QSEIS default wavelet is broadband but exhibits
a causal time shift of two samples.

By contrast, the SALVUS wavelet used here is approximately zero-phase and centered at t = 0.
Figures 1(a) and (b) show the SALVUS and the QSEIS wavelets in time domain. Unlike the SALVUS
wavelet which is zero phase wavelet, implying it has maximum energy at zero time and symmetric
spread in both causal and acausal branches, the QSEIS wavelet is a minimum phase wavelet with
a finite causal support. The absolute value of the magnitud of the Fourier transforms are shown
in Figures 1(c) and (d) corresponding to the SALVUS and the QSEIS wavelets, respectively. The
SALVUS wavelet is band-limited with its dominant energy in the 2 – 8Hz band. On the contrary
the QSEIS wavelet have energy spread in the entire Nyquist band.
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(a) SALVUS wavelet
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(b) QSEIS wavelet
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 (c) FFT SALVUS wavelet
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 (d) FFT QSEIS wavelet

Figure 1: (a) Time domain representation of the SALVUS zero phase wavelet with symmetric spread
across t = 0. (b) QSEIS wavelet in time domain representing a physical delta function like triangular
pulse lasting for just four time samples. (c) Absolute amplitude of the FFT of the SALVUS wavelet
shwing its bandlimited nature in teh frequency band 2 – 8Hz. (d) Absolute amplitude of the FFT
of the QSEIS wavelet showing a much broader spectral content. All wavelets are resampled to 50
Hz for consistent representation.

3 Interpretation of QSEIS and SALVUS Green’s Functions

In this section we clarify what the Green’s functions produced by QSEIS and SALVUS represent, how
the source radiation patterns differ between the two solvers, and how to construct a consistent set
of displacement Green’s functions for subsequent ambient noise simulations or waveform synthesis.

3.1 Green’s functions produced by QSEIS

QSEIS works in the frequency–wavenumber domain for a 1-D layered medium. For each requested
source type, it computes the displacement response at the receivers for unit forces acting in a fixed
coordinate system where:

• the downward vertical direction corresponds to the positive z axis,

• the radial direction corresponds to the horizontal direction pointing from the source toward
the receiver (North), and

• the transverse direction is perpendicular to the radial direction (East).

When the user requests Green’s functions for a vertical force (fz-* files), QSEIS returns only the
vertical (z) and radial (r) components. This is physically expected: a purely vertical point force in
an azimuthally symmetric 1-D medium cannot produce any transverse displacement. The system
has no preferred horizontal direction, and the SH motion is decoupled from the P–SV system.

In contrast, when the user requests Green’s functions for a horizontal force (fh-* files), QSEIS
internally decomposes that horizontal force into two orthogonal components:

1. a component along the source–receiver line (radial), and

2. a component perpendicular to that line (transverse).
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Thus a single “horizontal” directive in the input file produces both P–SV (radial + vertical)
and SH (transverse) Green’s functions. The user therefore obtains:

G(h)
z (t), G(h)

r (t), G
(h)
t (t),

where the superscript (h) denotes a unit horizontal force, which QSEIS resolves relative to the
source–receiver geometry. This interpretation is crucial: the transverse response in QSEIS does not
imply that the force had a transverse component in the user’s coordinate system—it is introduced
automatically.

3.2 Green’s functions produced by SALVUS

SALVUS, being a full 3-D solver, does not make the implicit symmetry assumptions of QSEIS. A
force direction must be specified explicitly in the computational coordinate system. If one applies a
unit point force exactly along the source–receiver line (say +y which corresponds to radial or North
for SALVUS), then:

SH motion is not excited.

Mathematically this follows from cylindrical symmetry: if the force is colinear with the receiver
azimuth, the radiation pattern contains only P–SV energy and the SH system is not driven. Con-
sequently, a SALVUS simulation with a force purely aligned with the +y direction produces:

uy(t) ̸= 0, uz(t) ̸= 0, ux(t) ≈ 0.

This matches theoretical expectations and is consistent with the transverse component of QSEIS
being identically zero when the horizontal force has no transverse projection.

To reproduce the QSEIS transverse Green’s function using SALVUS, a second simulation must
be run with the point force applied in the direction perpendicular to the receiver line, e.g. along
+x. This excites solely SH motion and yields:

u(SH)
x (t) ̸= 0, u(SH)

y (t) ≈ 0, u(SH)
z (t) = 0,

up to numerical noise. This component corresponds directly to the transverse Green’s function

G
(h)
t output by QSEIS.

3.3 Why a force along the receiver line cannot generate SH motion

To emphasize the physical origin of this behavior, consider a point force applied along the azimuthal
direction θ = 0 toward the first receiver. In cylindrical coordinates (r, θ, z), the displacement field
from such a force is axisymmetric with respect to that direction. The SH system corresponds to
motion in the θ direction and satisfies a decoupled wave equation of the form:

∂2uθ
∂t2

= β2∇2uθ.

A radial or vertical force has no θ–component and therefore cannot act as a source term in the
SH equation. Consequently, the SH field remains zero for all time unless an explicit transverse
horizontal force is applied. QSEIS avoids this geometrical reasoning because it automatically de-
composes a generic “horizontal” instruction into radial and transverse parts. SALVUS requires the
user to specify these two directions separately.
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3.4 Mapping QSEIS and SALVUS Green’s functions

For later waveform synthesis, the correct correspondence is:

QSEIS output SALVUS simulation

G
(v)
z , G

(v)
r force applied vertically (+z)

G
(h)
r , G

(h)
r force applied horizontally along receiver line (+y)

G
(h)
t force applied horizontally perpendicular to receiver line (+x)

Thus two SALVUS runs are required to reconstruct the full QSEIS horizontal Green’s function
set: one for the in-line force, and one for the transverse horizontal force. Once these two runs are
obtained, their components can be rotated into any coordinate system in exactly the same way
that QSEIS Green’s functions are handled.

4 Matching QSEIS and SALVUS Seismograms

In this section we describe the practical procedure used to bring the QSEIS and SALVUS Green’s
functions to the same effective source wavelet, so that the resulting seismograms can be compared
trace by trace. The main steps are: (i) extraction of the relevant Green’s functions, (ii) character-
ization and resampling of the source wavelets, (iii) frequency–domain deconvolution of the QSEIS

wavelet and reconvolution with the SALVUS wavelet, (iv) bandpass filtering and trace normalization,
and (v) time alignment.

4.1 Extraction of Green’s functions

For a given velocity model and receiver geometry, QSEIS is first run to produce Green’s functions
for the desired source type and component. In the example shown here we focus on the transverse
component generated by a horizontal force, i.e. the file fh-2.tt (although the same steps hold
true for all other force types and the respective Green’s function components), and extract the
corresponding seismograms

uQ(t, xi)

for receiver offsets xi ∈ [10, 5000]m, all sampled at ∆t = 1/50 s (50Hz).
Similarly, SALVUS is run with a horizontal force oriented perpendicular to the receiver line,

and the corresponding transverse displacement component is extracted from the SALVUS output,
yielding seismograms

uS(t, xi)

at the same receiver offsets. The SALVUS solver internally uses a high–sample-rate source time
function (here sampled at 1000Hz), but the output seismograms are written at 50Hz, matching
the QSEIS sampling interval.

4.2 Source wavelets for QSEIS and SALVUS

QSEIS uses a built–in causal source wavelet of the form

wQ(t) =


2

τ
sin2

(
πt

τ

)
, 0 < t < τ,

0, otherwise,

(2)
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where τ is the wavelet duration. In our configuration we use τ = 4∆t, so that wQ(t) is represented
by four non-zero samples at the beginning of the QSEIS time series. This wavelet is strongly causal
and has a non-zero phase spectrum.

SALVUS, by contrast, uses a user–supplied source time function wS(t), typically a smooth, ap-
proximately zero–phase wavelet with a broad and nearly flat amplitude spectrum over the frequency
band of interest. In our case, the SALVUS source wavelet is provided as a vector sampled at 1000Hz;
it is downsampled to 50Hz in two stages (by factors 5 and 4), and then zero–padded to the common
FFT length NFFT = 2048:

wS [n], n = 0, . . . , NFFT − 1.

The QSEIS wavelet wQ(t) is likewise sampled at 50Hz using Eq. (2) for t = 0,∆t, 2∆t, 3∆t, and
zero elsewhere, and then zero–padded to the same FFT length to obtain wQ[n].

4.3 Frequency–domain wavelet deconvolution

Let uQ[n, xi] denote the discrete QSEIS seismogram at offset xi, and let WQ[k] and WS [k] denote
the discrete Fourier transforms of wQ[n] and wS [n]:

WQ[k] = F{wQ[n]}, WS [k] = F{wS [n]}, k = 0, . . . , NFFT − 1.

In the frequency domain, the QSEIS seismogram can be written schematically as

UQ[k, xi] ≈ G[k, xi] WQ[k],

where G[k, xi] is the underlying (discrete) Green’s function. To replace the QSEIS wavelet wQ by
the SALVUS wavelet wS , we perform a wavelet deconvolution and reconvolution:

ŨQ[k, xi] = UQ[k, xi]
WS [k]

W reg
Q [k]

, (3)

where W reg
Q [k] is a regularized (waterlevel) version of WQ[k], described below. The time–domain

matched seismogram is then obtained by inverse FFT:

ũQ[n, xi] = F−1{ŨQ[k, xi]}.

Waterlevel regularization

Direct division by WQ[k] can be unstable at frequencies where |WQ[k]| is small. To stabilize the
deconvolution, we replace the amplitude ofWQ[k] above a chosen cutoff frequency fcut by a constant
“waterlevel” while preserving its phase:

WQ[k] = |WQ[k]|eiϕQ[k],

W reg
Q [k] =

{
WQ[k], fk < fcut,

|WQ(fcut)| eiϕQ[k], fk ≥ fcut,

where fk denotes the frequency corresponding to index k. In our implementation we use fcut =
10Hz, and the magnitude |WQ(fcut)| is used as the waterlevel for all higher frequencies. Hermitian
symmetry is explicitly enforced on W reg

Q [k] so that ũQ[n, xi] remains real–valued.
Note that the target comparison band is 2Hz to 8Hz; the choice of fcut = 10Hz therefore does

not influence the waveforms in the analysis band, and only serves to stabilize the deconvolution at
higher frequencies, which are subsequently removed by bandpass filtering.

For each receiver, Eq. (3) is applied to the QSEIS seismogram uQ[n, xi], followed by an inverse
FFT, yielding a new set of time–domain traces ũQ[n, xi] that now carry the SALVUS source wavelet.
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4.4 Bandpass filtering and normalization

Both the SALVUS seismograms uS [n, xi] and the QSEIS–derived matched seismograms ũQ[n, xi]
are then filtered using the same zero–phase bandpass filter in the 2Hz to 8Hz frequency range:

u
(2–8)
S [n, xi], ũ

(2–8)
Q [n, xi],

implemented by forward–backward application of the filter coefficients (filtfilt in MATLAB).
This step suppresses any high–frequency artifacts introduced by the deconvolution and ensures that
both data sets are strictly comparable in the analysis band.

For visualization, each trace is normalized by its maximum absolute amplitude:

ûS [n, xi] =
u
(2–8)
S [n, xi]

maxn|u(2–8)S [n, xi]|
, ˆ̃uQ[n, xi] =

ũ
(2–8)
Q [n, xi]

maxn|ũ(2–8)Q [n, xi]|
.

A global sign flip is applied to the QSEIS traces where necessary to account for differences in the
sign conventions between the two codes. This is sign flip must tbe applied only for the vertical
component. (QSEIS) treats the downward vertical as positive, while SALVUS treats upward vertical
as positive. No sign flips need to be applied for the horizontal components.

4.5 Time alignment

The SALVUS source wavelet is zero–phase and symmetric about t = 0, with significant support for
both positive and negative times (here roughly ±1 s). In contrast, the QSEIS wavelet (2) is strictly
causal and occupies only the earliest part of the time axis. After the deconvolution–reconvolution
step, the effective onset of the QSEIS traces is therefore shifted forward by half the temporal
support of the SALVUS wavelet.

SALVUS seismograms are written on a time axis that includes negative times, reflecting the
acausal portion of the symmetric source wavelet. These negative-time samples do not correspond
to physically meaningful arrivals; rather, they represent the left-hand side of the zero–phase wavelet
and simply introduce a uniform time delay if retained. For this reason, and because the SALVUS

wavelet is exactly symmetric about t = 0, the physically relevant seismograms must be taken only
for t > 0, after truncating the acausal part. Once this is done, the SALVUS time axis becomes
consistent with the QSEIS convention, and the two data sets can be compared directly.

In practice, the downsampled SALVUS wavelet has length nW samples at 50Hz. To correct
for the symmetric time support, we discard the first (nW + 1)/2 samples of the matched QSEIS

traces ũ
(2–8)
Q [n, xi], and adjust the corresponding time vector so that t = 0 aligns with the SALVUS

seismograms (after truncating any negative times from the SALVUS output). After this shift, the
QSEIS–based and SALVUS seismograms must agree in arrival times across all offsets, and any re-
maining differences are due to numerical dispersion or minor implementation details rather than
source-time mismatches.

5 Comparison of Synthetic Green’s Functions: QSEIS vs. SALVUS

To assess the consistency between the reflectivity–based solver QSEIS and the spectral-element
solver SALVUS, we compare Green’s functions computed for an identical elastic model and source–receiver
geometry. We begin with the simplest configuration—a homogeneous half-space—where theoretical
expectations are well understood and numerical artifacts are minimal.
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5.1 Homogeneous Half–Space Model

Both solvers employ the same uniform elastic medium, defined in Table 1. Attenuation is included
in both simulations using identical quality factors, although in this low-frequency band (2–8 Hz)
attenuation has negligible influence on the waveforms.

Table 1: Homogeneous half–space parameters used for the comparison.
Depth (km) vp (km/s) vs (km/s) ρ (g/cm3) Qp Qs

0.000 – ∞ 4.000 2.000 2.465 900 450

Receivers are placed along the free surface from x = 10 m to x = 5000 m, with a total of
480 receiver positions. In all comparisons, QSEIS traces are deconvolved and reconvolved with the
SALVUS wavelet as described in Section 4, filtered between 2–8 Hz, and normalized by per–trace
maximum amplitude.

5.1.1 Case 1: Vertical Force – Vertical Component G
(v)
z

A vertical point force at the free surface excites only Rayleigh waves and P–SV body waves. Thus

the comparison of the vertical Green’s function G
(v)
z represents a clean low–mode Rayleigh problem.

Figure 2 shows the gathers obtained from QSEIS and SALVUS. Every fifth receiver trace is
displayed for clarity (corresponding to an approximate spacing of 160 m). The waveforms ex-
hibit excellent agreement: the direct P and S arrivals match in phase and amplitude, and the
fundamental-mode Rayleigh wave shows virtually identical group and phase velocities.

Figure 2: Comparison of vertical G
(v)
z gathers for a horizontal point force in a homogeneous

half–space corresponding to both the source and receivers laid out on the free surface. Left: QSEIS;
right: SALVUS. Traces are plotted every 5 receivers for clarity.

To demonstrate the waveform fidelity more directly, Figure 3 compares individual traces at
two representative offsets: (1) x = 372.17 m, where both near–field and early Rayleigh motion
are present; and (2) x = 5000 m, where the far–field Rayleigh wave dominates. The agreement is
nearly perfect in both cases, confirming that the wavelet treatment, time alignment, and amplitude
normalization procedures produce physically consistent signals.

5.1.2 Case 2: Horizontal Force – Radial Component G
(h)
r

For a horizontal point force applied along the source–receiver line, only P–SV motion is physically
generated. (QSEIS’s default horizontal-force operator produces both radial and transverse outputs;
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Figure 3: Trace-by-trace comparison of the vertical Green’s function G
(h)
r due to a vertical point

force in a homogeneous half-space for offsets of 372.17 m (top) and 5000 m (bottom). Blue: QSEIS;
red: SALVUS. Both the sources and the receivers are spread on the free surface.

however, as discussed in Section 3, its transverse component corresponds to a mathematically
separate orthogonal horizontal force and not a single physical load.)

Using a purely radial force in SALVUS, we compare the resulting radial Green’s functionG
(h)
r . The

comparison again shows excellent agreement between the two solvers, with matched arrival times,
radiation patterns, and Rayleigh-wave dispersion characteristics. Figures analogous to Figs. 2–3
demonstrate the same level of correspondence as in the vertical-force case.

Figure 4: Comparison of radialG
(h)
r gathers for a horizontal point force in a homogeneous half–space

corresponding to both the source and receivers laid out on the free surface. Left: QSEIS; right:
SALVUS. Traces are plotted every 5 receivers for clarity.

These results confirm that, after correcting for wavelet, timing, and coordinate conventions,
QSEIS and SALVUS produce indistinguishable Green’s functions for a homogeneous half–space. This
forms the baseline for the subsequent layered-medium comparison.
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Figure 5: Trace-by-trace comparison of the radial Green’s function G
(h)
r due to a horizontal force

in a homogeneous half-space for offsets of 372.17 m (top) and 5000 m (bottom). Blue: QSEIS; red:
SALVUS. Both the sources and the receivers are spread on the free surface.

5.2 Layered Half space with small intrinsic attenuation

In this section, we present a comparison of synthetic seismograms computed for a layered half–
space model. As in the homogeneous case, we compare results obtained with QSEIS and SALVUS

for different source types and Green’s function components. The elastic properties of the layered
model are summarized in Table 2. This model is intended to represent a layered half–space with
little intrinsic attenuation, hence we assign uniform quality factors of QP = 10000 and QS = 5000
in all layers. These large Q values allow us to focus on waveform consistency between the two
solvers rather than on amplitude decay due to attenuation (which is a separate test and presented
later in this note).

As in the homogeneous case, we consider two representative configurations: (1) a vertical point
force with analysis of the vertical Green’s function component, and (2) a horizontal point force
with analysis of the transverse Green’s function component.

Table 2: Layered half–space parameters used for the comparison.
Depth (km) vp (km/s) vs (km/s) ρ (g/cm3) Qp Qs

0.030 1.000 0.500 1.743 10000 5000
0.120 3.000 1.500 2.294 10000 5000
0.300 4.500 2.500 2.539 10000 5000
1.000 5.000 3.000 2.606 10000 5000
5.000 5.800 3.360 2.720 10000 5000
∞ 6.000 3.500 2.800 10000 5000

5.2.1 Case 1: Vertical force – Vertical component G
(v)
z

In this configuration, a vertical point force is applied at the free surface, and the resulting dis-
placement field is recorded at 480 surface receivers uniformly distributed between 10 m and 5000 m
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offset. Figures 6(a) and (b) show the resulting Green’s function gathers obtained with QSEIS and
SALVUS, respectively. These gathers are characterized by multiple dispersive wave trains. In partic-
ular, the slowest arrivals reach the farthest receivers at travel times between approximately 25 and
30 s, corresponding to extremely low apparent group velocities on the order of 150–200 m/s. To
interpret these arrivals, we compute the theoretical Rayleigh-wave dispersion curves for the layered
model in Table 2.

Figure 6: Comparison of G
(v)
z gathers for a vertical point force in a layered half–space corresponding

to both the source and receivers laid out on the free surface. Left: QSEIS; right: SALVUS. Traces
are plotted every 5 receivers for clarity. Slow propagating Rayleigh wave energy is visible in both
the gathers.

(b) Rayleigh wave phase and group velocity

Figure 7: (a) Frequency–wavenumber (F–K) spectrum of the shot gather shown in Figure 6, high-
lighting the fundamental Rayleigh mode within the 2–8 Hz band. (b) Theoretical phase (blue) and
group (red) velocity curves for the layered model in Table 2. The very slow group velocities in the
6–8 Hz band explain the late-arriving wave trains observed in the shot gathers.

Figure 7(b) shows the fundamental-mode Rayleigh phase and group velocities. The frequency
band between 6 and 8 Hz is characterized by very slow group velocities, which directly explains the
late-arriving, high-energy wave trains observed in the shot gathers. In contrast, the corresponding
phase velocities remain significantly higher, reaching values of approximately 650 m/s at 8 Hz.
This distinction between slow group velocity and faster phase velocity is further confirmed by the
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frequency–wavenumber (F–K) spectrum shown in Figure 7(a), where the fundamental Rayleigh
mode is clearly visible within the 2–8 Hz analysis band.

Finally, Figures 8(a) and (b) show a trace-by-trace comparison of the vertical Green’s function

G
(v)
z at offsets of 103.75 m and 5000 m, respectively. The waveforms produced by QSEIS and SALVUS

are virtually indistinguishable, exhibiting excellent agreement in both phase and amplitude across
the entire time window.
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Figure 8: Trace-by-trace comparison of the vertical component of the Green’s function G
(v)
z in a

layered half-space for source-receiver offsets of (a) 103.75 m and (b) 5000 m. Blue: QSEIS; red:
SALVUS. Both the source and the receivers are spread on the free surface.

5.2.2 Case 2: Horizontal force – transverse component

The test case of a horizontal force acting on the surface, the transverse component of the ground
motion shows the SH wave-type propagation. Similar to the previous case we have 480 receivers
equally spaced between 10 and 5000 m on the surface. Love waves being the most dominating
SH wave propagation type on the surface, we expect the recordings to be dominated by Love
waves. Figures 9(a) and (b) show the Green’s function gathers generated using QSEIS and SALVUS,
respectively. Unlike the previous scenario presented, the slowest wave-train observed correspond to
the Love waves which for this particular subsurface model parameters exhibit faster group velocities
than the Rayleigh waves and hence arrive at the farthest stations much earlier (for the previous case
it was between 25 – 30 s). For trace by trace comparison we also present the individual seismograms
generated by QSEIS and SALVUS corresponding to source receiver offsets of 103.75 m and 5000.0 m
(Figures 10(a) and (b)). At both offsets, the QSEIS and SALVUS seismograms are indistinguishable
and match both in phase and amplitude.

5.3 Layered Half-space with realistic intrinsic attenuation

The final comparison of synthetic seismograms between QSEIS and SALVUS is presented for the case
of layered half-space with realistic intrinsic attenuation. Table 3 shows the subsurface parameters
for the layered half-space model. We keep the Vp, Vs, and ρ the same as the previous test, however,
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Figure 9: Comparison of G
(h)
t gathers for a horizontal point force in a layered half–space corre-

sponding to both the source and receivers laid out on the free surface. Left: QSEIS; right: SALVUS.
Traces are plotted every 5 receivers for clarity. Strong Love wave energy is visible in both the
gathers.
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Figure 10: Trace-by-trace comparison of the transverse component of the Green’s function G
(h)
t in

a layered half-space for source-receiver offsets of (a) 103.75 m and (b) 5000 m. Blue: QSEIS; red:
SALVUS. Both the source and the receivers are spread on the free surface.

the Qp and Qs values are modified to represent realistic intrinsic attenuation mimicking both
shallower and deeper sediments. The soft soil on the top most layer is assigned a small value of
Qs = 50, and Qp is set at twice the Qs value. This is typical of unconsolidated sediments with
high porosity and shale content. The Q-values are increased gradually per layer, implying weaker
attenuation as we go deeper.

6 Discussion

The observed time shift is fully explained by the difference in source-time-function definition. QSEIS
uses a short, causal pulse whose center of energy is delayed by τ/2 relative to a zero-phase pulse.
SALVUS, using a symmetric wavelet, produces zero-lag output.

Because this difference is source-related rather than physical, it appears uniformly in all com-
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Table 3: Layered half–space parameters with realistic p and S-wave intrinsic attenuation.
Depth (km) vp (km/s) vs (km/s) ρ (g/cm3) Qp Qs

0.030 1.000 0.500 1.743 100 50
0.120 3.000 1.500 2.294 250 125
0.300 4.500 2.500 2.539 400 200
1.000 5.000 3.000 2.606 600 300
5.000 5.800 3.360 2.720 900 450
∞ 6.000 3.500 2.800 1200 600

ponents, offsets, and phases. Removing it yields nearly indistinguishable waveforms from both
solvers.

Importantly, the consistency of SALVUS and QSEIS after delay correction confirms that:

• both solvers correctly propagate elastic waves in a homogeneous medium,

• numerical dispersion and attenuation are negligible in this test,

• solver differences do not accumulate with distance,

• any residual difference comes from details of wavelet implementation, not physics.

7 Appendix: Derivation of the QSEIS Time Shift

The default QSEIS wavelet

w(t) =
2

τ
sin2

(
πt

τ

)
, 0 < t < τ, (4)

is defined only on the interval [0, τ ]. Using the identity sin2 x = 1
2(1− cos 2x),

w(t) =
1

τ

(
1− cos

2πt

τ

)
. (5)

Let u = t− τ
2 , so that t = u+ τ/2. Then

cos
2πt

τ
= cos

(
2π

τ
(u+ τ

2 )

)
= cos

(
2πu

τ
+ π

)
= − cos

2πu

τ
. (6)

Substituting,

w(t) = w(u+ τ
2 ) =

1

τ

(
1 + cos

2πu

τ

)
, − τ

2 < u < τ
2 . (7)

This function is even in u, hence its Fourier transform has (approximately) zero phase. Therefore,
the original QSEIS wavelet w(t) is equivalent to a zero-phase wavelet w̃(u) shifted in time by τ/2:

w(t) = w̃(t− τ
2 ). (8)

In the frequency domain, this becomes

W (ω) = e−iωτ/2 W̃ (ω), (9)
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so the QSEIS source spectrum contains a pure time delay of τ/2.
For the default choice τ = nsam∆t = 0.08 s, the delay is

∆t =
τ

2
= 0.04 s, (10)

corresponding to two samples at 50Hz. This delay propagates into all synthetic seismograms
generated by QSEIS when the default source-time function is used.
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