Non-universality in rare beauty decays?

Nikhef Jamboree

Mick Mulder

December 12, 2017

Theory: 1) Model independent fits

- The b → sℓℓ transition goes via loop diagrams
- Very suppressed in the Standard Model!
- Sensitive to small New Physics contributions

- The b → sℓℓ transition goes via loop diagrams
- Very suppressed in the Standard Model!
- Sensitive to small New Physics contributions (Z['], leptoquarks, ...)
- How to interpret measurements?

How to interpret $b \rightarrow s\ell\ell$ measurements

Effective Field Theory! Most famous example: Fermi interaction

How to interpret $b \rightarrow s\ell\ell$ measurements

An EFT probes different couplings:

- Photon penguin (C_7)
- Vector (*C*₉)
- Axial vector (C₁₀)
- Left-handed $(V A = C_9 C_{10})$

How to interpret $b \rightarrow s\ell\ell$ measurements

An EFT probes different couplings:

- Photon penguin (C₇)
- Vector (C₉)
- Axial vector (C_{10})
- Left-handed ($V A = C_9 C_{10}$)

Semi-leptonic decays

- Probes C_7 , C_9 and C_{10}
- Three body decay: bins of q²_{ℓℓ}
- Many final states
- QCD effects: form factors, charm resonances
- Three kinds of observables (from dirty to clean):
 - Branching fractions
 - Angular observables
 - Lepton universality

Semi-leptonic decays: branching fractions

Semi-leptonic decays: angular observables

One example: $B^0 \rightarrow K^{*0}\mu^+\mu^-$ with full angular analysis Ratios of observables with minimal dependence on form factors:

Contributions from charm loops?

Semi-leptonic decays: angular observables

One example: $B^0 \rightarrow K^{*0}\mu^+\mu^-$ with full angular analysis Ratios of observables with minimal dependence on form factors:

Contributions from charm loops? New results from ATLAS, CMS, Belle: how do they compare?

Resulting Moriond 2017 update of global fit:

New measurements didn't change the picture

Resulting Moriond 2017 update of global fit:

New measurements didn't change the picture

So where are the new LHCb results?

Semi-leptonic decays: lepton non-universality

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})}, R_{K^{*0}} = \frac{\mathcal{B}(B^{0} \to K^{*0} \mu^{+} \mu^{-})}{\mathcal{B}(B^{0} \to K^{*0} e^{+} e^{-})} \sim 1 \text{ in SM}$$

From 2014 (2.6 σ):

Semi-leptonic decays: lepton non-universality

Deviation at 3.5-4 σ level in these two measurements alone!

- Probes C10 in SM
- Theoretically clean
- Sensitive to (pseudo-)scalars
- Helicity suppressed $(\sim m_\ell^2/m_B^2)$
- Interesting papers by Fleischer et al. (1703.10160, 1709.04735)
- First limit on $B_s^0 \rightarrow \tau^+ \tau^- (< 6.8 \times 10^{-3})$ by LHCb (Kristof de Bruyn)

Leptonic decays: $B_s^0 \rightarrow \mu^+ \mu^-$

• As promised last year by Flavio:

Leptonic decays: $B_s^0 ightarrow \mu^+ \mu^-$

• As promised last year by Flavio:

Leptonic decays: $B_s^0 \rightarrow \mu^+ \mu^-$

- As promised last year by Flavio: single experiment observation!
- $\mathcal{B}(B^0_s \to \mu^+\mu^-) = (3.0 \pm 0.6(\text{stat.})^{+0.3}_{-0.2}(\text{syst.})) \times 10^{-9}$
- Strongest limit on $\mathcal{B}(B^0 o \mu^+ \mu^-) < 3.4 imes 10^{-10}$ at 95% CL

Leptonic decays: $B_s^0 \rightarrow \mu^+ \mu^-$

- As promised last year by Flavio: single experiment observation!
- $\mathcal{B}(B^0_s \to \mu^+ \mu^-) = (3.0 \pm 0.6(\text{stat.})^{+0.3}_{-0.2}(\text{syst.})) \times 10^{-9}$
- Strongest limit on $\mathcal{B}(B^0 o \mu^+ \mu^-) < 3.4 imes 10^{-10}$ at 95% CL
- New: effective lifetime (as proposed by Fleischer et al.): $\tau(B_s^0 \rightarrow \mu^+\mu^-) = 2.04 \pm 0.44 \pm 0.05 \text{ ps} (\tau_{SM} = 1.60 \text{ ps})$

 $B^0_{(s)}
ightarrow \mu^+ \mu^-$ is consistent w. SM, but statistics limited!

A LFV intermezzo

- Flavio and Maarten: $B^0_{(s)}
 ightarrow e^\pm \mu^\mp$
- In case of lepton non-universality, lepton flavour violation is expected
- $\bullet\,$ Previous LHCb limit improved by factor ~ 2.5
- $\mathcal{B}(B^0_s
 ightarrow e^\pm \mu^\mp) < 6.3 imes 10^{-9}$ at 95% CL
- $\mathcal{B}(B^0
 ightarrow e^\pm \mu^\mp) < 1.3 imes 10^{-9}$ at 95% CL
- LHCb LFV programme ongoing!

Revisit the global fit by including R_K and $R_{K^{*0}}$:

A consistent picture from clean and dirty observables!

Possible models

- Many papers discussing $R_K^{(*0)}$, sometimes with $R(D^{(*)})$
- Main explanations:
 - Leptoquark(s)
 - Z' and W'
- My favorite model: vector leptoquarks! (arXiv:1706.07808)
- Couples mainly to 3rd generation, so main signatures:
 - 100x enhancement of b
 ightarrow s au au, for example $B^0_s
 ightarrow au^+ au^-$
 - high p_T : $pp \rightarrow \tau^+ \tau^-$ or direct leptoquark searches $(t\bar{t}\nu\nu)$

Conclusions

- Rare beauty decays are sensitive to NP
- Current measurements point to one place (not SM!)
 - Leptoquark(s) ?
 - Z' and W'?

• LHCb is investigating!

- Run 1 + Run 2 data (\sim 3imes Run 1!)
- New decay modes

$$(R_{\phi}, R_{\Lambda}, B^0_{(s)} \rightarrow e^+e^-, ...)$$

- LFV programme $(\Lambda_b^0 \to \Lambda^0 e^{\pm} \mu^{\mp}, B_{(s)}^0 \to \tau \mu, ...)$
- Significant contribution from Nikhef in LHCb and theory
- Exciting times in *b* physics!

Conclusions

- Rare beauty decays are sensitive to NP
- Current measurements point to one place (not SM!)
 - Leptoquark(s) ?
 - Z' and W'?

LHCb is investigating!

- Run 1 + Run 2 data (\sim 3× Run 1!)
- New decay modes $(R_{\phi}, R_{\Lambda}, B^0_{(s)} \rightarrow e^+e^-, ...)$
- LFV programme $(\Lambda_b^0 \to \Lambda^0 e^{\pm} \mu^{\mp}, B_{(s)}^0 \to \tau \mu, ...)$
- Significant contribution from Nikhef in LHCb and theory
- Exciting times in b physics!

Thanks for your attention!

Backups are often required

Plans for next half year from sure, to likely, to possible:

- Search for $B^0_s o K^{*0} \mu^+ \mu^-$ (which is $b o d\ell \ell$)
- Angular analysis of $\Lambda^0_b \to \Lambda^0 \mu^+ \mu^-$
- Search for $B^+ \to K^+ e^\pm \mu^\mp$
- Search for $B^0_{(s)} \to \tau^{\pm} \mu^{\mp}$
- *R_K*
- Angular analysis (absolute + LFU) of $B^0 o K^{*0} e^+ e^-$

Wide range of measurements!