eed Steven Hoekstra

university of groningen

van swinderen institute for particle physics and gravity

Scientific staff:

Anastasia Borschevsky Rick Bethlem Steven Hoekstra Klaus Jungmann Rob Timmermans Wim Ubachs _orenz Willmann

Technical staff:

Oliver Böll Leo Huisman Ruud Kluit Paul Timmer Ronald Buijs

PhD students: Parul Aggarwal Kevin Esajas Pi Haasse Yongliang Hao Thomas Meijknecht Maarten Mooij Artem Zapara

Master students: (2017)

Jeroen Maat Janna de Wit

Bachelor students (2017)

Mark Buisman **Rutget Hof** Jeroen Muller Hidde Makaske Kees Steinebach Pieter van Vliet Cornelis Zandt

Nik hef VU VRIJE UNIVERSITEIT AMSTERDAM

eed Steven Hoekstra

university of groningen

van swinderen institute for particle physics and gravity

Scientific staff: Anastasia Borschevsky Rick Bethlem

Steven Hoekstra Klaus Jungmann Rob Timmermans Wim Ubachs _orenz Willmann

Technical staff:

Oliver Böll Leo Huisman Ruud Kluit Paul Timmer Ronald Buijs

PhD students: Parul Aggarwal Kevin Esajas Pi Haasse Yongliang Hao Thomas Meijknecht Maarten Mooij Artem Zapara

Master students: (2017) Jeroen Maat Janna de Wit

Bachelor students (2017)Mark Buisman Rutget Hof Jeroen Muller Hidde Makaske Kees Steinebach Pieter van Vliet Cornelis Zandt

All started in 2017!

Nik hef VU VRIJE UNIVERSITEIT AMSTERDAM

Is the electron round? The Electric Dipole Moment of the electron (eEDM)

eEDM violates P, T and CP symmetry (provided CPT holds)

Next-generation experiment with cold molecules

How to measure a dipole moment?

precession!

However, also magnetic dipole moment (and charge!) Solution: use electron embedded in a polar molecule!

We have selected BaF

Combining three recent experimental breakthroughs:

Using BaF molecules, we can create a very intense, slow and cold beam

Cryogenic source 2) Stark deceleration 3) Molecular laser cooling

The team is growing First results from theory Experiment under construction

Highlights of 2017:

June 2017: eEDM kick-off Meeting

12-17 June 2107, eEDM program kickoff meeting and international summerschool, Ameland "Low-energy precision measurements of physics beyond the standard model"

First results from theory: understanding our molecule

polar molecule Barium: 56 electrons Fluorine: 9 electrons Mass: 156 amu

BaF: 1 valence electron Nuclear spin 1/2

Poster summarising energy levels based on best known spectrosopic constants compiled by Jeroen Maat

Unless indicated otherwise, energies are given in cm⁻¹. * The energies of the E'' $^{2}\Pi$ states are calculated assuming fine structure constants of 50 and 100 cm⁻¹,

corresponding to energies of 27327.31 and 27352.31 cm⁻¹ respectively. The energy of the E' ²Π state is 27389.47 cm⁻¹. ** Since lambda-doubling in the A' $^{2}\Delta_{5/2}$ -state is very small (< 1 Hz), energies for individual levels are not given.

First results from theory: sensitivity to external fields Master student: Jeroen Maat

First results from theory: the effective electric field PhD student: Pi Haase

5 4 3 2 1 – 0 30 10 20 40 50 0

Effective electric field

Applied electric field (kV/cm)

E_{eff} (GV/cm)

Aim:

Perform the most accurate calculation of the effective electric field, a crucial parameter for the eEDM measurement

Current status:

Relativistic coupled cluster in combination with the finite field method. Dependence on various input parameters is currently being tested. The goal is to reach a theoretical accuracy of ~ 1%.

Plans for 2018:

- Identify underlying mechanisms
 leading to high E_eff
- Can we disentangle sources of eEDMs?

First results from theory: the effective electric field PhD student: Pi Haase

Aim:

Perform the most accurate calculation of the effective electric field, a crucial parameter for the eEDM measurement

Current status:

Relativistic coupled cluster in combination with the finite field method. Dependence on various input parameters is currently being tested. The goal is to reach a theoretical accuracy of $\sim 1\%$.

Plans for 2018:

- Identify underlying mechanisms leading to high E_eff
- Can we disentangle sources of eEDMs?

First results from theory: transition probabilities and linestrengths PhD student: Yongliang Hao

Potential energy curves

These accurate calculations incorporate electron correlation and relativistic effects.

Calculation of spectroscopic constants - compare to experiments

Determination of Franck-Condon factors and transition dipole moments

> Essential input for efficient laser cooling and molecule detection schemes

First results from theory: transition probabilities and linestrengths PhD student: Yongliang Hao

Calculated Franck-Condon factors

Proposed laser cooling scheme

Experiment construction: Labs @ VSI

6 m

Magnetic field testlab

Experimental focus in 2017:

- Molecular beam source development (supersonic and cyrogenic) _
- Decelerator high voltage upgrade _

Main laserlab

Interaction zone design _

Electron-EDM lab

10 m

EDM laserlab

Pump- and Compressoriab

Experiment construction: Supersonic source PhD student: Parul Agarwal

Aim:

Identify the best way to produce an intense beam of BaF molecules

Current status:

Testing new supersonic value and target rotation mechanism with SrF

Plans for 2018:

Use this supersonic beam to do first spectroscopy on BaF molecules

Experimental setup to test and optimize BaF beam production

Experiment construction: Cryogenic source PhD student: Kevin Esajas, Maarten Mooij

Experiment construction: Cryogenic source PhD student: Kevin Esajas, Maarten Mooij

Experiment construction: Cryogenic source PhD student: Kevin Esajas, Maarten Mooij

Cold cell, design in collaboration with Imperial College London

Aim:

Build the most intense BaF molecular beam source possible

Current status:

Source @ VSI almost complete, setting up 2nd source @ VUA

Characterising the source heat loads with cooldown tests

Plans for 2018:

Combine cryogenic source with decelerator @ VSI, optimise BaF @ VUA

Measured time-of-flight profiles

Aim:

Demonstrate efficient deceleration of heavy diatomic molecules

Current status:

Identified loss mechanism, related to shape of high-voltage waveform. Solution: cool the beam source.

Plans for 2018:

Trap SrF molecules, then move to BaF. Upgrade of high-voltage electronics

Prototype transformer dec 2017

Aim:

Demonstrate efficient deceleration of heavy diatomic molecules

Current status:

Identified loss mechanism, related to shape of high-voltage waveform. Solution: cool the beam source.

Plans for 2018:

Trap SrF molecules, then move to BaF Upgrade of high-voltage electronics

Experiment construction: Interaction zone PhD student: Thomas Meijknecht

Aim:

Design and construct an interaction zone that controls the magnetic field at the 50 pT level, while applying a strong electric field.

Current status:

Performing COMSOL simulations on electric and magnetic fields, testing active and passive magnetic field shielding

Plans for 2018:

Complete design, use BaF molecular beam for first tests

Experiment construction: Interaction zone PhD student: Thomas Meijknecht

Experiment construction: Interaction zone PhD student: Thomas Meijknecht

Schematic overview of the interaction zone design

Test setup for active magnetic field compensation

0.2

-0.1

 Λ 7

0.Z

Conclusions Good progress on all fronts: strongly integrated program of theory and experiment

Cryogenic source

Connections to other programs

On physics: Providing new ingredients for a global (beyond) the Standard Model analysis, complementing LHC experiments

On experimental techniques: Optics, interferometers, measuring small forces

eed Steven Hoekstra

university of groningen

van swinderen institute for particle physics and gravity

Scientific staff:

Anastasia Borschevsky Rick Bethlem Steven Hoekstra Klaus Jungmann Rob Timmermans Wim Ubachs _orenz Willmann

Technical staff:

Oliver Böll Leo Huisman Ruud Kluit Paul Timmer Ronald Buijs

PhD students: Parul Aggarwal Kevin Esajas Pi Haasse Yongliang Hao Thomas Meijknecht Maarten Mooij Artem Zapara

Master students: (2017)

Jeroen Maat Janna de Wit

Bachelor students (2017)

Mark Buisman **Rutget Hof** Jeroen Muller Hidde Makaske Kees Steinebach Pieter van Vliet Cornelis Zandt

Nik hef VU

VRIJE UNIVERSITEIT AMSTERDAM

