eEDM

Steven Hoekstra

Scientific staff:
Anastasia Borschevsky
Rick Bethlem
Steven Hoekstra
Klaus Jungmann
Rob Timmermans
Wim Ubachs
Lorenz Willmann
Technical staff:
Oliver Böll
Leo Huisman
Ruud' Kluit
Paul Timmer
Ronald Buijs
PhD students:
Parul Aggarwal
Kevin Esajas
Pi Haasse
Yongliang Hao
Thomas Meijknecht
Maarten Mooij
Artem Zapara

Master students: (2017)

Jeroen Maat
Janna de Wit

Bachelor students

 (2017)Mark Buisman Rutget Hof
Jeroen Muller Hidde Makaske Kees Steinebach
Pieter van Vliet
Cornelis Zandt

eEDM

Steven Hoekstra

Scientific staff:
Anastasia Borschevsky
Rick Bethlem
Steven Hoekstra
Klaus Jungmann
Rob Timmermans
Wim Ubachs
Lorenz Willmann
Technical staff:
Oliver Böll
Leo Huisman
Ruud' Kluit
Paul Timmer Ronald Buijs

PhD students:
Parul Aggarwal
Kevin Esajas

- Pi Haasse

Yongliang Hao
Thomas Meijknecht
Maarten Mooij
Artem Zapara

Master students:
(2017)

Jeroen Maat
Janna de Wit

Bachelor students

(2017)

Mark Buisman Rutget Hof
Jeroen Muller
Hidde Makaske
Kees Steinebach
Pieter van Vliet
Cornelis Zandt
All started in 2017!

Is the electron round?

The Electric Dipole Moment of the electron (eEDM)

Next-generation experiment with cold molecules

How to measure a dipole moment?

precession!

However, also magnetic dipole moment (and charge!)

Effective electric field

Solution:
use electron embedded in a polar molecule!

We have selected BaF

Increasing the eEDM sensitivity

Measure energy shift that correlates with electric field direction reversal

Combining three recent experimental breakthroughs:

1) Cryogenic source
2) Stark deceleration
3) Molecular laser cooling

Using BaF molecules, we can create a very intense, slow and cold beam

Highlights of 2017:

The team is growing
First results from theory Experiment under construction

June 2017: eEDM kick-off Meeting

12-17 June 2107, eEDM program kickoff meeting and international summerschool, Ameland "Low-energy precision measurements of physics beyond the standard model"

First results from theory: understanding our molecule

Barium: 56 electrons
Fluorine: 9 electrons
Mass: 156 amu

BaF: 1 valence electron Nuclear spin 1/2

Poster summarising energy levels

$11151.638 \mathrm{~J}=3 / 2 \cdots$

$\mathrm{A}^{\prime 2} \Delta_{3 / 2}$
$v=0$

Electronic states

H	- 315852
G	
F	
$E^{2} \Sigma^{+}$	28142.2
$\mathrm{D}^{\prime 2} \Sigma^{+}$	27327:3-27352.3*
$\mathrm{D}^{2} \Sigma^{+}$	

Unless indicated otherwise, energies are given in cm^{-1}.

* The energies of the $\mathrm{E}^{\prime \prime}{ }^{2} \Pi$ states are calculated assuming fine structure constants of 50 and $100 \mathrm{~cm}^{-1}$,
corresponding to energies of 27327.31 and $27352.31 \mathrm{~cm}^{-1}$ respectively. The energy of the $\mathrm{E}^{\prime} 2 \Pi$ state is $27389.47 \mathrm{~cm}^{-1}$.
** Since lambda-doubling in the $\mathrm{A}^{\prime 2} \Delta_{5 / 2}$-state is very small ($<1 \mathrm{~Hz}$), energies for individual levels are not given.

First results from theory: sensitivity to external fields Master student: Jeroen Maat

First results from theory: the effective electric field

PhD student: Pi Haase

Aim:

Perform the most accurate calculation of the effective electric field, a crucial parameter for the eEDM measurement

Current status:

Relativistic coupled cluster in combination with the finite field method. Dependence on various input parameters is currently being tested. The goal is to reach a theoretical accuracy of $\sim 1 \%$.

Plans for 2018:

- Identify underlying mechanisms leading to high E_eff
- Can we disentangle sources of eEDMs?

First results from theory: the effective electric field

PhD student: Pi Haase

Aim:

Perform the most accurate calculation of the effective electric field, a crucial parameter for the eEDM measurement

Current status:

Relativistic coupled cluster in combination with the finite field method. Dependence on various input parameters is currently being tested. The goal is to reach a theoretical accuracy of $\sim 1 \%$.

Plans for 2018:

- Identify underlying mechanisms leading to high E_eff
- Can we disentangle sources of eEDMs?

First results from theory: transition probabilities and linestrengths PhD student: Yongliang Hao

Calculation of spectroscopic constants - compare to experiments

Determination of Franck-Condon factors and transition dipole moments

Essential input for efficient laser cooling and molecule detection schemes

Potential energy curves
These accurate calculations incorporate electron correlation and relativistic effects.

First results from theory: transition probabilities and linestrengths
PhD student: Yongliang Hao

Calculated Franck-Condon factors

Proposed laser cooling scheme

Experiment construction:

Experiment construction: Supersonic source

 PhD student: Parul Agarwal
Aim:

Identify the best way to produce an intense beam of BaF molecules

Current status:

Testing new supersonic valve and target rotation mechanism with SrF

Plans for 2018:

Use this supersonic beam to do first spectroscopy on BaF molecules

Experimental setup to test and optimize BaF beam production

Experiment construction: Cryogenic source

PhD student: Kevin Esajas, Maarten Mooij

Experiment construction: Cryogenic source

PhD student: Kevin Esajas, Maarten Mooij

Experiment construction: Cryogenic source

PhD student: Kevin Esajas, Maarten Mooij

Cold cell, design in collaboration with Imperial College London

Characterising the source heat loads with cooldown tests

Aim:

Build the most intense BaF molecular beam source possible

Current status:

Source @ VSI almost complete, setting up 2nd source @ VUA

Plans for 2018:

Combine cryogenic source with decelerator @ VSI, optimise BaF @ VUA

Experiment construction: Molecule deceleration

PhD student: Artem Zapara

Experiment construction: Molecule deceleration

PhD student: Artem Zapara

Experiment construction: Molecule deceleration

PhD student: Artem Zapara

Experiment construction: Molecule deceleration

PhD student: Artem Zapara

Aim:

Demonstrate efficient deceleration of heavy diatomic molecules

Current status:

Identified loss mechanism, related to shape of high-voltage waveform.
Solution: cool the beam source.

Plans for 2018:

Trap SrF molecules, then move to BaF. Upgrade of high-voltage electronics

Experiment construction: Molecule deceleration

PhD student: Artem Zapara

Prototype transformer dec 2017

Aim:

Demonstrate efficient deceleration of heavy diatomic molecules

Current status:

Identified loss mechanism, related to shape of high-voltage waveform.
Solution: cool the beam source.

Plans for 2018:

Trap SrF molecules, then move to BaF Upgrade of high-voltage electronics

Experiment construction: Interaction zone

PhD student: Thomas Meijknecht

Aim:

Design and construct an interaction zone that controls the magnetic field at the 50 pT level, while applying a strong electric field.

Current status:

Performing COMSOL simulations on electric and magnetic fields, testing active and passive magnetic field shielding

Plans for 2018:

Complete design, use
BaF molecular beam for first tests

Experiment construction: Interaction zone

PhD student: Thomas Meijknecht

Schematic overview of the interaction zone design

Experiment construction: Interaction zone

PhD student: Thomas Meijknecht

Electric field homogeneity calculations

Test setup for active magnetic field compensation

Schematic overview of the interaction zone design

Conclusions

Good progress on all fronts: strongly integrated program of theory and experiment

Connections to other programs

On physics:
Providing new ingredients for a global (beyond) the Standard Model analysis, complementing LHC experiments

On experimental techniques:
Optics, interferometers, measuring small forces

eEDM

Steven Hoekstra

Scientific staff:
Anastasia Borschevsky
Rick Bethlem
Steven Hoekstra
Klaus Jungmann
Rob Timmermans
Wim Ubachs
Lorenz Willmann
Technical staff:
Oliver Böll
Leo Huisman
Ruud' Kluit
Paul Timmer
Ronald Buijs
PhD students:
Parul Aggarwal
Kevin Esajas
Pi Haasse
Yongliang Hao
Thomas Meijknecht
Maarten Mooij
Artem Zapara

Master students: (2017)

Jeroen Maat
Janna de Wit

Bachelor students

 (2017)Mark Buisman Rutget Hof
Jeroen Muller Hidde Makaske Kees Steinebach
Pieter van Vliet
Cornelis Zandt

