

Work Packages and WP Leads

ORGANIGRAM

Fast-timing Sensors

M. v. Beuzekom
WP 1.1
Hybrid
3D Sensors

H. Snoek
WP 1.2
Hybrid
LGAD Sensors

E. Dall'Occo
WP 1.3
CMOS
MAPS

Monolithic Active
Pixel Sensor (MAPS)

ASICs

M. Fransen
WP 2.2
ASICs for
MAPS Sensors

J. Sonneveld
WP 2.1
ASICs for
Hybrid sensors

Readout Systems

M. Wu
WP 3.1
DAQ
Highspeed Data
Transmission

A. Pellegrino
WP 3.2
DAQ

Mechanics & Cooling

A. Grelli
WP 4.1
Ultralight
Module
Construction

K. Akiba
WP 4.2
Cooling
Systems

W. Hulsbergen
WP 4.3
Detector
Mechanics &
Infrastructure

Accelerated Computing

R. Aaji
WP 5.1
Accelerators

D. Groep
WP 5.2
Algorithms

WP Deliverables

WP1.1: fully validated hybrid 3D sensors with 50 ps time resolution and non-uniform radiation profile

WP1.2: fully validated LGAD sensors with 50 ps time resolution and improved radiation tolerance

WP1.3: fully validated CMOS MAPS architecture, with 2.5 μm space resolution and 50 ps time resolution

WP2.1: ASIC design for hybrid sensors towards full ASIC production, meeting the extreme radiation requirement of 1.2 Grad, capable of sustaining data rates above 80 Gbit/s/cm² and of achieving time-stamping with a target resolution of 35 ps

WP2.2: final design of the logic circuitry for CMOS MAPS for full production, capable of achieving time-stamping with 50 ps resolution, sustaining a hit rate of 35 MHz cm⁻² and a per-link data rate of 14 Gbit/s and with a power consumption below 100 mW cm⁻²

WP3.1: fully validated fast link hardware capable of speeds in excess of 10.24 Gb/s

WP3.2: hardware and firmware of state-of-the-art FPGA boards for control, data acquisition and processing, capable of sustaining the throughput of up to 48 fast data links and a total throughput of 480 Gbit/s

WP4.1: fully completed modular structures integrating sensors/ ASIC with state-of-the-art cooling substrates, like 3Dprinted titanium, aluminum, ceramic, or printed silicon carbide

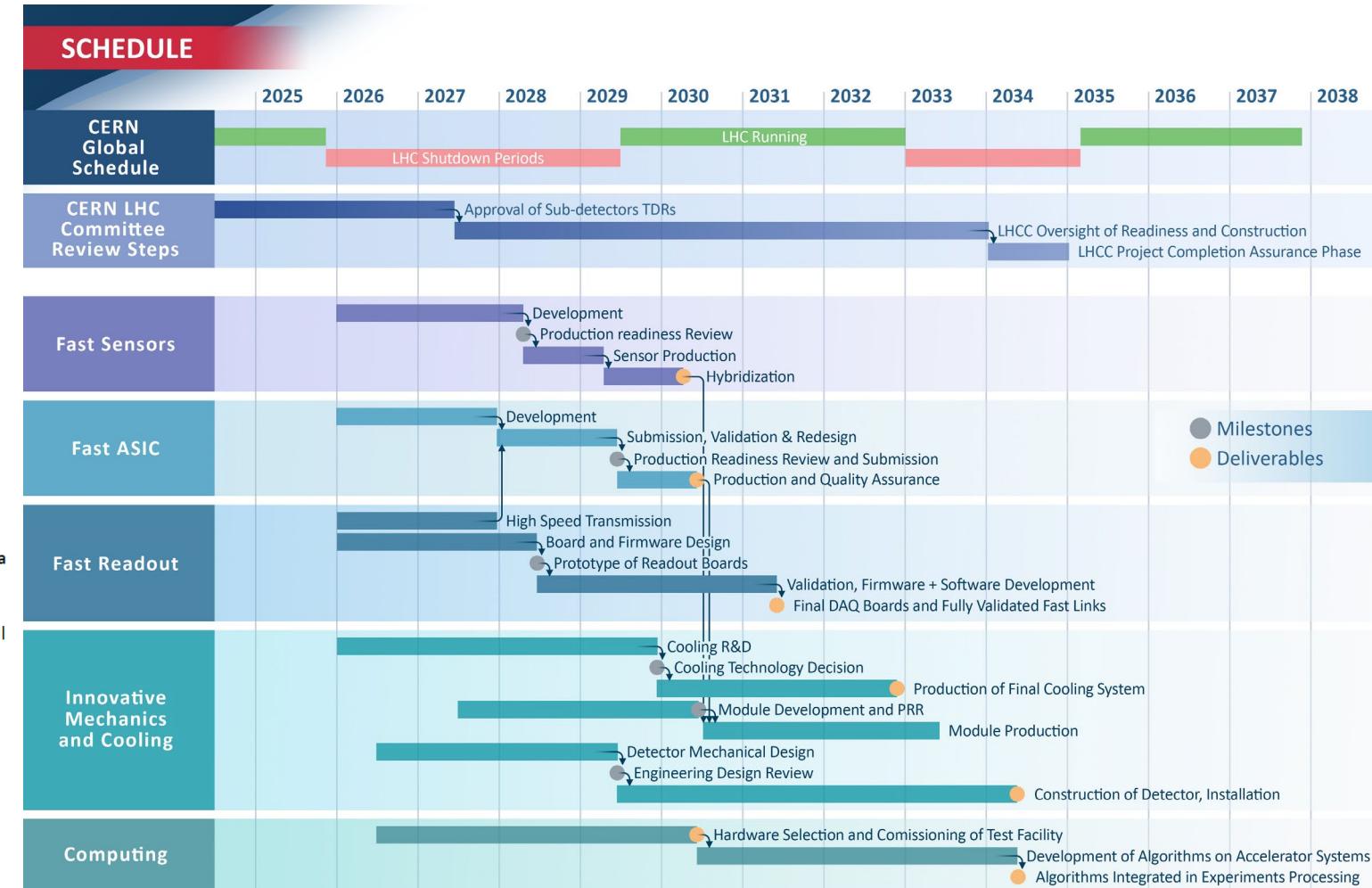
WP4.2: last-generation cooling systems ready to be integrated in the operating detectors, capable of reaching stable temperatures below -40 °C

WP4.3: the components of the detector mechanical infrastructure, ready for the final assembly at the experimental site, with minimal material (less than 0.07% of a radiation length) between the beam line and the detector, and novel solutions for powering scheme (serial or optical powering)

WP5.1: facility (8 host servers connected through a fast network) to validate and scale up data-processing pipelines that integrate commercial GPU and FPGA accelerator boards with AI inference engines

WP5.2: deep-learning-based pattern recognition algorithms optimized to run on computing on large accelerator systems integrated in the experiments processing pipelines

Schedule & Milestones


Milestones – The most relevant milestones to realize the deliverables of the project are shown in the Gantt chart in fig. 21. They have been matched to the overall project schedules for the realization of the ALICE, ATLAS and LHCb tracking systems, shown at the top of the Gantt chart. The overall LHC schedule alternates data-taking periods and long shutdowns to increase the luminosity. The LHC is currently in a data-taking period, with two long shutdowns planned for 2026-2028 and 2033-2034, respectively. In the first shutdown, the new ATLAS inner tracking system (ITk) and the HGTD detector will be installed; in the second shutdown, the innermost ring of HGTD sensors will be replaced and the new LHCb and ALICE tracking systems will be installed. The harvesting of physics results will continue until 2041.

In sect. 5 (technical aspects)
these are further worked out, e.g.:

The main WP1.1 deliverable is the production of sensors for the LHCb VELO detector. In total, 700 sensors are needed. The production schedule takes into account that sensors must be ready in an early phase of the project, in time to be installed in the modular mechanical structures (see section 5.1.4). An important milestone of WP1.1 is the sensor Production Readiness Review (PRR) expected by the end of 2026.

Currently, Nikhef and CERN participate in prototyping a test ASIC as a proof-of-concept to achieve time-stamping with a target resolution of 35 ps. The main milestone of WP2.1 is the ASIC design submission by early 2027. After a full validation and irradiation campaign, the final ASIC, which is the WP2.1 deliverable, will be produced by 2028.

cm⁻² or below. The main milestone of WP2.2 is the submission of the ASIC by the beginning of 2027. After a full validation and irradiation campaign, the final ASICs will be produced by 2028. This is the WP2.2 deliverable.

Financial Overview

Table 2: Total project costs to the Netherlands.

Total project costs (€)		Capital investment (€)	Running costs (€)	Total (€)
Requested NWO contribution		21,737,333	0	21,737,333
In kind contribution consortium		26,053,474	5,500,000	31,553,474
Cash contribution consortium		0	0	0
Total contribution consortium		26,053,474	5,500,000	31,553,474
Total project costs		47,790,807	5,500,000	53,290,807

Table 4: Overview of the Netherlands' share of material costs, split by work packages.

Non-personnel costs (€)		Contributor	Capital investment (€)	Running costs (€)	Total (€)	Year(s)
WP1.1 3D Hybrids	NWO		2,230,000	0	2,230,000	2026-2035
WP1.2 LGAD Hybrids	NWO		1,000,000	0	1,000,000	2026-2035
WP1.3 Monolithic	NWO		2,400,000	0	2,400,000	2026-2035
WP2.1 Hybrid ASICs	NWO		3,460,000	0	3,460,000	2026-2035
WP2.2 Monolithic	NWO		600,000	0	600,000	2026-2035
WP3.1 High-Speed Trans.	NWO		1,000,000	0	1,000,000	2026-2035
WP3.2 Data Acquisition	NWO		1,740,000	0	1,740,000	2026-2035
WP4.1 Module Construction	NWO		1,838,000	0	1,838,000	2026-2035
WP4.2 Cooling	NWO		1,050,000	0	1,050,000	2026-2035
WP4.3 Mechanics & Infrastruct.	NWO		2,780,000	0	2,780,000	2026-2035
WP5.1 Accelerators	NWO		3,139,333	0	3,139,333	2026-2035
WP5.2 Algorithms	NWO		500,000	0	500,000	2026-2035
Travel costs	Nikhef		524,000	0	524,000	2026-2035
Membership fees (M&O cat. A)	Nikhef		0	3,500,000	3,500,000	2026-2035
Membership fees (M&O cat. B)	Nikhef		0	2,000,000	2,000,000	2026-2035
Total contribution NWO			21,737,333	0	21,737,333	2026-2035
Total contribution Nikhef			524,000	0	6,024,000	2026-2035
Total material costs			22,261,333	5,500,000	27,761,333	2026-2035

Table 3: Overview of the Netherlands' share of personnel costs, split by work packages.
All costs are capital investments (no running costs), contributed by Nikhef.

Personnel costs (€)	Contributor	Capital investment (€)	Running costs (€)	Total (€)	Year(s)
WP1.3D Hybrids	Nikhef	709,062	0	709,062	2026-2035
WP1.2 LGAD Hybrids	Nikhef	164,898	0	164,898	2026-2035
WP1.3 Monolithic	Nikhef	205,573	0	205,573	2026-2035
WP2.1 Hybrid ASICs	Nikhef	2,663,377	0	2,663,377	2026-2035
WP2.2 Monolithic	Nikhef	199,253	0	199,253	2026-2035
WP3.1 High-Speed Transmission	Nikhef	3,134,490	0	3,134,490	2026-2035
WP3.2 Data Acquisition	Nikhef	2,522,372	0	2,522,372	2026-2035
WP4.1 Module Construction	Nikhef	3,861,094	0	3,861,094	2026-2035
WP4.2 Cooling	Nikhef	1,799,630	0	1,799,630	2026-2035
WP4.3 Mechanics & Infrastructure	Nikhef	8,467,720	0	8,467,720	2026-2035
WP5.1 Accelerators	Nikhef	664,708	0	664,708	2026-2035
WP5.2 Algorithms	Nikhef	1,137,297	0	1,137,297	2026-2035
Total contribution NWO		0	0	0	
Total contribution Nikhef		25,529,474	0	25,529,474	
Total personnel costs		25,529,474	0	25,529,474	

Table 5: Estimated total cost for the entire FASTTRACK lifespan (science harvesting costs are not included).

Lifespan cost (k€)	Contributor	Yr 1-10 (k€)	Yr 11-16 (k€)	Yr 17 (k€)	Total (k€)
Overview of all costs to the Netherlands for the entire lifespan of ALICE/ATLAS/LHCb					
FASTTRACK material costs	NWO	21,737			21,737
FASTTRACK personnel costs	Nikhef	25,530			25,530
FASTTRACK travel costs	Nikhef	524	122		646
FASTTRACK maintenance costs	Nikhef		1,200		1,200
FASTTRACK dismantling costs	Nikhef			47	47
Membership fees ALICE/ATLAS/LHCb	Nikhef	5,500	3,300		8,800
Total costs to the Netherlands		53,291	4,622	47	57,960
Core costs for ALICE/ATLAS/LHCb upgrade - does not include personnel, travel and membership fees					
Material costs to upgrade ALICE/ATLAS/LHCb for the HL-LHC	All ATLAS/ALICE/LHCb institutions	570,000			570,000