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Motivation @

® | got a DFG grant to look at FASER neutrino measurements with SBI.
Postdoc will be hired to (partially) work on this.
® We should at least vaguely do what | promised, and avoid doing things twice

® collider neutrino measurements are sensitive to various phenomena affecting
neutrino production, propagation and interaction

® neutrino event rates and kinematic distributions depend on all of these effects

® flux and interaction phenomena must be constrained together

® requires a coherent framework that simultaneously describes both neutrino
production and interactions, and inference tools to constrain them



Likelihood Function rd3cr

® CC neutrino event characterized by an interaction vertex position X and the
observed momenta and flavors pepsfor the final state lepton and hadrons

® The distribution of events in a theory, characterized by parameters 6, is then
described by a likelihood function p(x,pobs|O)

p(x, pobslngefvea) ~ ZFI/(Xv pu‘OF) X fi(Pi|(9f) X da(PpartonWa) X R(pobs|Pparton) :

v,

PDF Hard Scattering Hadronization
Youravorte POWHEG Pythia

® Example questions to address:
- How well can we constrain PDFs in presence of flux uncertainties!?
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Review: Simulation and Measurement
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parameters simulation observables inference estimator/uncertainty

all physics is encoded in the likelihood function f(x|0):
likelihood of an observation x as a function in a theory 6

If we know f(x|6), we can calculate likelihood ratio and do likelihood ratio test.



Review: Simulation and Measurement@

How can we compute the likelihood function?
sophisticated tools model parts of process
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we obtain events distributed according to f(x|0) interesting observables x

we cannot calculate f(x|0)

learn likelihood from simulated data - likelihood free inference
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Traditional Method: Histograms

analyze one carefully chosen variable
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— ignore all the information in rest of the data

Matrix-Element Method: q q

— .
use matrix element information, approximate detector with w7 . a
transferfunction p(x|z) and calculate the integral directly. o &
w,zS H oz e
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— big integral with thousands of dimensions



Method @

p(x, pObS|9Fv9f190') ~ ZFI/(Xr Pz/|0F) X f;'(Pi|9f) X da(pparton|ga) X R(pobs|pparton) .

v,i

® |dea: If p(x,pobs|O0) were known, we could calculate likelihood ratio (LR) and do a
likelihood ratio test

® Problem: p(x,pobs|©) not calculable.

® Solutions:
- binned histogram based analysis: loses information loss
- matrix-element method: approximates approximates parton shower, hadronization
and detector response in a way that is calculable

- SBI: infer p(x,pobs|8) using ML

Fu(x, pl0F.1) fi(pil0f,1) do(pparton|0s,1) this is calculable
FI/(Xv PV|0F,O) fi(pi|‘9f,0) dU(Pparton|90,0)

r(x, Pobs pparton|011 90) —

v
r(X, Pobs|61, 00) can be used to infer LR



MadMiner Method

FASER

a Particle Physi&
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minimized by
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Parameter: Top Higgs Interaction
Simulation Machine Learning Interpretation

NS

MadMiner automatizes this method

MadMiner: Machine learning-based inference for particle physics

O github.com/diana-hep/madminer A PYP!  pip install madminer



Method rdSen

® Work to be done:
- interface MadMiner method/code with POWHEG (instead with MadGraph)
- deal with negative wights due to NLO: implement unweighting
- fast detector simulation (partially done)

® Sensitivity estimates trivial due to Cramer Rao Bound

CA8) > (1) 1i(6) = E 310gpfu€1i({ﬂ3}|9) 3logpf1;1;({x}|9) ‘9]

- how information is distributed over phase space,
- identify the most useful observables,
- compare the sensitivity of multivariate and traditional analysis strategies



Applications @

® How well can we constrain PDFs in presence of flux uncertainties!?
® Can we see IC/low-x effects in presence of other uncertainties
® Sterile neutrino oscillations!?

® New Tau-philic BSM effects? NSI?

Framework can be used for various things. So let’s build it with this in mind.
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