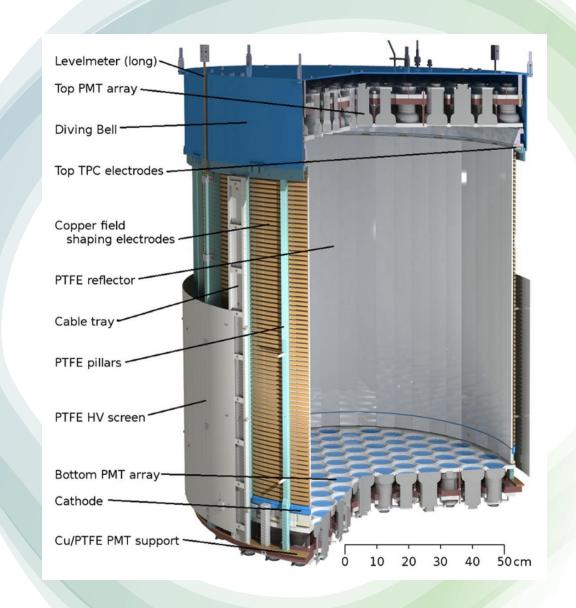

# The XENON program

This program is a long-term, multi-stage effort to directly detect dark matter using dual-phase liquid xenon time projection chambers

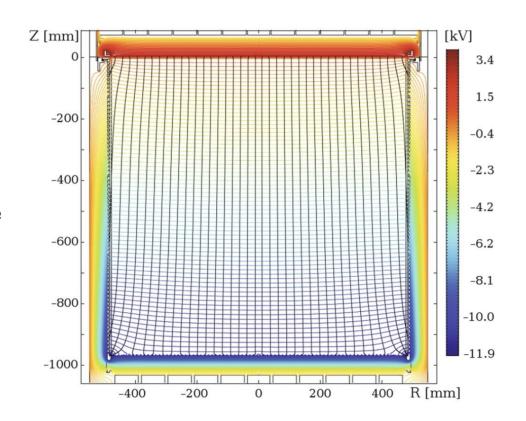
- XENON10:
  - demonstrated the capabilities that define all later detectors:
    - TPC
    - Production of two distinct signals: prompt scintillation (S1) and proportional scintillation (S2) from ionization electrons extracted into the gas phase
    - Xenon ultrapure
  - set the first competitive limit on WIMPs
- XENON100:
  - increased the xenon mass
  - lowered radioactive backgrounds:
    - selecting ultraclean materials
    - adding an active xenon veto around the TPC
  - improved sensitivity by nearly two orders of magnitude
- XENON1T:
  - the first tonne-scale liquid xenon detector
  - water tank that served as a powerful shield against muon-induced and environmental backgrounds
  - set the world's best limits on WIMP interactions

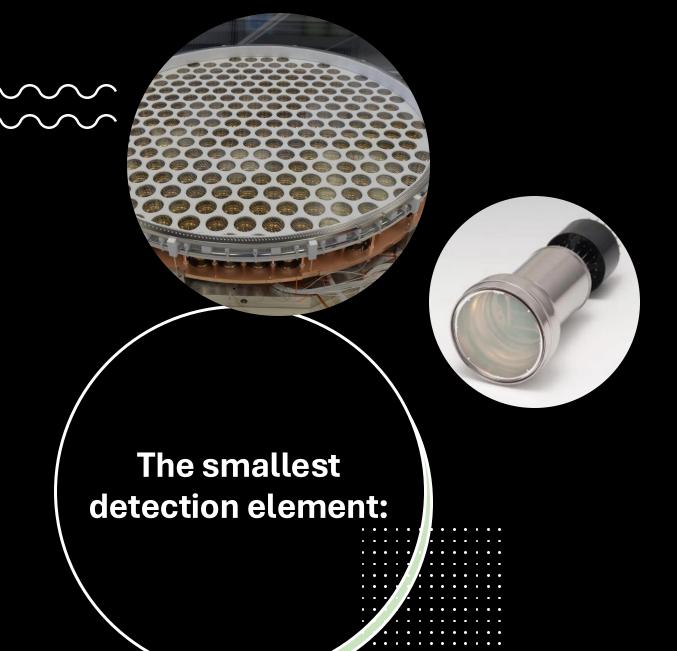

## • XENONnT:

- the highest purity ever reached in such a detector
- has achieved the lowest background levels ever measured in a dark matter



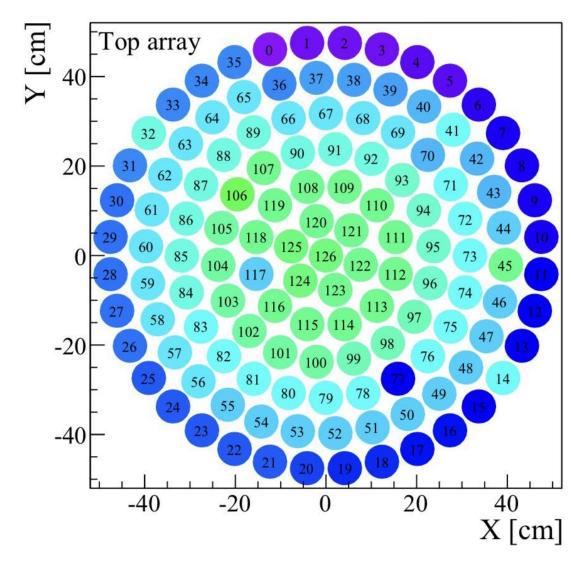
## Time Projection Chamber (TPC)


- central sub-detector
- to detect and precisely characterize the extremely rare energy depositions that might be produced by dark matter interactions.
- converts every particle interaction occurring in liquid xenon into two measurable observables to reconstruct the deposited energy
- Purpose:
  - measurement
  - Discrimination
- All higher-level detectors (the water tank, the neutron veto, the distillation systems) support the TPC reducing backgrounds



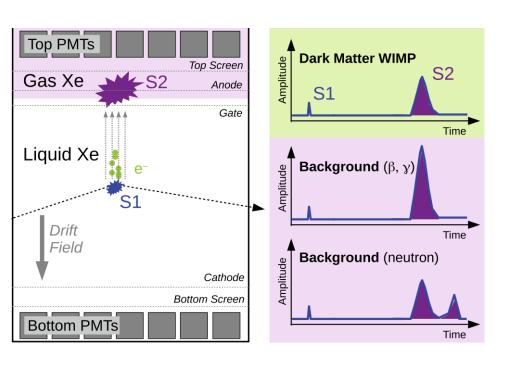

## The main quantity to be measured:

The main quantity measured by this subdetector are:


- energy of the interaction
  - derived from S1 and S2, not directly mesured
- 2. three-dimensional position
  - From temporal difference of S1 S2 signal = drift time
  - x-y from S2 light on top PMT array
- 3. type of interacion
  - Electronic recoil —> background
  - Nuclear recoil —> possible WIMP (or neutrons)
  - By S2/S1 ratio (low)
- These quantities—energy, position, and recoil type—are the essential physical observables needed for dark-matter searches






- the smallest detection elements is the individual photomultiplier tubes (PMTs): Hamamatsu R11210-21
- 248 PMTs for the top and 248 for the bottom(253 + 241PMTs for XENONnT)
- They detect ultraviolet photons
- distributed across a top and a bottom array,
  - Top: reconstruction of x-y
  - Bottom: S1, improve energetic resolution, define fiducia volume
- particle interacts —> produces an S1 scintillation flash —> S2 electroluminescence signal in the gas above the liquid

- The large number of PMTs allows the detector to measure:
  - the total light
  - the spatial distribution of photons, especially in the S2 signal
- the basic microscopic unit of measurement is the single-photon detection at each PMT
- the increased PMT count
  - improved optical coverage
  - reconstruction of energy and position more accurate and reliable



This figure shows the top PMT array in X–Y coordinates. Each circle is a PMT, and the color/size represents the amount of S2 light recorded.

## The physical phenomenon the detecting technology is based on




scintillation and ionization

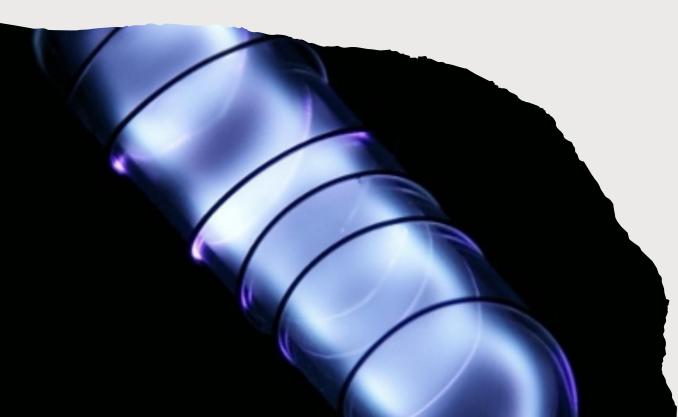
particle deposits energy in liquid xenon —> excites xenon atoms —> form short-lived excimers (Xe\*\_2)

- Xe\* + Xe --> Xe\*<sub>2</sub>->2Xe + hv
- that decay by emitting vacuum-ultraviolet scintillation photons (178 nm)—> S1 signal
- Simultaneously—> ionization of xenon atoms —> free electrons that drift upward under a uniform electric field.
- field pulls the electrons produced from xenon ionization into the gas phase
- they collide with xenon atoms and generate electroluminescence light—> S2 signal

efficiency enhanced by the excellent optical properties of xenon and the PTFE reflectors that line the TPC walls, maximizing the collection of scintillation light

## The use of detector information




## The readout begins with the PMTs

- digitize the waveform of every detected photon—> reconstruction software
  - identify individual pulses, measure their integrals, and apply position-dependent corrections
- corrected signals:
  - cS1-> scintillation signal corrected
  - cS2 —> ionization signal corrected
- converted into energies and 3D positions

#### After reconstruction:

- events are statistically as electronic or nuclear recoils based on their location in the S2/S1 plane
- data-quality cuts + fiducial volume cuts + veto coincidences to remove background-like events
- the remaining candidate events are analyzed using high-level statistical techniques
- repeated calibration cycles and comparisons with fast detector simulations to validate

# Materials used in the program



### Liquid xenon:

- it scintillates and ionizes efficiently
- high density (3 g/cm³) and large atomic number (Z=54)
  provide powerful self-shielding against external radiation

### Action on particles:

- Neutrons: elastic scattering
- Charged particles: stopped (alpha in um, electrons mmcm)
- neutrinos and WIMPs: traverse the detector with minimal attenuation
- most γ and β backgrounds: absorbed or multiple scatterings in the outer layers of the xenon

The materials surrounding the TPC strengthen this effect:

- PTFE reflectors improve light collection and contributing to the moderation of low-energy particles
- copper cryostat —> gamma and slow neutrons absorption
- large water —>provides additional absorption, moderation of muons and neutrons, works as Cherenkov veto

## Key performance numbers

## **Background rate:**

- quantifies how many non-dark-matter events are expected per unit mass, time, and energy
- 16.1 ± 1.3 events/(ton·year·keV)
- the lowest ever measured in a darkmatter detector and one of the defining performance achievements

| Background source                                | Туре | Rate $[(t \times y)^{-1}]$ | Mitigation approach                                                           |
|--------------------------------------------------|------|----------------------------|-------------------------------------------------------------------------------|
| <sup>222</sup> Rn (10 μBq/kg)                    | ER   | 620                        | Material selected for low<br>Rn-emanation; ER rejection                       |
| Solar pp- and <sup>7</sup> Be-neutrinos          | ER   | 36                         | ER rejection                                                                  |
| <sup>85</sup> Kr (0.36 ppt of <sup>nat</sup> Kr) | ER   | 56                         | Cryogenic distillation; ER rejection                                          |
| $2\nu\beta\beta$ of <sup>136</sup> Xe            | ER   | 9                          | ER rejection                                                                  |
| Material radioactivity                           | ER   | 30                         | Material selection; ER and multiple scatter rejection; fiducialization        |
| Radiogenic neutrons                              | NR   | 0.55                       | Material selection; multiple scatter rejection; fiducialization               |
| CNNS (mainly solar <sup>8</sup> B-neutrinos)     | NR   | 0.6                        | _                                                                             |
| Muon-induced neutrons                            | NR   | < 0.01                     | Active Cherenkov veto [44];<br>multiple scatter rejection;<br>fiducialization |

#### **Electron lifetime:**

- The electron lifetime is the average time an ionization electron can drift in liquid xenon before being captured by impurities
- exceeds 2 ms (10 ms for XENONnT) thanks to the new liquid purification technology
- ensures that ionization electrons can drift over the full height of the TPC without being captured by impurities (maintaining high energy and position resolution)



## Impurity level

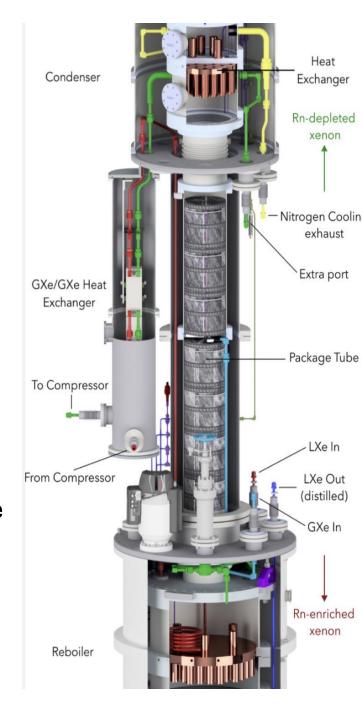
• 10^-9 (O2-equivalent)

## **Quantum efficiency of the PMT**

- Probability that an incident photon produces a detectable photoelectron
- at 187 nm: 30% of the Xenon wavelength
- one third of the e- is a signal

# The operational conditions

## cryogenic conditions:


keeping xenon in the liquid phase at -96
 °C

### controlled electric fields:

- Cathode -12kV / -8 kV
- Gate 0kV
- Anode +4 kV / 5kV
- Drift field 120V/cm/ 90 V/cm
- a uniform drift field across the liquid xenon volume
- a stronger extraction field at the interface

## Pression stable:

• around 1.6-2.0 bar



supporting systems needed to maintain stable operation:

- continuous xenon circulation through rare-gas purifiers to remove electronegative impurities
- krypton removal via a cryogenic distillation column
- radon removal using a high-flow distillation system
- calibration campaigns with internal sources to track spatial response variations, electrode distortions, and light-collection effects
- The TPC is also operated inside a large water tank that acts as a passive shield and, in XENONnT



## Sources:

• XENON Collaboration . "The XENON1T Dark Matter Experiment." European Physical Journal C, vol. 77, 2017, article 881. DOI: 10.1140/epjc/s10052-017-5326-3.

- XENON Collaboration. "The XENONnT Dark Matter Experiment." European Physical Journal C 82, 322 (2022). DOI: 10.1140/epjc/s10052-022-10328-3
- XENON Collaboration. "Dark Matter Search Results from a One Ton-Year Exposure of XENON1T." Physical Review Letters 121, 111302 (2018). DOI: 10.1103/PhysRevLett.121.111302