

Micro dispensing/ SixNy resistivity

Fred Hartjes NIKHEF

Nikhef/Bonn LepCol meeting February 27, 2017

Micro dispensing

- Grid voltage connection
 - Conductive glue
- Problems
 - $< 200 \, \mu m$ dyke width
 - Glue into hole gives fatal shotcut
- Using 202 µm OD dispensing needle
 - 100 µm ID
- Probe for micro manipulation

System operates!

Using Traduct silver glue
Sufficient flow through needle at 2 bar

Resistivity measurement

- Front contact by liquid mercury
- Back contact with stainless steel cylinder
- Vacuum pump pushes the mercury against the sample
- Kidney shaped contact area of about 19 mm²

Kindly offered by J. Schmitz, MESA+, TU Twente

Resistance protection layer

- For practical reasons plotted in Ω/mm^2
- Using 4 µm layer thickness
 - TPX1 has ~10 x higher resistivity than dummy
 - Dummy has 100% pad size
- Comparing at TPX1 4 μm vs 8 μm
 - Factor 2 difference in slope expected using these plot scales
 - But less than factor 2 slope difference observed
 - => geometrical effect
 - For small potentials (< 100 V) 4 and 8 μm have ~same resistivity

Resistivity per mm² of protection layers vs the applied potential

Measured with Hg probe negative potential on layer surface measured on August 15, 2016 and Feb 7-17, 2017 Fred Hartjes, Nikhef

Comparing 4 µm SixNy at TPX3 to TPX1

Resistivity per mm² of protection layers vs the applied potential

All layers 4 μm SixNy Measured with Hg probe negative potential on layer surface measured on Feb 7-21, 2017 Fred Hartjes, Nikhef

- TPX3 still smaller pads than TPX1
 - Resistivity TPX3 still ~4 x higher than for TPX1
 - 40 x compared to dummy
- => it would be wise to increase the pad size of TPX3 during post processing

