Electro-Weak Symmetry Breaking in the Light of LHC Data

Manfred Lindner

The Standard Model

= success of renormalizable local quantum field theories in d=4

Note: GR is non-renormalizable – this is bad...

...maybe good: QFT's cannot explain scales \rightarrow other concepts \rightarrow expl. scales

Look carefully at the SM as a QFT

- The SM itself (without embedding) is a QFT like QED
 - infinities, renormalization only differences are calculable
 - SM itself is perfectly OK → many things unexplained...
- New or special features
 - Higgs field (scalar), potential & SSB
 - fermion masses via Yukawa couplings → no explicit fermion masses ←→ reps
 - besides μ no scale \Rightarrow all masses: $g*VEV \Rightarrow$ one scale theory
 - hierarchy problem?
 - Renormalizable QFT \rightarrow no cutoff $\Lambda \rightarrow$ physics of an embedding
 - Two scalars ϕ , Φ ; masses m, M and a mass hierarchy m << M
 - $\varphi^+\varphi$ and $\Phi^+\Phi$ are singlets $\Rightarrow \lambda_{mix}(\varphi^+\varphi)(\Phi^+\Phi)$ must exist
- Quantum corrections ~M² drive both masses to the heavy scale
 - **→** two vastly different scalar scales are generically unstable

 \rightarrow not a SM problem $\leftarrow \rightarrow$ embedding with a 2nd much heavier scalar

SM:Triviality and Vacuum Stability

Is the Higgs Potential at M_{Planck} flat?

Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia

Notes:

- remarkable relation between weak scale, m_t , couplings and $M_{Planck} \leftarrow \rightarrow$ precision
- strong cancellations between Higgs and top loops
 - \rightarrow very sensitive to exact value and error of m_{H_t} , m_{t_t} , α_s = 0.1184(7) \rightarrow currently 1.8 σ in m_t
- other physics: DM, m_v ... axions, ...Planck scale thresholds... $SM+ \leftarrow \rightarrow \lambda = 0$
- \rightarrow top mass errors: data $\leftarrow \rightarrow$ LO-MC \rightarrow translation of $m_{pole} \rightarrow$ MS bar
- → be cautious about claiming that metastability is established

Is there a Message?

- $\lambda(M_{Planck}) \simeq 0$? \rightarrow flat potential at M_{planck}
 - → flat Mexcican hat at the Planck scale

• if in addition $\mu^2 = 0 \implies V(M_{Planck}) \simeq 0$?

(Remember: μ is the only single scale of the SM)

- → conformal symmetry as potential solution to the HP
- Conceptual aspects
- Realizations & implications for neutrino masses

Reasons to go Beyond the Standard Model

Theoretical:

SM does not exist without cutoff (triviality, vacuum stability)

Gauge hierarchy problem
Gauge unification, charge quantization
Strong CP problem
Unification with gravity

Global symmetries & GR anomalies Why: 3 generations, representations, d=4, many parameters

Experimental facts:

- Electro weak scale << Planck scale
- Gauge couplings almost unify
- Neutrino masses & large mixings
- Flavour: Patterns of masses & mixings
- Baryon asymmetry of the Universe
- Dark Matter
- Inflation
- Dark Energy

Weak Scale SUSY works very good

SM: couplings do not unify

MSSM: perfect! → turn the LHC an and let's see...

Why not extend the SM and add SUSY later?

→ Think of extensions which are super-symmetrized or extended later + a reason why the EW scale is (somewhat) lower

- e.g. left-right symmetric extensions of SM
- add SUSY at Λ_{LR}
- scenarios where one scalar (=SM Higgs) is lighter
- unification should occur
 - $igorup ext{above proton decay scale} \qquad au_p \sim rac{M_{ ext{GUT}}^4}{m_p^5}$
 - **→** below Planck scale or at M_{Pl} would be even nice...

RGEs

$$16\pi^2 \frac{dg_i(t)}{dt} = b_i [g_i(t)]^3 \Rightarrow \alpha_i^{-1}(t) = \alpha_i^{-1}(t_0) - \frac{1}{2\pi} b_i (t - t_0)$$

$$b_i = \sum_R s(R) T_i(R) - \frac{11}{3} C_{2i}. \quad \text{(non-SUSY models)}$$

$$b_i = \sum_R T_i(R) - 3 C_{2i}. \quad \text{(SUSY models)}$$

1-loop, no thresholds, no detailed spectrum

GUT - U(1) normalization: SM, MSSM→GUT =20/3 LR=8/3

→ matching at LR-scale

$$\alpha_{1,LR}(M_{LR}) = \frac{2}{5} \frac{\alpha_{1,SM}(M_{LR}) \alpha_2(M_{LR})}{\alpha_2(M_{LR}) - \frac{3}{5}\alpha_{1,SM}(M_{LR})}$$

Add arbitrary new Particles -> RGE's

MSSM rep.	$b_1^{ m new}$	$b_2^{ m new}$	$b_{\mathrm{S}}^{\mathrm{new}}$
(Y,1,1)	$0.15Y^{2}$	0	0
(Y, 2, 1)	$0.3Y^{2}$	0.5	0
(Y, 3, 1)	$0.45Y^{2}$	2	0
(Y, 4, 1)	$0.6Y^2$	5	0
(Y, 5, 1)	$0.75Y^{2}$	10	0
(Y, 6, 1)	$0.9Y^2$	17.5	0
(Y, 7, 1)	$1.05Y^{2}$	28	0
(Y, 1, 3)	$0.45Y^{2}$	0	0.5
(Y, 2, 3)	$0.9Y^{2}$	1.5	1
(Y, 3, 3)	$1.35Y^{2}$	6	1.5
(Y, 4, 3)	$1.8Y^{2}$	15	2
(Y, 5, 3)	$2.25Y^{2}$	30	$^{2.5}$
(Y, 6, 3)	$2.7Y^{2}$	52.5	3
(Y, 7, 3)	$3.15Y^{2}$	84	3.5

- numbers for chiral super fields \rightarrow non-SUSY x1/3 or x2/3 for scalars/fermions
- b₁ includes GUT normalization factor 3/20
- new physics at 1 TeV or later → look for unification

SUSY-LR Model with intermediate B-L

Perturbativity & Unification w/o SUSY

Perturbativity & Unification with SUSY

Lessons

- Extensions of the SM require corresponding scalar degrees of freedom required to break these extra symmetries → problems: Landau poles, no unification, proton decay, Planck scale...
- Does not improve with SUSY: # of bosons vs. fermions SUSY balances Λ^2 terms, but not $\ln \Lambda$ terms
 - E.g. LR-SUSY → bi-doublet, triplets, superpartners and duplication to avoid anomalies
 - \rightarrow many fields where Λ^2 , but not $\ln(\Lambda)$ terms cancel
- Low lying SUSY in its minimal form works best
 - → look for it! ... But what if it would not show up?

Conformal Symmetry & EW Symmetry Breaking

Conformal Symmetry as Protective Symmetry

- Exact (unbroken) CS
 - \rightarrow absence of Λ^2 and $\ln(\Lambda)$ divergences
 - **→** no preferred scale and therefore no scale problems
- Conformal Anomaly (CA): Quantum effects explicitly break CS existence of CA → CS preserving regularization does not exist
 - dimensional regularization is close to CS and gives only $ln(\Lambda)$
 - cutoff reg. \rightarrow Λ^2 terms; violates CS badly \rightarrow Ward Identity
 - **Bardeen:** maybe CS still forbids Λ² divergences
 - \rightarrow CS breaking $\leftarrow \rightarrow \beta$ -functions $\leftarrow \rightarrow \ln(\Lambda)$ divergences
 - **→** anomaly induced spontaneous EWSB

NOTE: asymmetric logic! The fact the dimensional regularization kills a Λ^2 dependence is well known. Argument goes the other way!

Looking at it in different Ways...

- Basics of QFT: Renormalization $\leftarrow \rightarrow$ commutator
 - $[\Phi(X),\Pi(y)] \sim \delta^3(x-y)$ delta funtion distribution
 - freedom to define $\delta^*\delta \rightarrow$ renormalization $\leftarrow \rightarrow$ counterterms
 - along come technicalities: lattice, Λ, Pauli-Villars, MS-bar, ...
- Reminder: Technicalities do not establish physical existence!
- Conceptiully most clear → BPHZ-renormalization
- Symmetries are essential!

Question: Is gauge symmetry spoiled by discovering massive gauge bosons? → NO ←→ Higgs mechanism

- **→** non-linear realization of the underlying symmetry
- **→** important consequence: naïve power counting is wrong

Gauge invariance → only log sensitivity

Versions of QCD...

- QCD with massless (chrial) fermions
 - **→** gauge + conformal symmetry
 - \rightarrow dimensional transmutation \rightarrow $\Lambda_{\rm QCD}$ (2 scales: $<\bar{\bf q}{\bf q}>$, $<{\bf G}{\bf G}>$)
 - → reference scale; everything else is scale ratios
 - \rightarrow no Λ^2 sensitivity there is no other physical scale!
 - **→** no hierarchy problem

Question: Do fundamental theories require absolute scales?

Why not everything in relative terms?

Don't blame a theory forthe scale problems which you invented in your head (a lattice, a cutoff, ...)

Important: The conformal anomaly

 $\leftarrow \rightarrow$ dimensional transmutation $\leftarrow \rightarrow \beta$ -fcts. $\leftarrow \rightarrow \log s$

Now massless scalar QCD...

- Massless scalar field instead of chiral fermions
- Gauge and conformal symmetry
- Technically there seems to be a Λ^2 divergence
 - **→** but this has no meaning since (if) there is no other explicit physical reference scale
- Dimensional transmutation $\rightarrow \Lambda_{\rm QCD}$
 - → reference scale; everything else is scale ratios
 - \rightarrow conformal anomaly \rightarrow β -functions \rightarrow only logs

Relict of conformal symmetry

→ only log sensitivity

Implications

Gauge invariance → only log sensitivity

If conformal symmetry is realized in a non-linear way → protective relic of conformal symmetry → only log sensitivity

- No hierarchy problem, even though there is the the conformal anomaly = logs $\leftarrow \rightarrow \beta$ -functions
- Dimensional transmutation due to log running like in QCD
 - **→** scalars can condense and set scales like fermions
 - ⇒ use this in Coleman Weinberg effective potential calculations \leftarrow ⇒ most attractive channels (MAC) \leftarrow ⇒ β -functions

Implementing the Ideas at different Levels

→ at all levels: non-linear realization of conformal symmetry

Further general Comments

- New (hidden) sector ←→ DM, neutrino masses, ...
- Question: Isn't the Planck-Scale spoiling things?
- → non-linear realization... → conformal gravity...

ideas: see e.g. 1403.4226 by A. Salvio and A. Strumia ... K. Hamada, 1109.6109, 0811.1647, 0907.3969, ...

- Question: What about inflation? see e.g. 1405.3987 by K. Kannike, A. Racioppi, M. Raidal or 1308.6338 by V. Khoze
- Unification ...
- UV stability: ultimate solution should be asymptotically safe (have UV-FPs) ... \rightarrow U(1) from non-abelian group
- Justifying classical scale invariance
 - **\rightarrow** cancel the conformal anomaly
 - → nature of space time & observables...

Let's try to implement the idea...

Why the minimalistic SM does not work

Minimalistic:

SM + choose μ = 0 \longleftrightarrow CS

Coleman Weinberg: effective potential

- **→** CS breaking (dimensional transmutation)
- → induces for m_t < 79 GeV</p>
 a Higgs mass m_H = 8.9 GeV

This would conceptually realize the idea, but:

Higgs too light and the idea does not work for $m_t > 79$ GeV

Reason for $m_H \ll v$: V_{eff} flat around minimum

$$\leftrightarrow$$
 m_H ~ loop factor ~ $1/16\pi^2$

AND: We need neutrino masses, dark matter, ...

Realizing the Idea via Higgs Portals

- SM scalar Φ plus some new scalar φ (or more scalars)
- CS → no scalar mass terms
- the scalars interact $\rightarrow \lambda_{mix}(\phi^+\phi)(\Phi^+\Phi)$ must exist
 - \rightarrow a condensate of $\langle \varphi^+ \varphi \rangle$ produces $\lambda_{mix} \langle \varphi^+ \varphi \rangle (\Phi^+ \Phi) = \mu^2 (\Phi^+ \Phi)$
 - \rightarrow effective mass term for Φ
- CS anomalous ... \rightarrow breaking \rightarrow only $\ln(\Lambda)$
 - \rightarrow implies a TeV-ish condensate for φ to obtain $\langle \Phi \rangle = 246$ GeV
- Model building possibilities / phenomenological aspects:
 - ϕ could be an effective field of some hidden sector DSB
 - further particles could exist in hidden sector; e.g. confining...
 - extra hidden U(1) potentially problematic $\leftarrow \rightarrow$ U(1) mixing
 - avoid Yukawas which couple visible and hidden sector
 - → phenomenology safe due to Higgs portal, but there is TeV-ish new physics!

Realizing this Idea: Left-Right Extension

M. Holthausen, ML, M. Schmidt

Radiative SB in conformal LR-extension of SM

(use isomorphism $SU(2) \times SU(2) \simeq Spin(4) \rightarrow representations)$

particle parity ${\cal P}$		\mathbb{Z}_4	$\operatorname{Spin}(1,3)\times (\operatorname{SU}(2)_L\times \operatorname{SU}(2)_R)\times (\operatorname{SU}(3)_C\times \operatorname{U}(1)_{B-L})$				
$\mathbb{L}_{1,2,3} = \left(egin{array}{c} L_L \ -\mathrm{i} L_R \end{array} ight)$	$P\mathbb{PL}(t,-x)$	$L_R o \mathrm{i} L_R$	$\left[\left(\frac{1}{2},\underline{0}\right)(\underline{2},\underline{1}) + \left(\underline{0},\frac{1}{2}\right)(\underline{1},\underline{2})\right](\underline{1},-1)$				
$\mathbb{Q}_{1,2,3} = \left(egin{array}{c} Q_L \ -\mathrm{i}Q_R \end{array} ight) \ \left egin{array}{c} P\mathbb{P}\mathbb{Q}(t,-x) \end{array} ight.$		$Q_R o -\mathrm{i} Q_R$	$\left[\left(\underline{\frac{1}{2}},\underline{0}\right)(\underline{2},\underline{1}) + \left(\underline{0},\underline{\frac{1}{2}}\right)(\underline{1},\underline{2})\right]\left(\underline{3},\frac{1}{3}\right)$				
$\Phi = \left(egin{array}{cc} 0 & \Phi \ - ilde{\Phi}^\dagger & 0 \end{array} ight)$	$\mathbb{P}^{\Phi^{\dagger}}\mathbb{P}(t,-x)$	$\Phi \to \mathrm{i} \Phi$	$(\underline{0},\underline{0})\ (\underline{2},\underline{2})\ (\underline{1},0)$				
$\Psi = \left(egin{array}{c} \chi_L \ -\mathrm{i}\chi_R \end{array} ight)$	$\mathbb{P}\Psi(t,-x)$	$\chi_R \to -\mathrm{i}\chi_R$	$(\underline{0},\underline{0})\left[(\underline{2},\underline{1})+(\underline{1},\underline{2})\right](\underline{1},-1)$				

- → the usual fermions, one bi-doublet, two doublets
- \rightarrow a \mathbb{Z}_4 symmetry
- \rightarrow no scalar mass terms $\leftarrow \rightarrow$ CS

→ Most general gauge and scale invariant potential respecting Z4

$$\begin{split} \mathcal{V}(\Phi, \Psi) &= \frac{\kappa_1}{2} \left(\overline{\Psi} \Psi \right)^2 + \frac{\kappa_2}{2} \left(\overline{\Psi} \Gamma \Psi \right)^2 + \lambda_1 \left(\mathrm{tr} \Phi^{\dagger} \Phi \right)^2 + \lambda_2 \left(\mathrm{tr} \Phi \Phi + \mathrm{tr} \Phi^{\dagger} \Phi^{\dagger} \right)^2 + \lambda_3 \left(\mathrm{tr} \Phi \Phi - \mathrm{tr} \Phi^{\dagger} \Phi^{\dagger} \right)^2 \\ &+ \beta_1 \, \overline{\Psi} \Psi \mathrm{tr} \Phi^{\dagger} \Phi + f_1 \, \overline{\Psi} \Gamma [\Phi^{\dagger}, \Phi] \Psi \; , \end{split}$$

- \rightarrow calculate V_{eff}
- → Gildner-Weinberg formalism (RG improvement of flat directions)
 - anomaly breaks CS
 - spontaneous breaking of parity, \mathbb{Z}_4 , LR and EW symmetry
 - m_H << v ; typically suppressed by 1-2 orders of magnitude Reason: $V_{\rm eff}$ flat around minimum
 - \leftrightarrow m_H ~ loop factor ~ $1/16\pi^2$
 - → generic feature → predictions
 - everything works nicely...

→ requires moderate parameter adjustment for the separation of the LR and EW scale... PGB...?

Rather minimalistic: SM + QCD Scalar S

J. Kubo, K.S. Lim, ML New scalar representation $S \rightarrow QCD$ gap equation:

$$C_2(S) lpha(\Lambda) \gtrsim X$$

 $C_2(\Lambda)$ increases with larger representations

 $\leftarrow \rightarrow$ condensation for smaller values of running α

30

Phenomenology

Figure 3. The S pair production cross section from gluon fusion channel is calculated for different value of m_S . The 95% confidence level exclusion limit on $\sigma \times BR$ for $\sqrt{s} = 7 \text{ TeV}$ by ATLAS is plotted. We assume 100% BR of $\langle S^{\dagger} S \rangle$ into two jets.

Realizing the Idea: Examples for other Directions

SM + extra singlet: Φ , φ

Nicolai, Meissner, Farzinnia, He, Ren, Foot, Kobakhidze, Volkas, ...

SM + extra SU(N) with new N-plet in a hidden sector

Ko, Carone, Ramos, Holthausen, Kubo, Lim, ML, (Hambye, Strumia), ...

SM embedded into larger symmetry (CW-type LR) Holthausen, ML, M. Schmidt

SM + colored scalar which condenses at TeV scale Kubo, Lim, ML

Since the SM-only version does not work \rightarrow observable effects:

- Higgs coupling to other scalars (singlet, hidden sector, ...)
- dark matter candidates ←→ hidden sectors & Higgs portals
- consequences for neutrino masses

Conformal Symmetry & Neutrino Masses

ML, S. Schmidt and J. Smirnov

- No explicit scale → no explicit (Dirac or Majorana) mass term
 → only Yukawa couplings ⊗ generic scales
- Enlarge the Standard Model field spectrum like in 0706.1829 R. Foot, A. Kobakhidze, K.L. McDonald, R. Volkas
- Consider direct product groups: SM ⊗ HS
- Two scales: CS breaking scale at O(TeV) + induced EW scale

Important consequence for fermion mass terms:

- → spectrum of Yukawa couplings ⊗ TeV or EW scale
- **→** interesting consequences ← → Majorana mass terms are no longer expected at the generic L-breaking scale → anywhere

Examples

$$\mathcal{M} = egin{pmatrix} 0 & y_D\langle H
angle \ y_D^T\langle H
angle & y_M\langle \phi
angle \end{pmatrix}$$

Yukawa seesaw:

$$ext{SM} + extstyle
otag _R + ext{singlet}
otag \\ \langle \phi
angle pprox ext{TeV}
otag \\ \langle H
angle pprox 1/4 ext{ TeV}
otag$$

- \rightarrow generically expect a TeV seesaw BUT: y_M might be tiny
- **→** wide range of sterile masses **→** includes pseudo-Dirac case

Radiative masses

The punch line: all usual neutrino mass terms can be generated

- → suitable scalars
- → no explicit masses all via Yukawa couplings
- → different numerical expectations

A Fresh Example: Inverse Seesaw

$$SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y} \times U(1)_{X}$$

1503.03066 P. Humbert, ML, J. Smirnov

	H	ϕ_1	ϕ_2	L	ν_R	N_R	N_L
$U(1)_X$	0	1	2	0	0	1	1
Lepton Number	0	0	0	1	1	0	0
$U(1)_Y$	1	0	0	-1	0	0	0
$SU(2)_L$		1	1	2	1	1	1

$$\mathcal{M} = \begin{pmatrix} 0 & y_D \langle H \rangle & 0 & 0 \\ y_D \langle H \rangle & 0 & y_1 \langle \phi_1 \rangle & \tilde{y}_1 \langle \phi_1 \rangle \\ 0 & y_1 \langle \phi_1 \rangle & y_2 \langle \phi_2 \rangle & 0 \\ 0 & \tilde{y}_1 \langle \phi_1 \rangle & 0 & \tilde{y}_2 \langle \phi_2 \rangle \end{pmatrix}$$

- → light eV "active" neutrino(s)
- →two pseudo-Dirac neutrinos; m~TeV
- \rightarrow sterile state with $\mu \approx keV$
- → Tiny non-unitarty of PMNS matrix
- → Tiny lepton universality violation
- → Suppressed 0νββ decay
- → Lepton flavour violation
- → Tri-lepton production at LHC
- → keV neutrinos as warm dark matter →

General Implications of CISS

- The usual expectation that sterile mass terms are automatically very heavy is no longer fulfilled
- VEVs heavy, but Yukawa couplings may be anything
- → any sterile spectrum natural
- →eV-evidences may or may not be correct
- → any sterile mass natural: eV, keV, MeV, GeV, TeV, ...
- → cosmology: avoid thermalization and HDM
- interesting theoretical and phenomenological options:
 - -TeV improved EW fits (Z-width, NuTeV, A_{LR}, ... Akhmedov, Kartavtsev, ML, Michels, J. Smirnov; Antusch, Fischer
- →- keV → warm dark matter

Implications 2: Options for Neutrino Mass Spectra

Usually:

M_I tiny or 0, M_R heavy → see-saw & variants light sterile: F-symmetries...

- → diagonalization: 3+N EV
- **→** 3x3 active almost unitary

$$M_L=0$$
, $m_D=M_W$, $M_R=$ high: see-saw

$$\mathbf{M}_{\mathrm{L}} = \mathbf{M}_{\mathrm{R}} = \mathbf{0}$$
 $\mathbf{M}_{\mathrm{L}} = \mathbf{M}_{\mathrm{R}} = \mathbf{\epsilon}$ Dirac pseudo Dirac

$$\mathbf{M}_{\mathrm{R}} = \mathbf{0}$$
 $\mathbf{M}_{\mathrm{L}} = \mathbf{M}_{\mathrm{R}} = \boldsymbol{\varepsilon}$ pseudo Dirac

3) Most minimalistic Sterile Neutrino Scenarios...

... see-saw spectrum may be rather different than usual. E.g. ...

Summary

- > SM (+m,+DM) works perfectly
- no other signs of new physics
- > The standard hierarchy problem suggests TeV scale physics ... which did (so far...) not show up
- Revisit how the hierarchy problem may be solved Embeddings into QFTs with classical conformal symmetry
 - SM: Coleman Weinberg effective potential excluded
 - extended versions → work!
 - → testable consequences @ LHC, DM search, neutrinos
 - important to measure Higgs self-coupling
- Next LHC run will in any case be exciting!