



# Life after academia: How a physicist can contribute to breast cancer detection

Ruud Peeters

**SCREENPOINT**  
Medical

# Contents

Personal background

Breast cancer and screening

AI in breast cancer screening

Company details

My daily work

Life in a company

# Background

2011 - 2016: Studied physics in Nijmegen

2016 - 2021: PhD in Groningen:

Part of Nikhef program Higgs as a Probe and Portal

2021 - now: Screenpoint Medical in Nijmegen

- AI Research Scientist
- AI Software Engineer

Aspects of fine-tuning in theories  
with extended scalar sectors



Ruud Peeters



# Breast cancer and screening

**SCREENPOINT**  
Medical

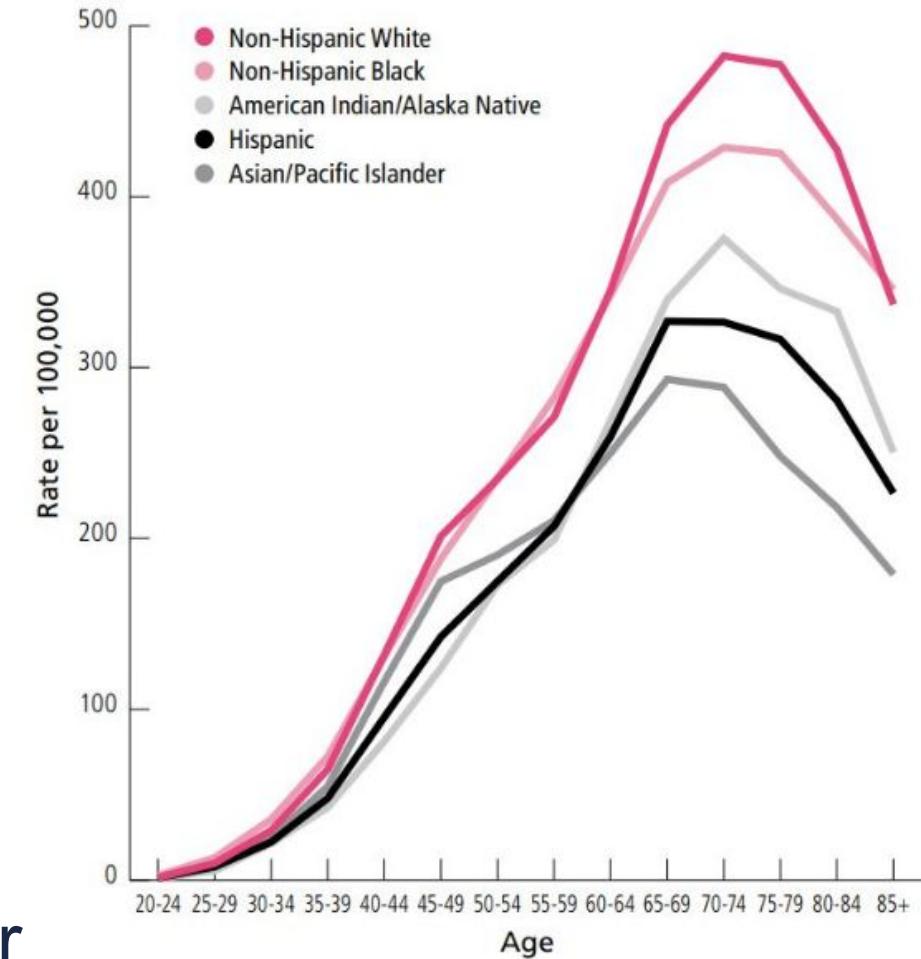
# Breast cancer

Most common cancer for women

1 in 8 women will develop breast cancer at some point in their lives

Early detection is critical:

90% average 5Y survival rate for non-metastatic invasive breast cancer



Note: Rates are per 100,000 and age adjusted to the 2000 US standard population.

Source: NAACCR, 2019. Data for American Indians/Alaska Natives are based on Purchased/Referred Care Delivery Area (PRCDA) counties.

©2019, American Cancer Society, Inc., Surveillance Research

# Breast cancer screening

Regular examination of healthy population

Screening is common in many countries nowadays

- 75M examinations worldwide per year
- Protocols vary by region
  - Age group ( ~50-75 years)
  - Interval (1-3 years)
  - Reading (Europe 2 radiologists, US 1 radiologist)

# Breast cancer screening

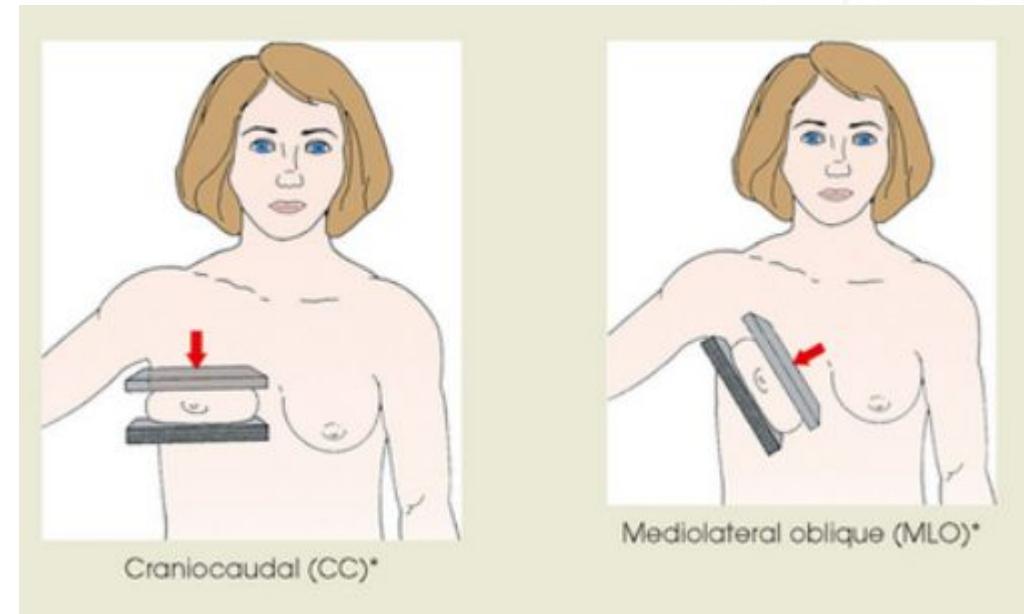
Suspicious finding: woman is recalled for further examination

- In the Netherlands: recall rate 2.35%
- Cancer incidence in screening populations about 0.5%

# Screening in practice

Mammography: X-ray images of breast tissue

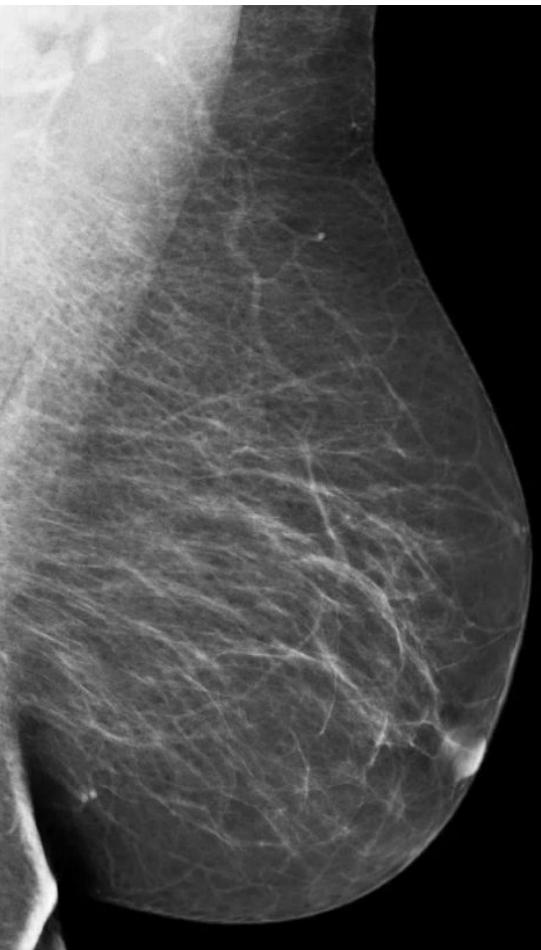
Two projections of each breast: CC/MLO



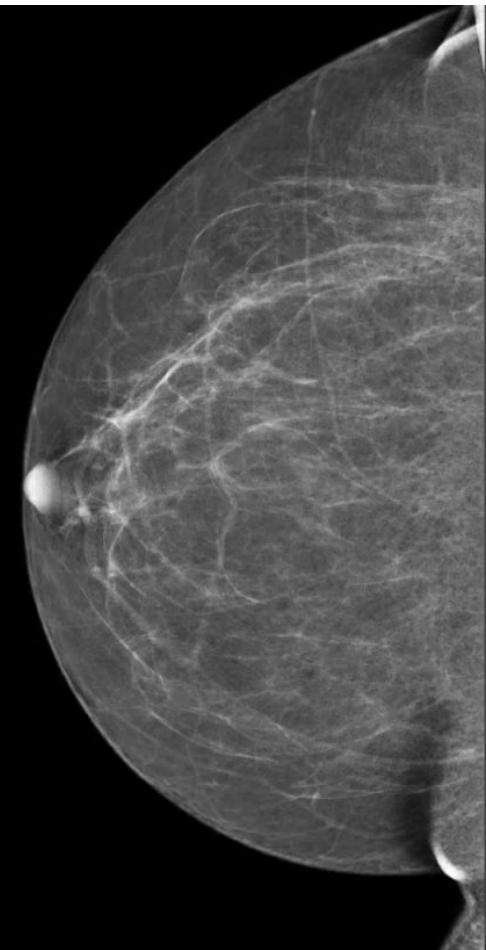
Right MLO



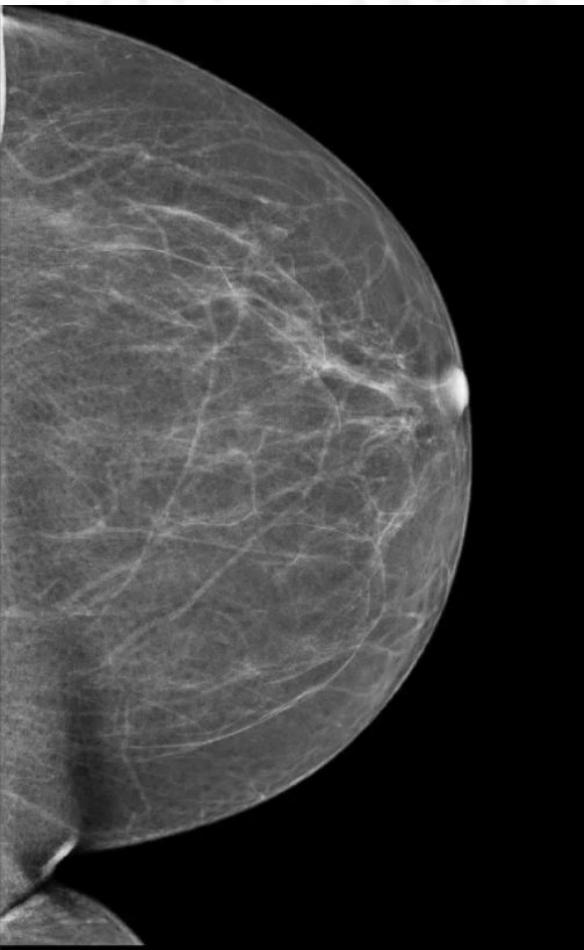
Left MLO



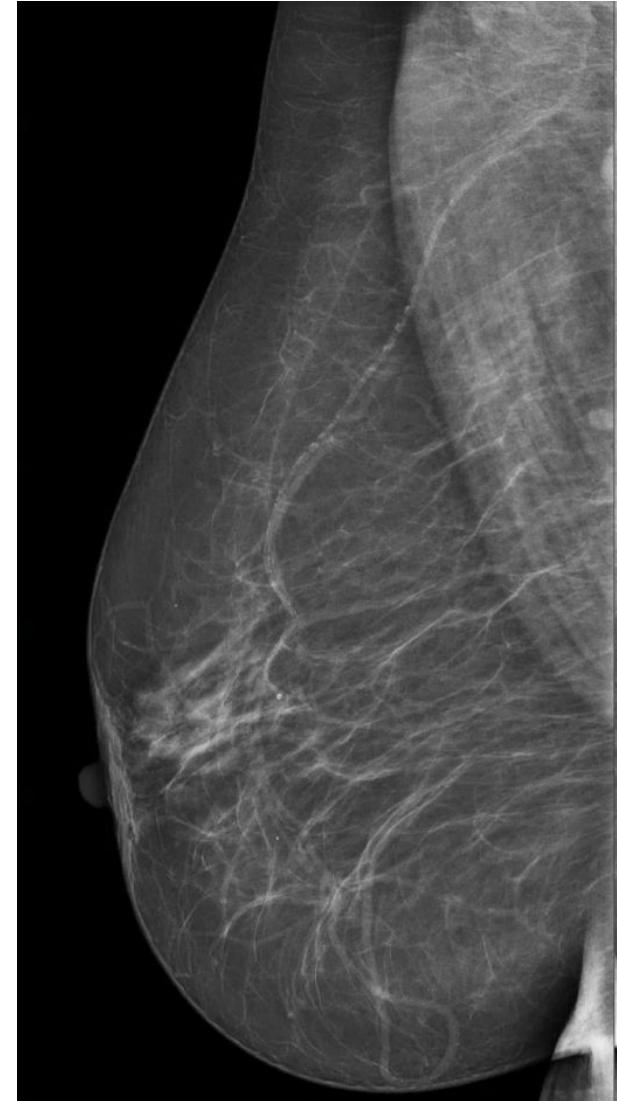
Right CC



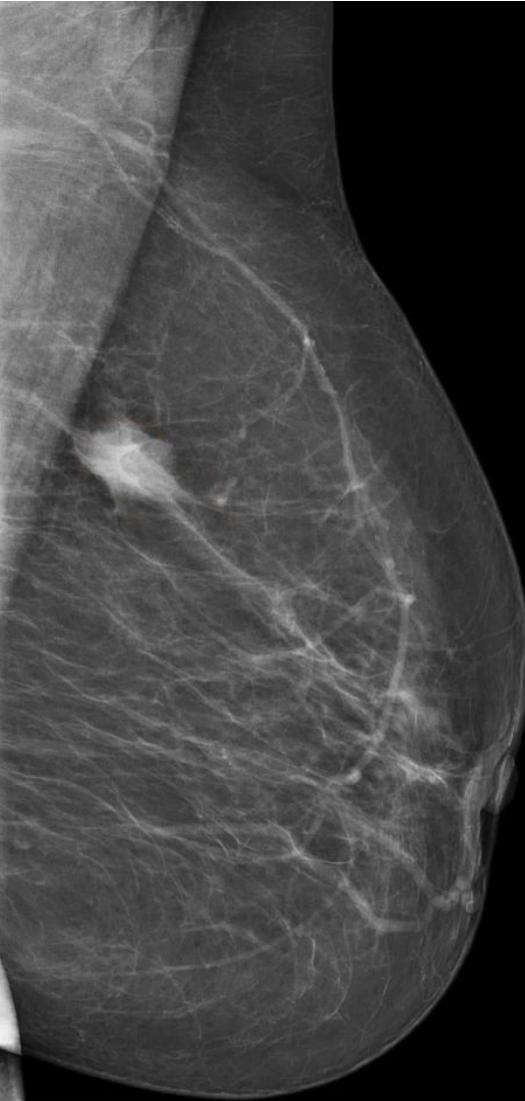
Left CC



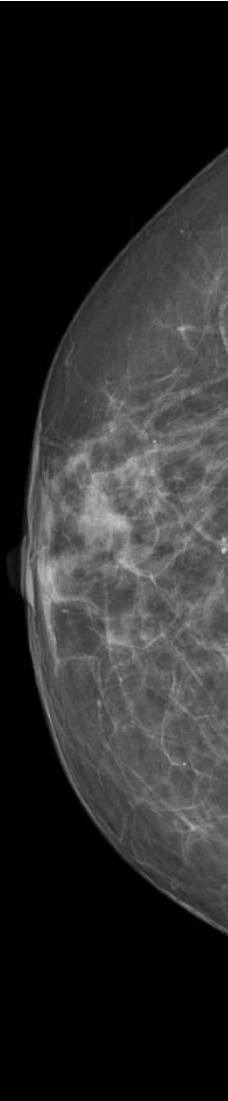
Right MLO



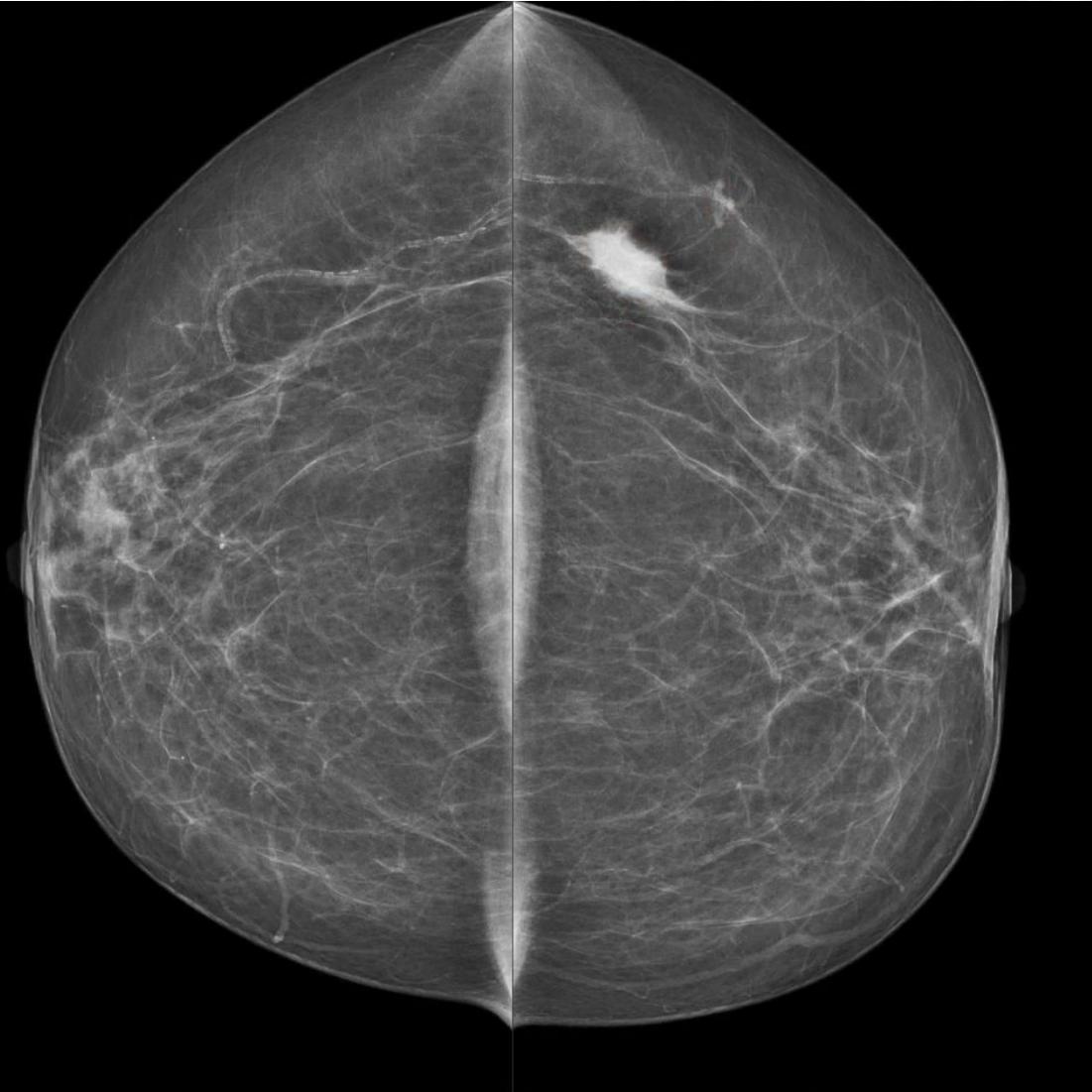
Left MLO



Right CC



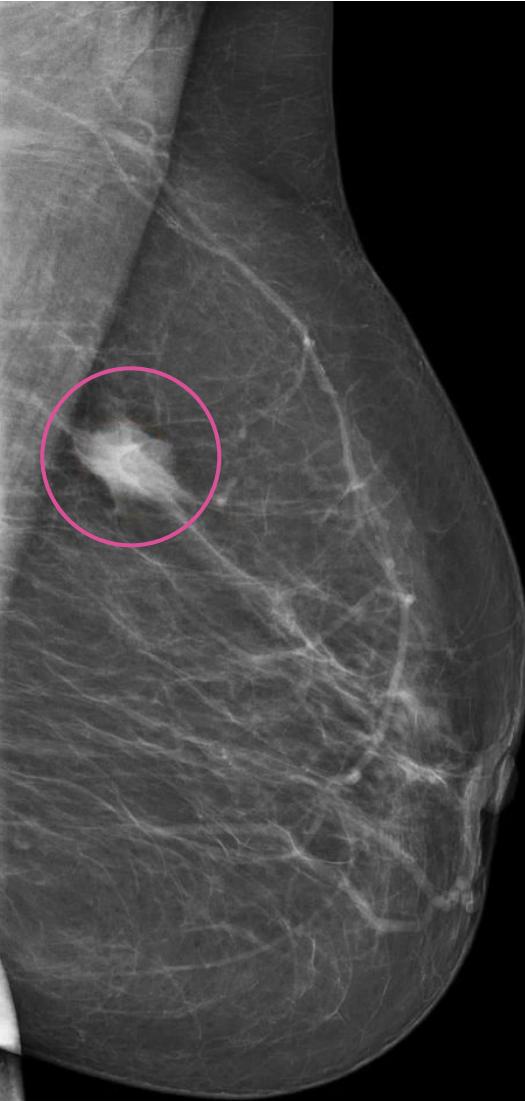
Left CC



Right MLO



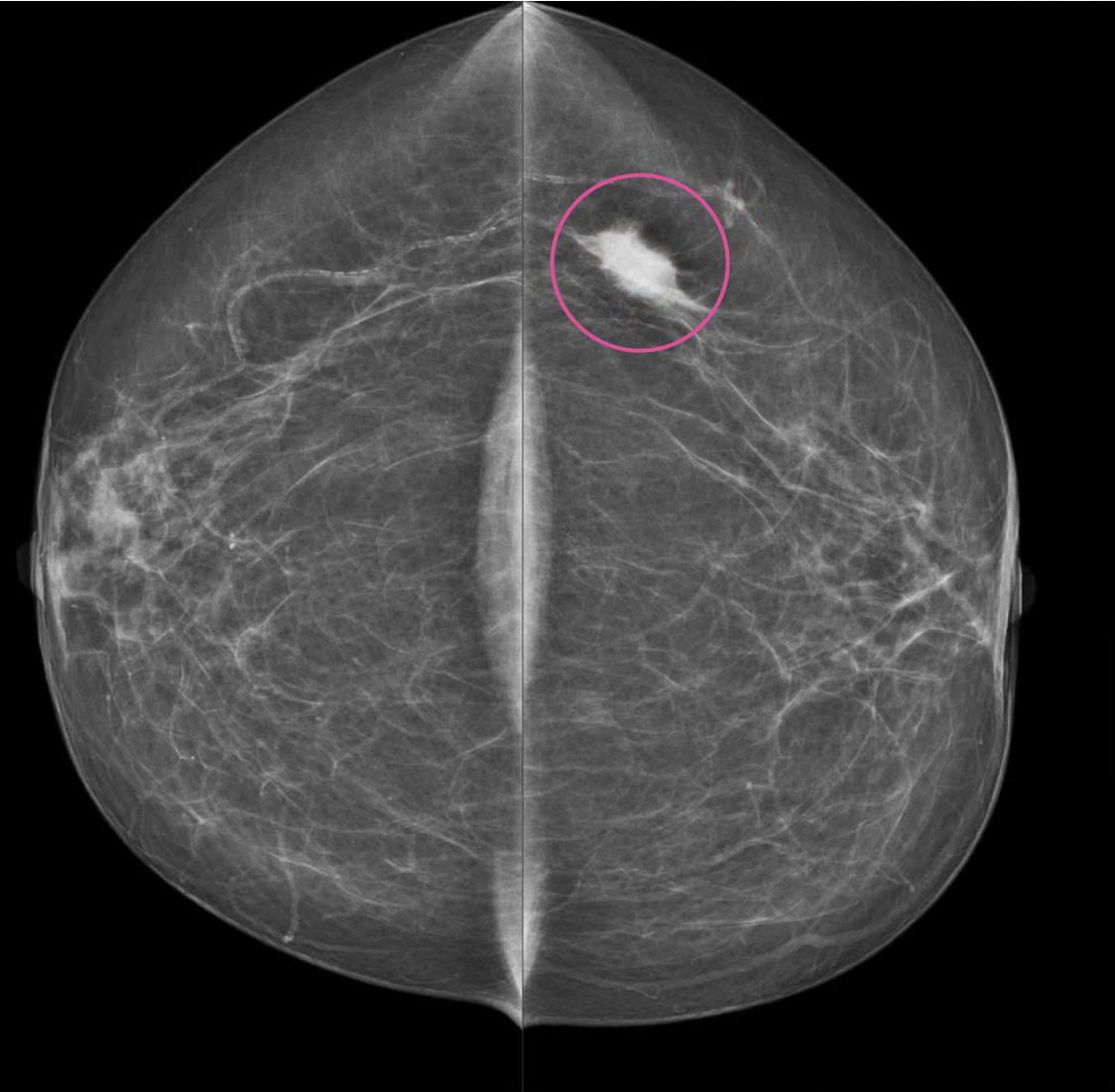
Left MLO

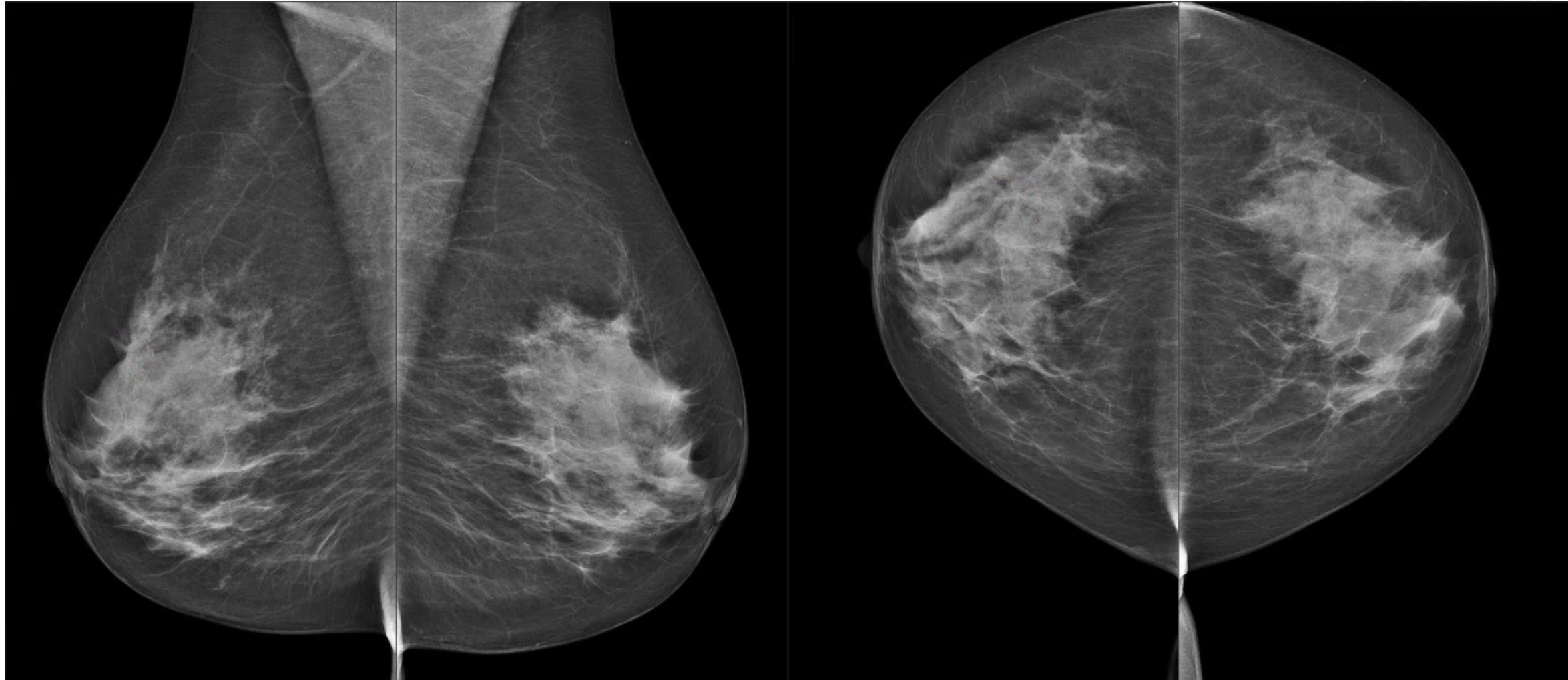


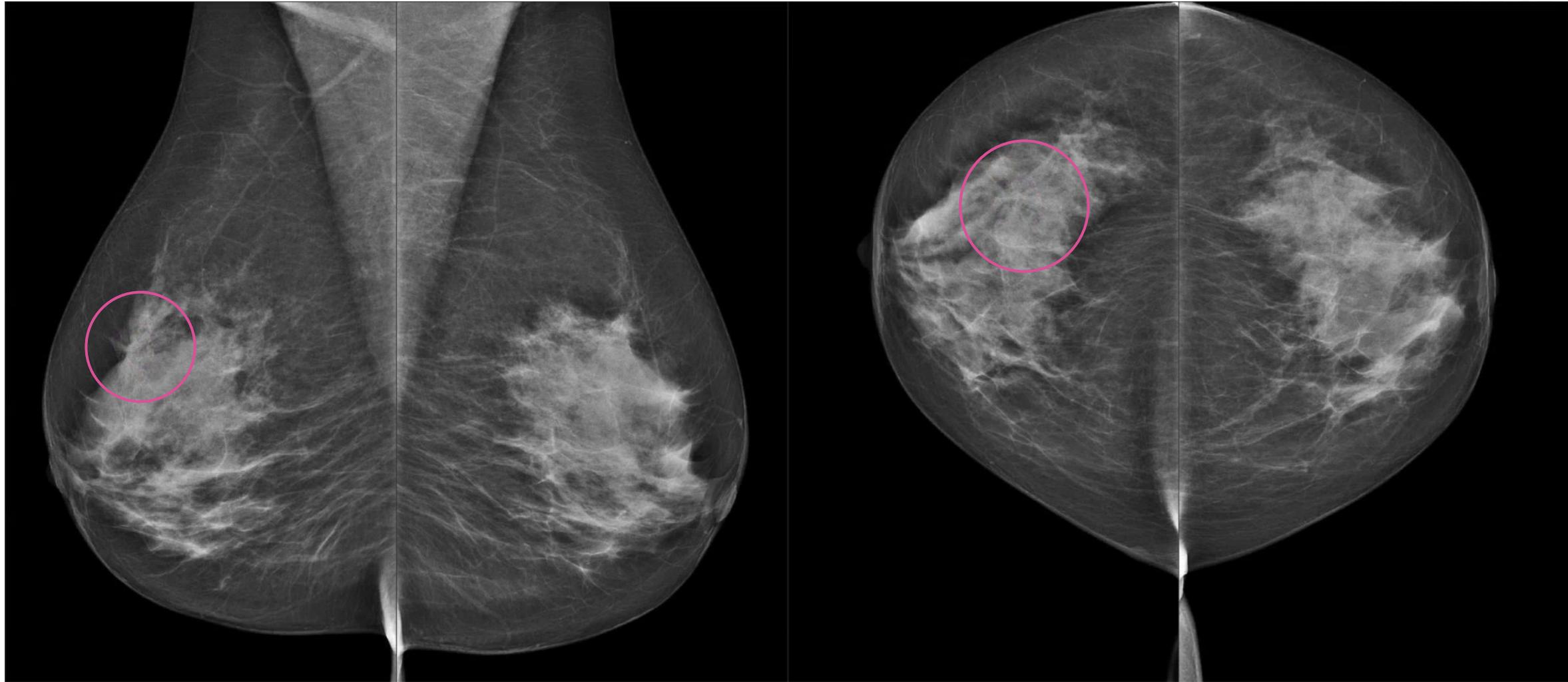
Right CC



Left CC







# Challenges of screening

Difficult work: 5/1000 exams have a cancer

United States: liability (recall rate ~10-15%)

Shortage of radiologists



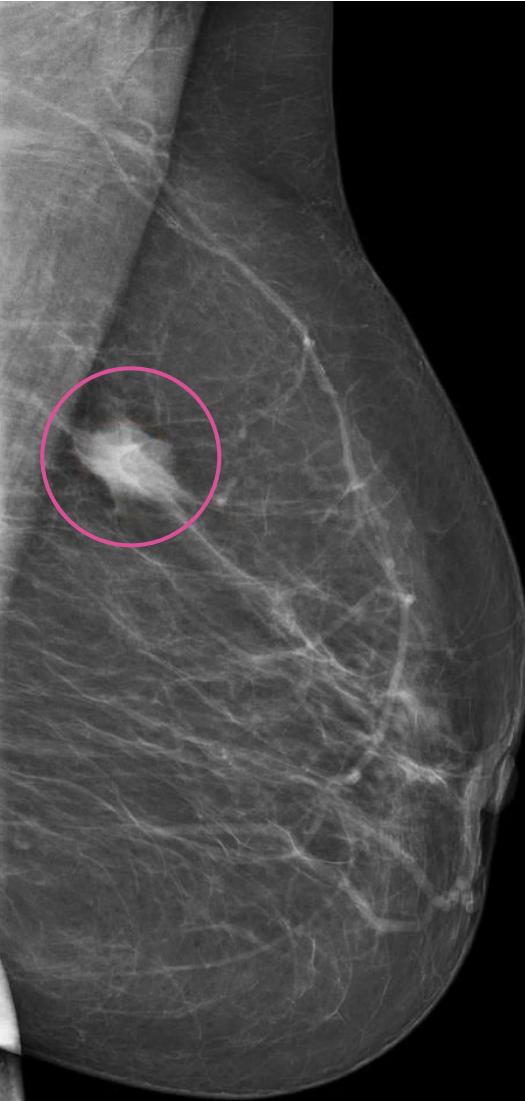
# AI in breast cancer detection

**SCREENPOINT**  
Medical

Right MLO



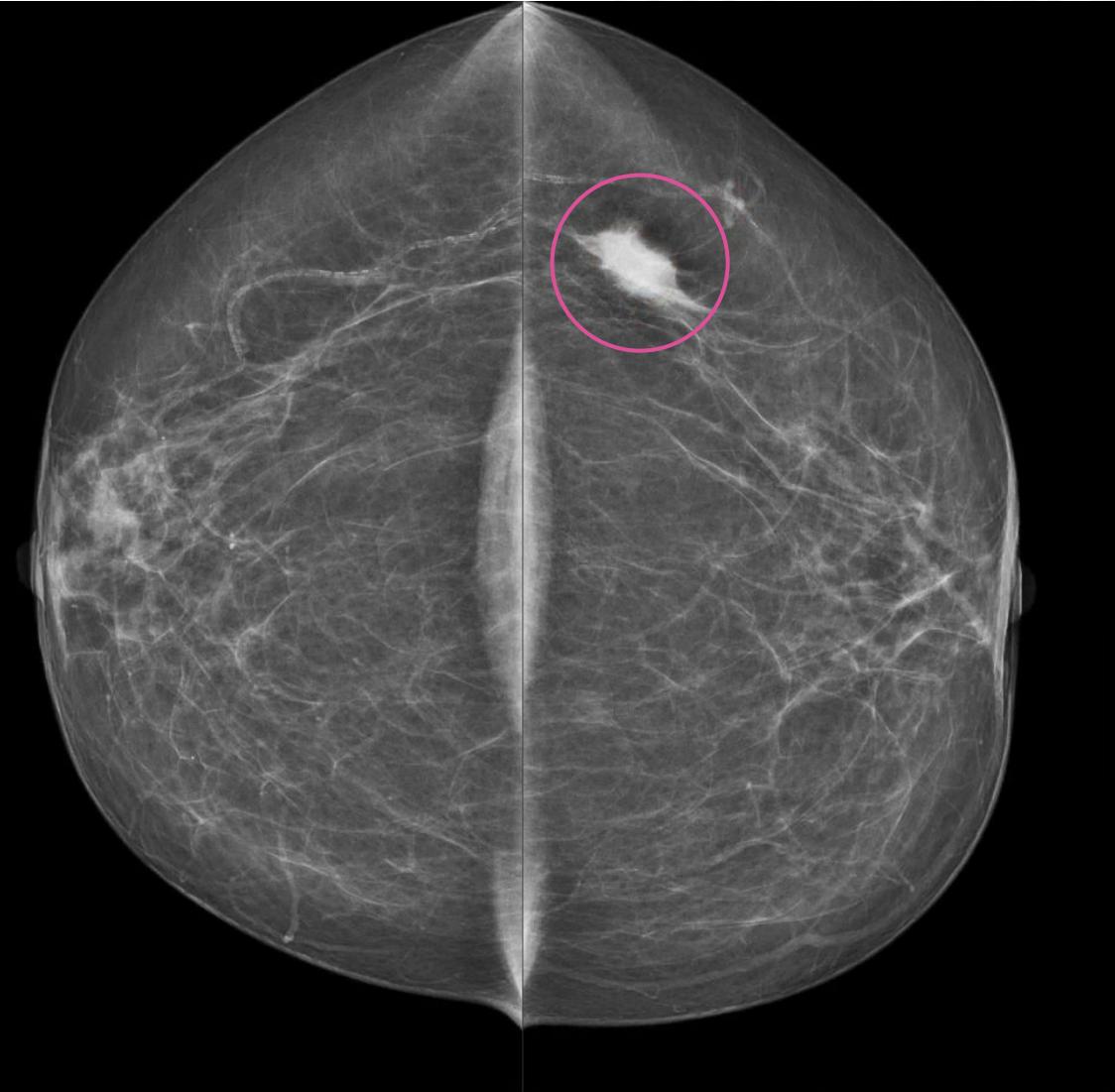
Left MLO



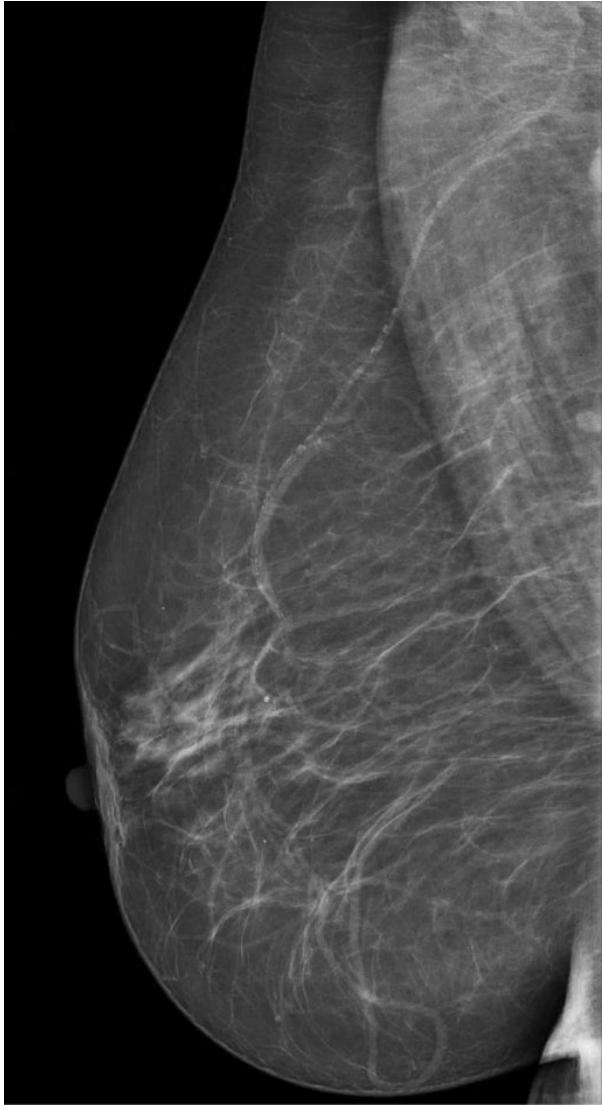
Right CC



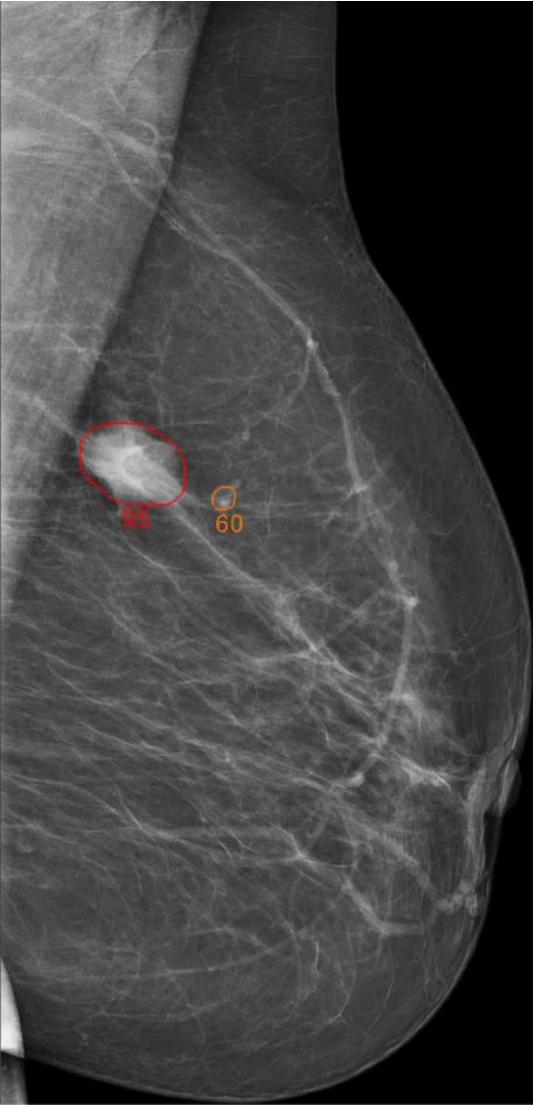
Left CC



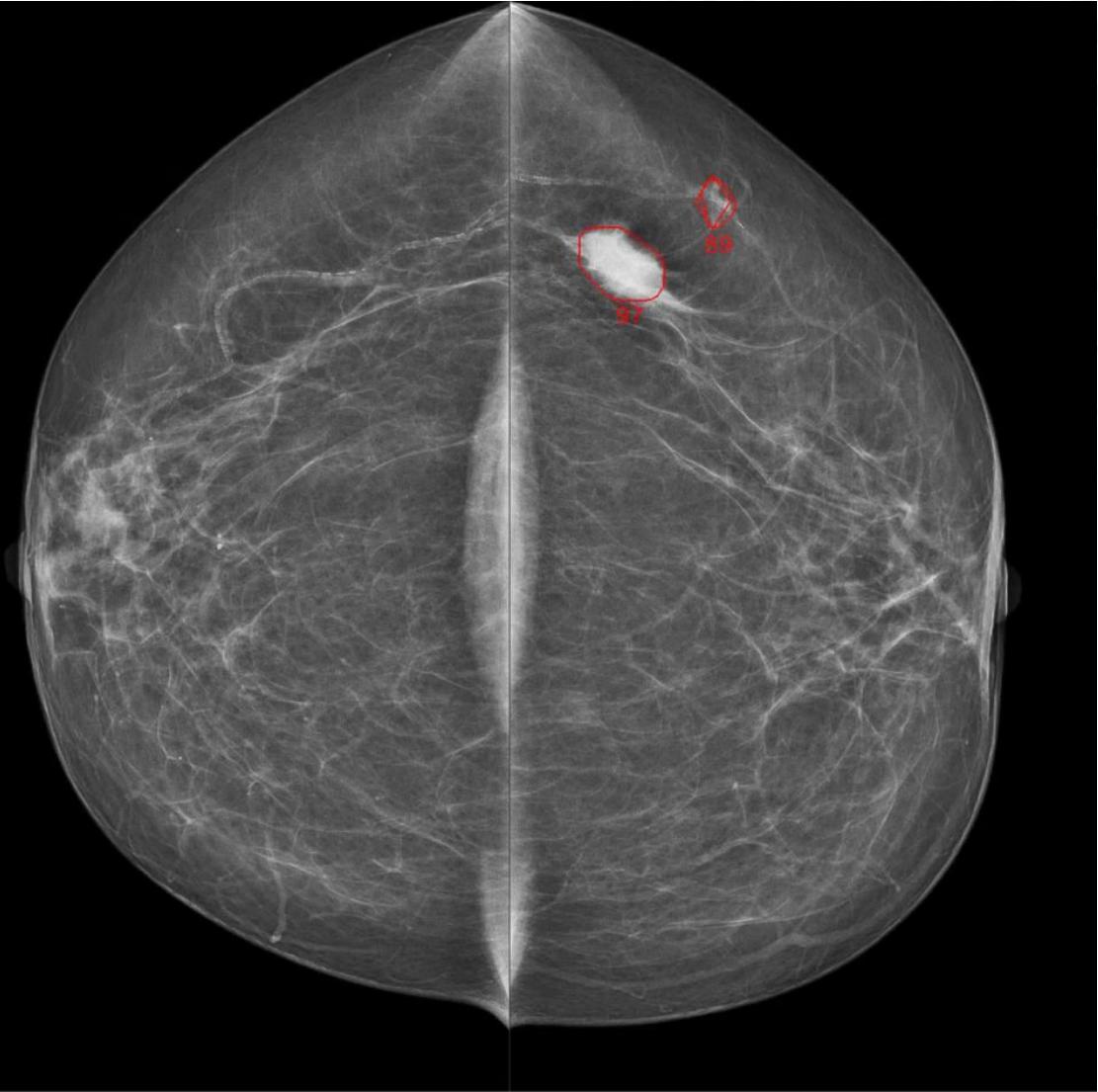
Right MLO



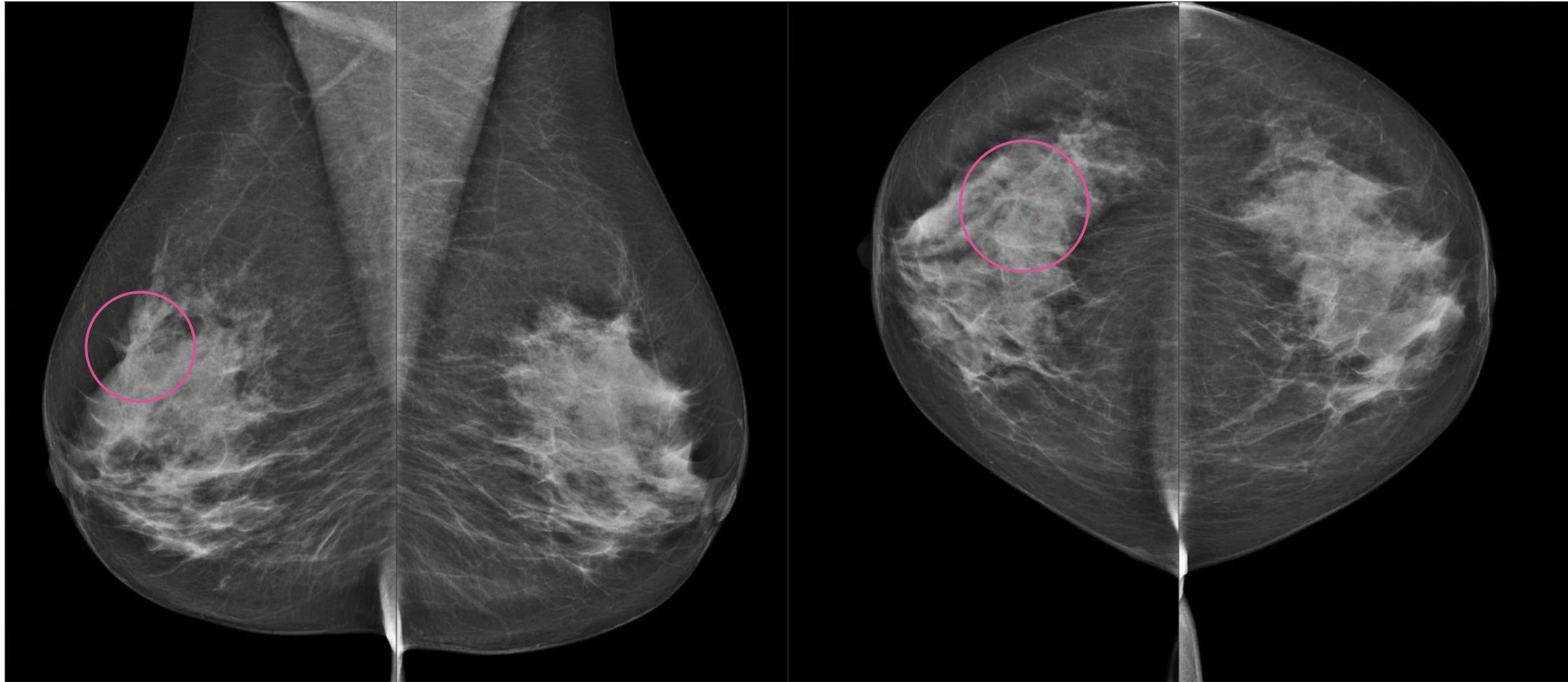
Left MLO

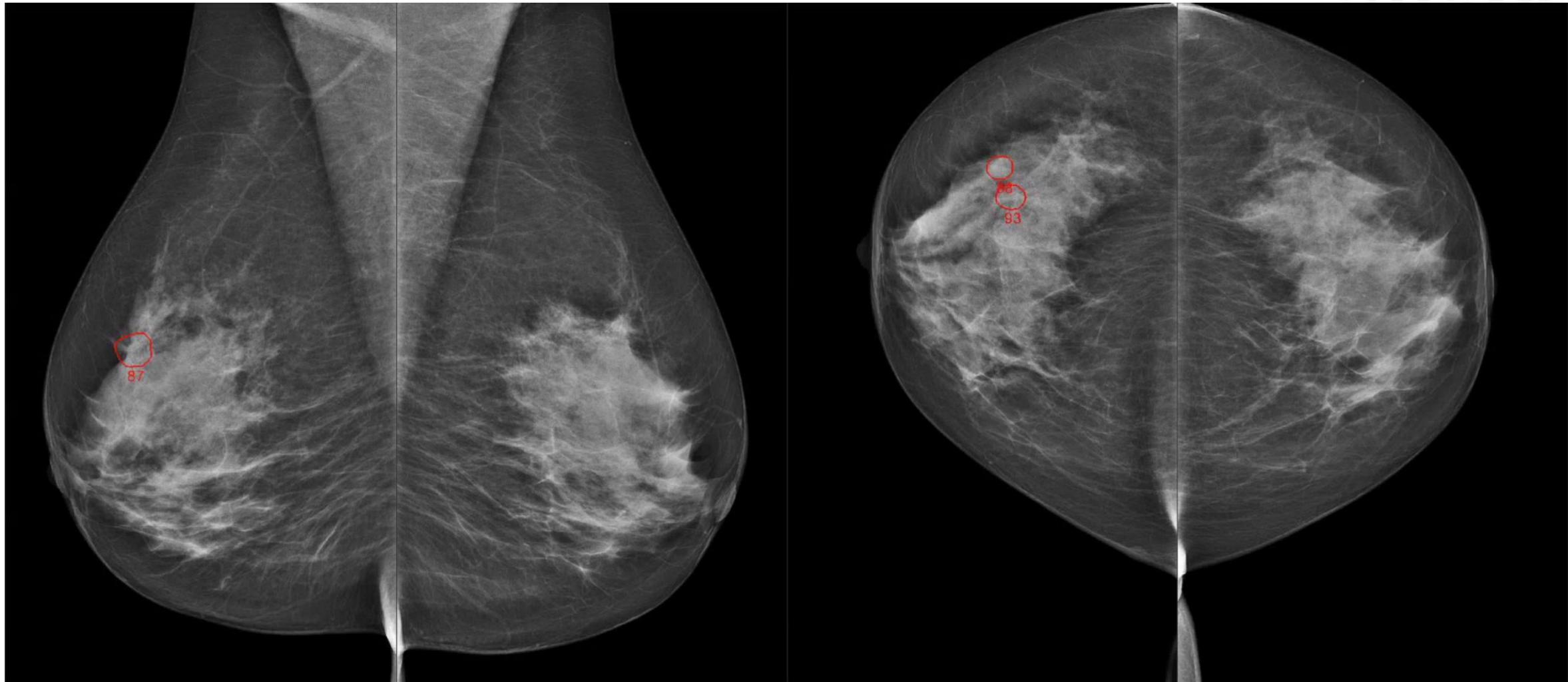


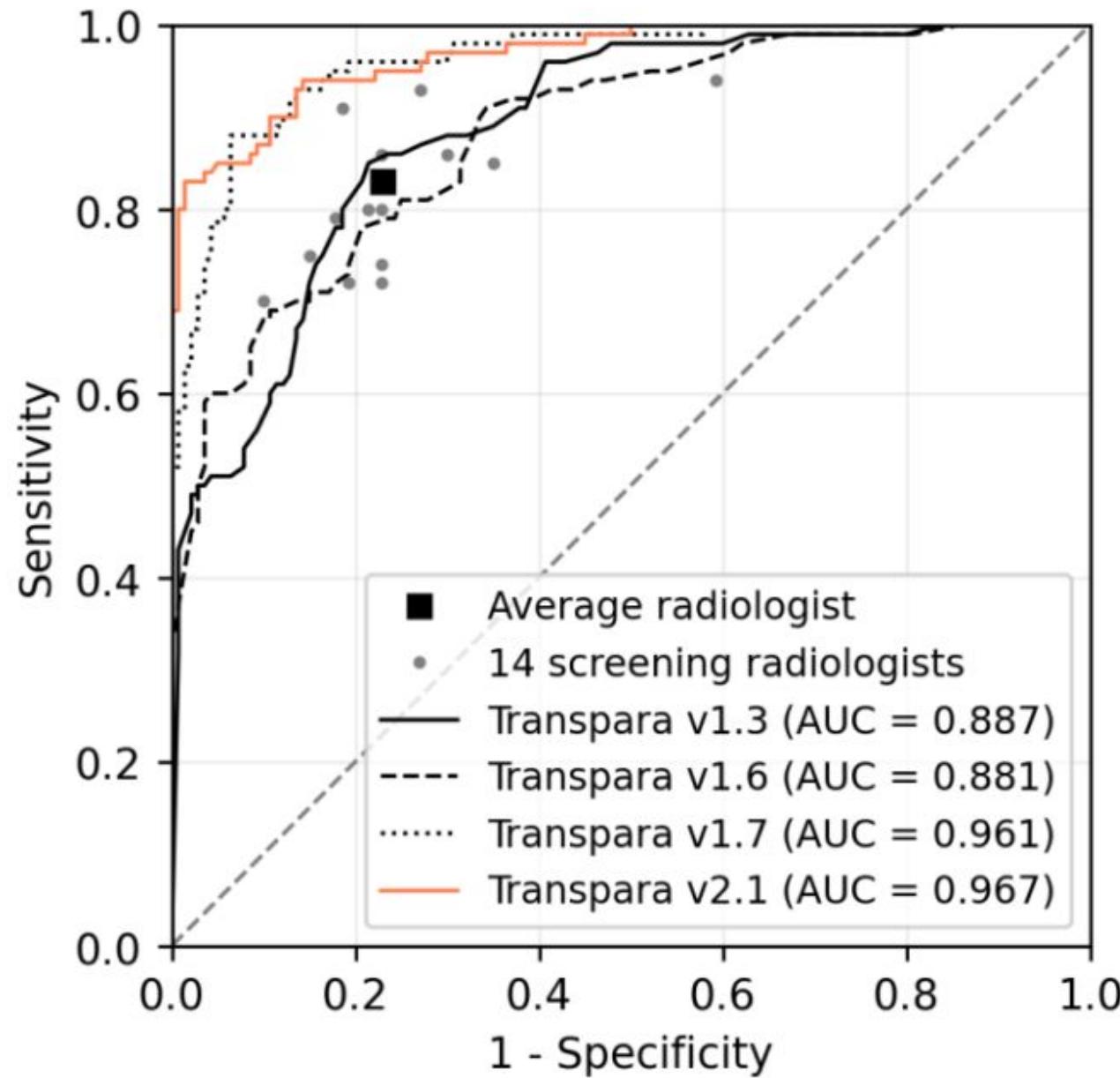
Right CC



Left CC







# First randomized control trial

MASAI trial in Sweden

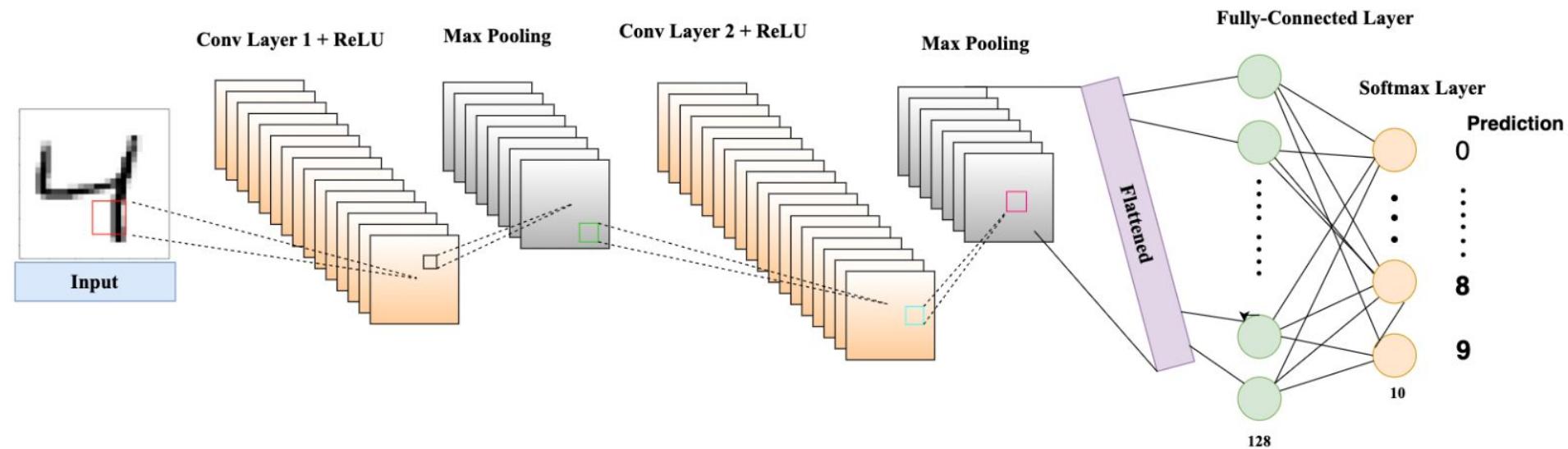
Population randomly divided in two: regular screening vs screening with AI

|                  | Regular screening | Screening with AI |
|------------------|-------------------|-------------------|
| Cancer detection | 5.1/1000          | 6.4/1000          |
| Recall           | 2.0%              | 2.2%              |

Workload reduction: 44%

# AI algorithms for breast cancer detection

## Convolutional neural network





# Company details

**SCREENPOINT**  
Medical

# Company history

Founded in 2014

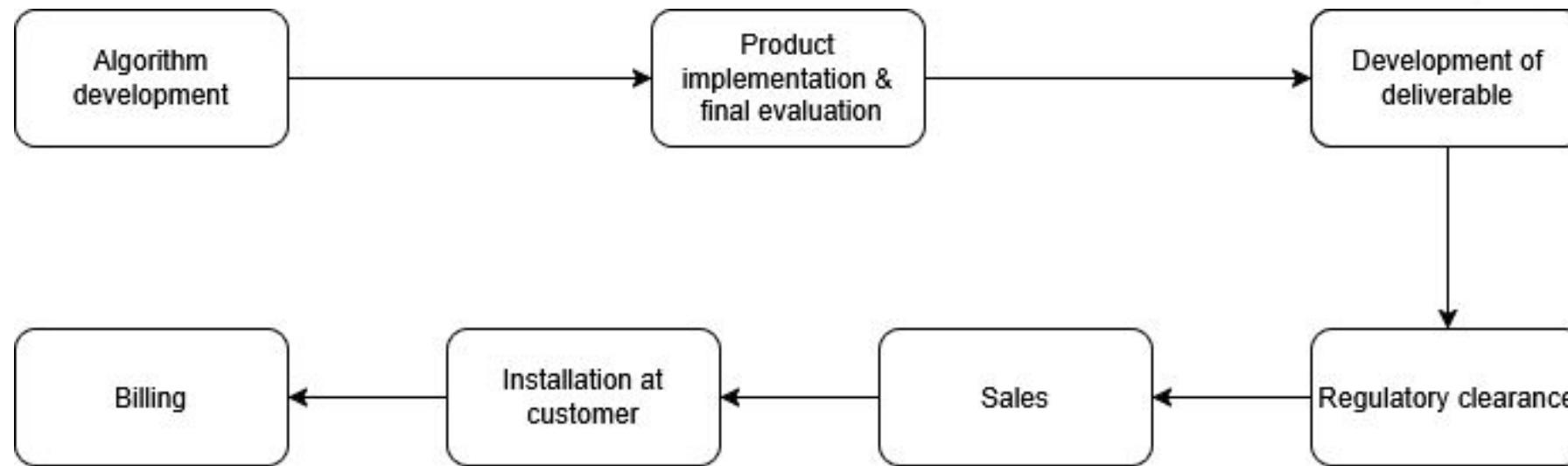
Spin-off from Radboud University Medical Center

55 employees in Nijmegen

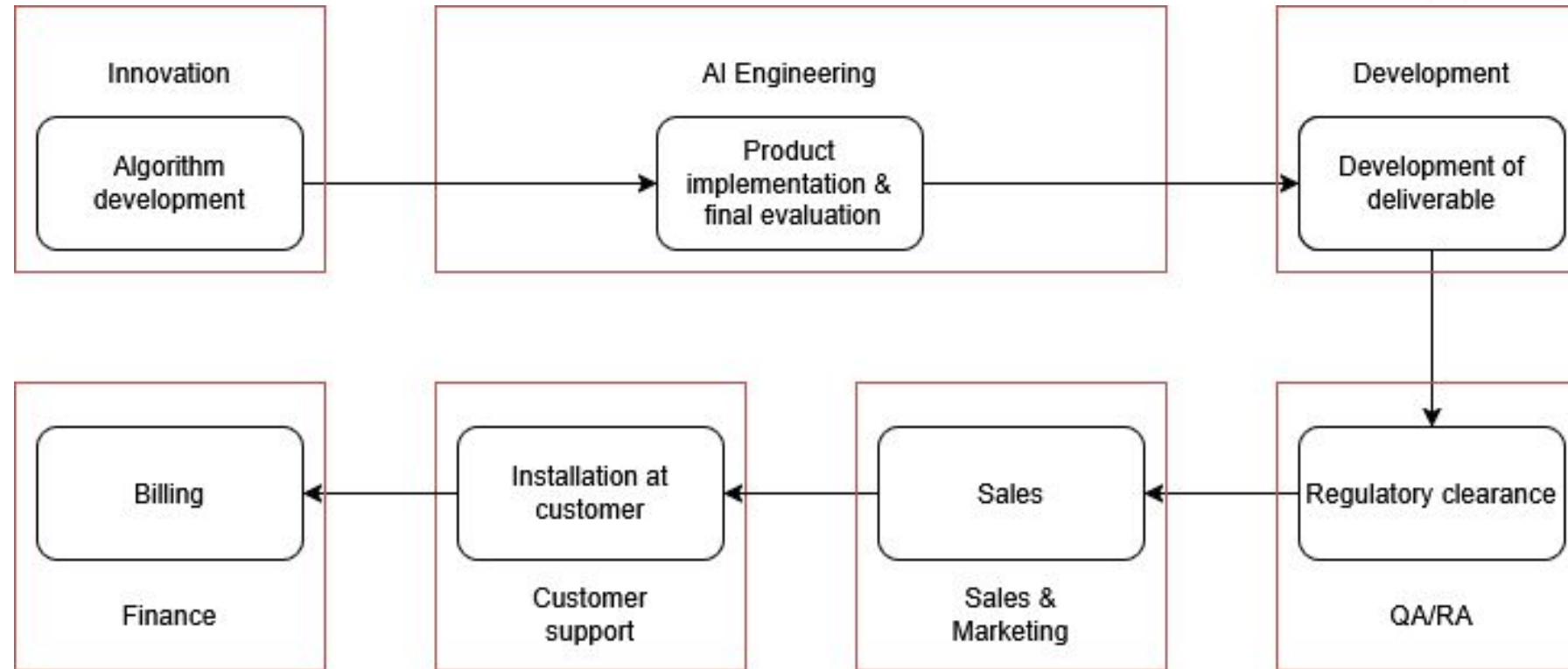
13 US employees

3 interns

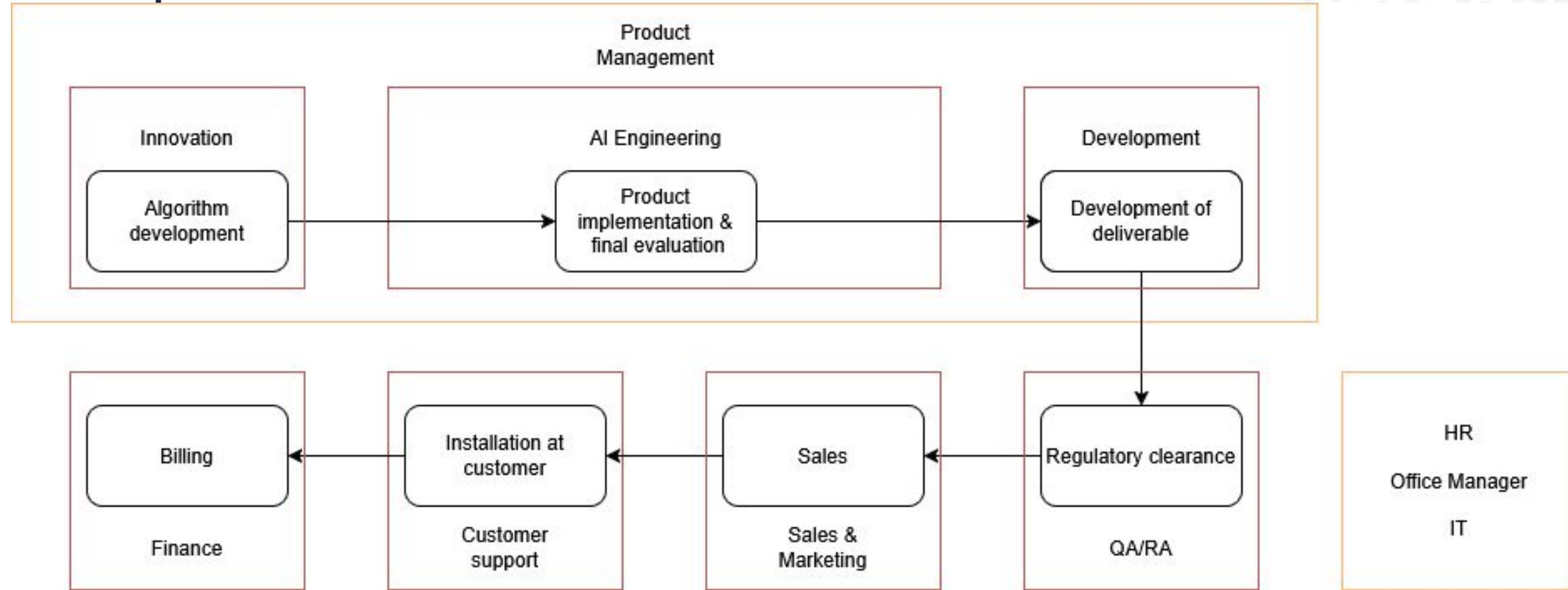
# Company structure



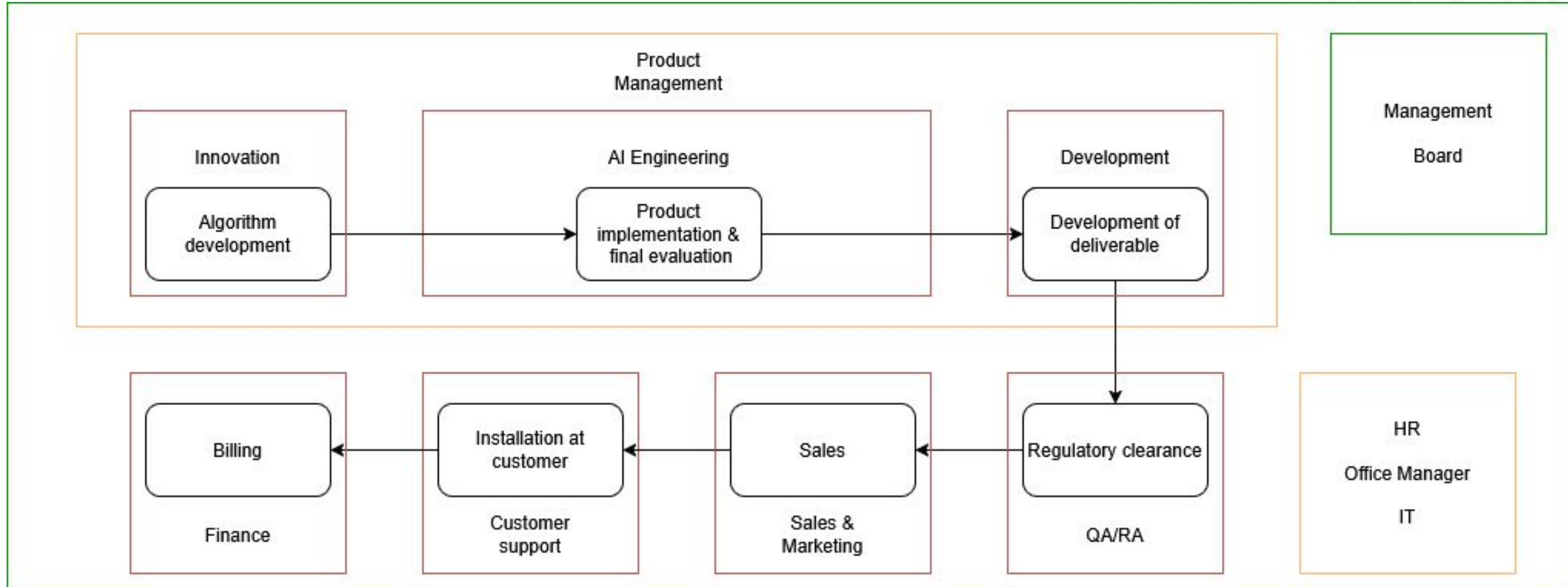
# Company structure

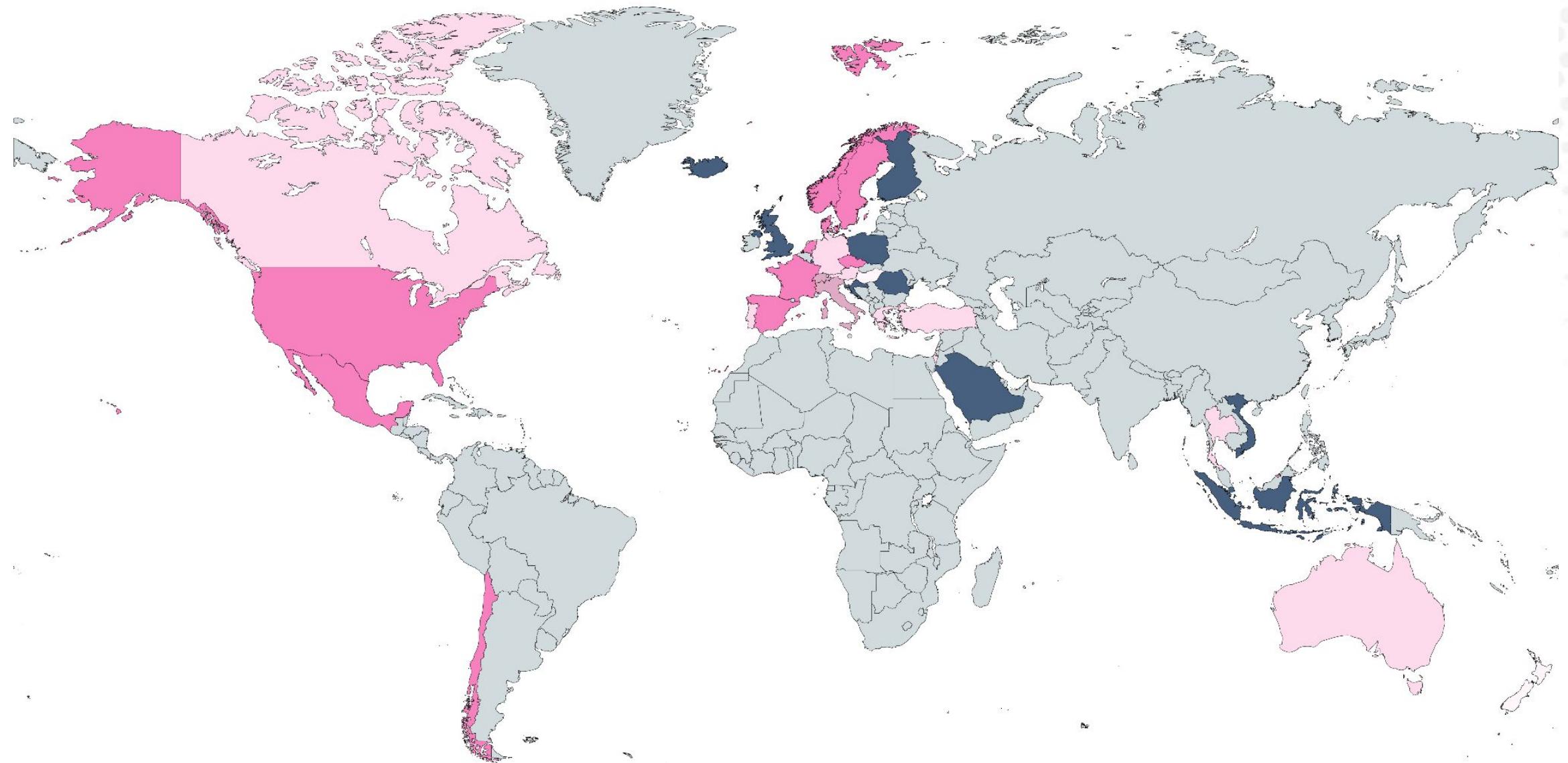


# Company structure



# Company structure





# My team

AI Engineering: team lead + 7 engineers

Responsibilities:

- Product implementation of new features
- Evaluation of the product
- Data
- Calibration
- ...

3 physicists (2 HEP)



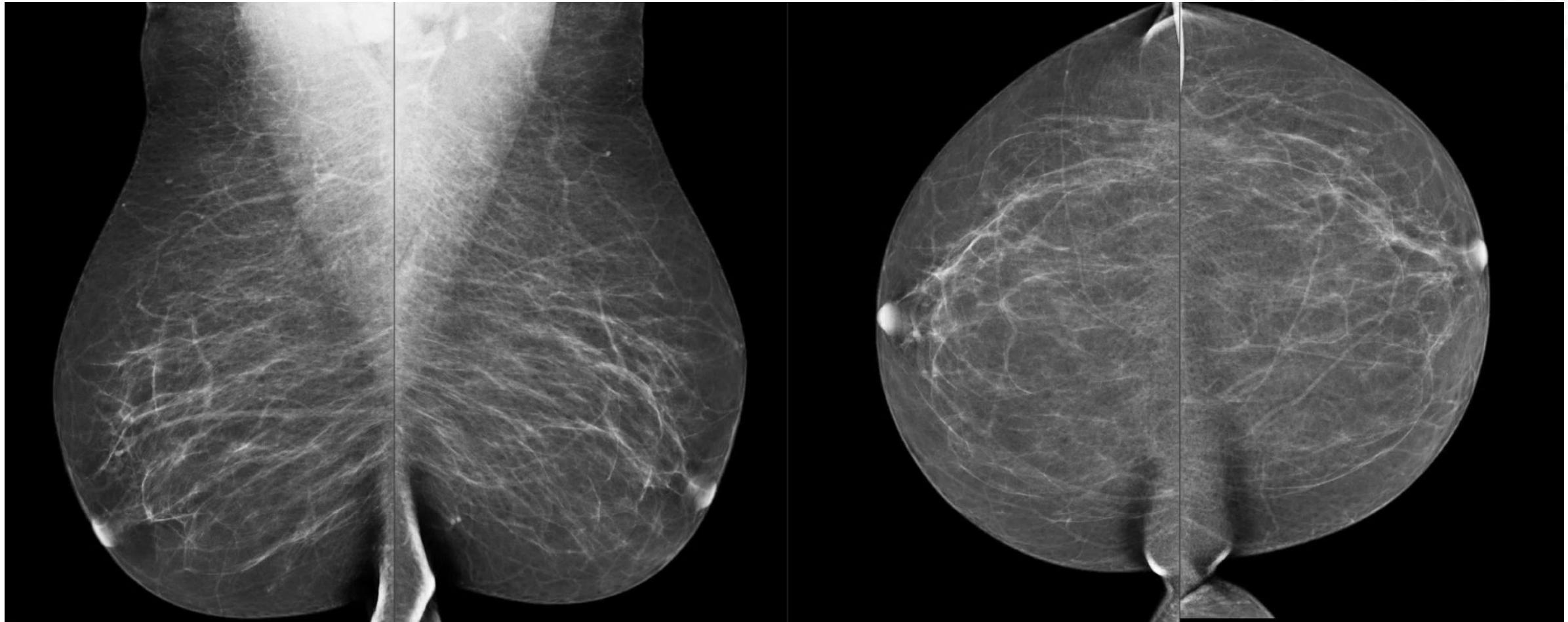
# My daily work

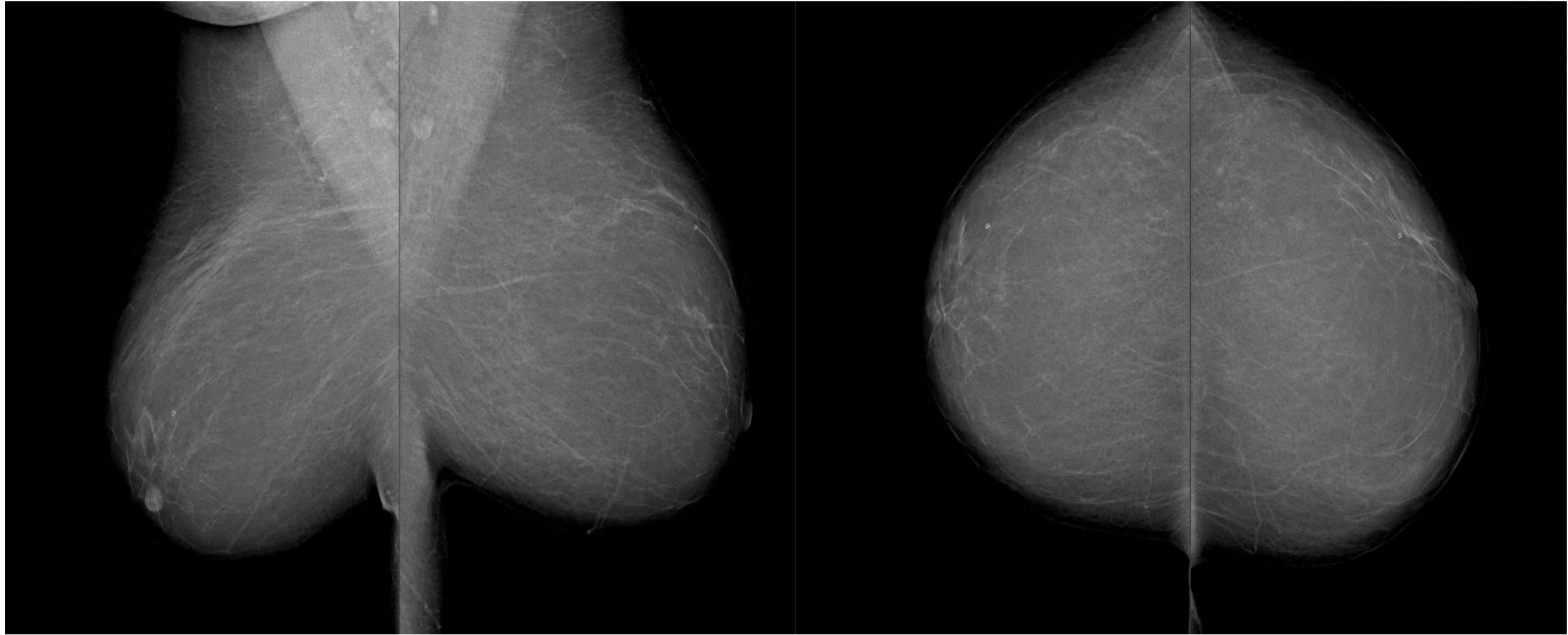
**SCREENPOINT**  
Medical

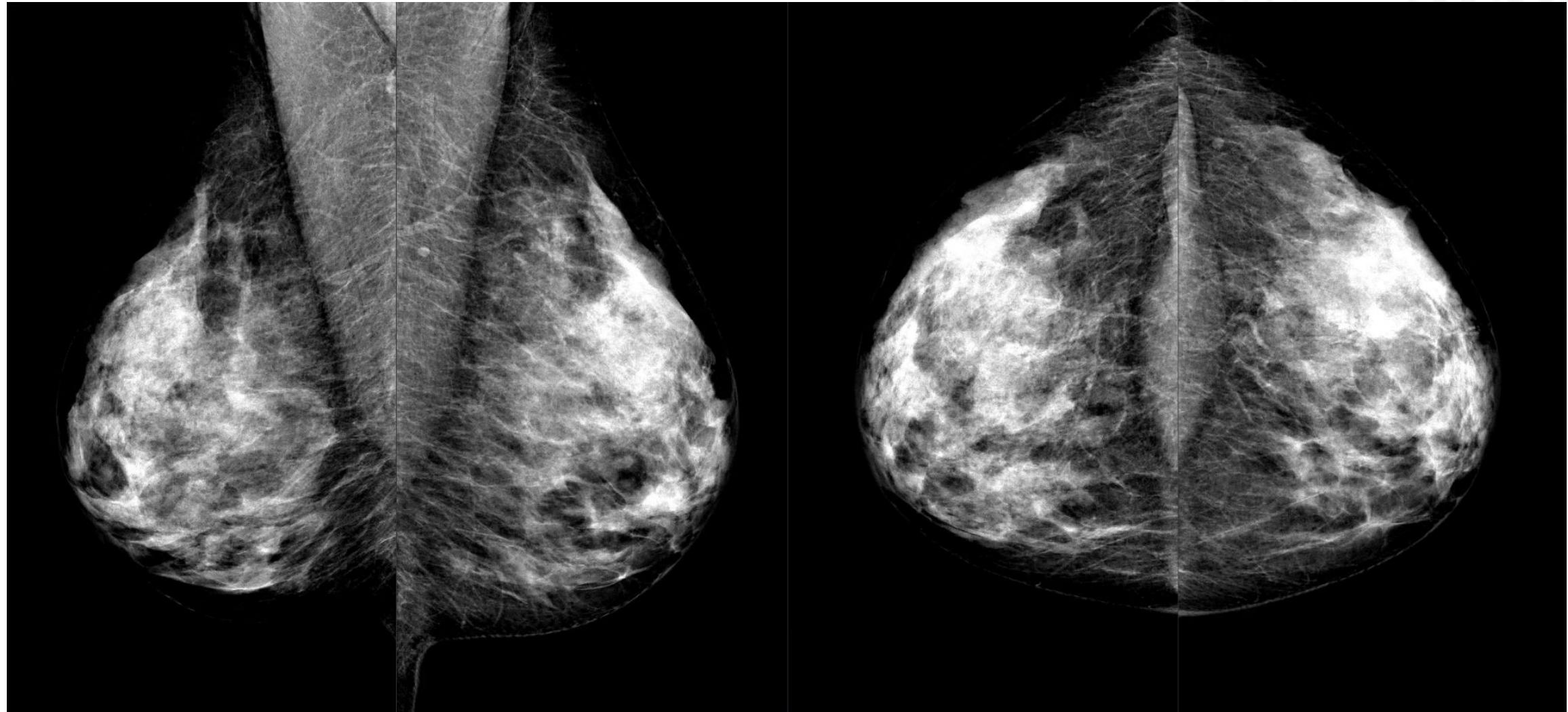
# Calibration

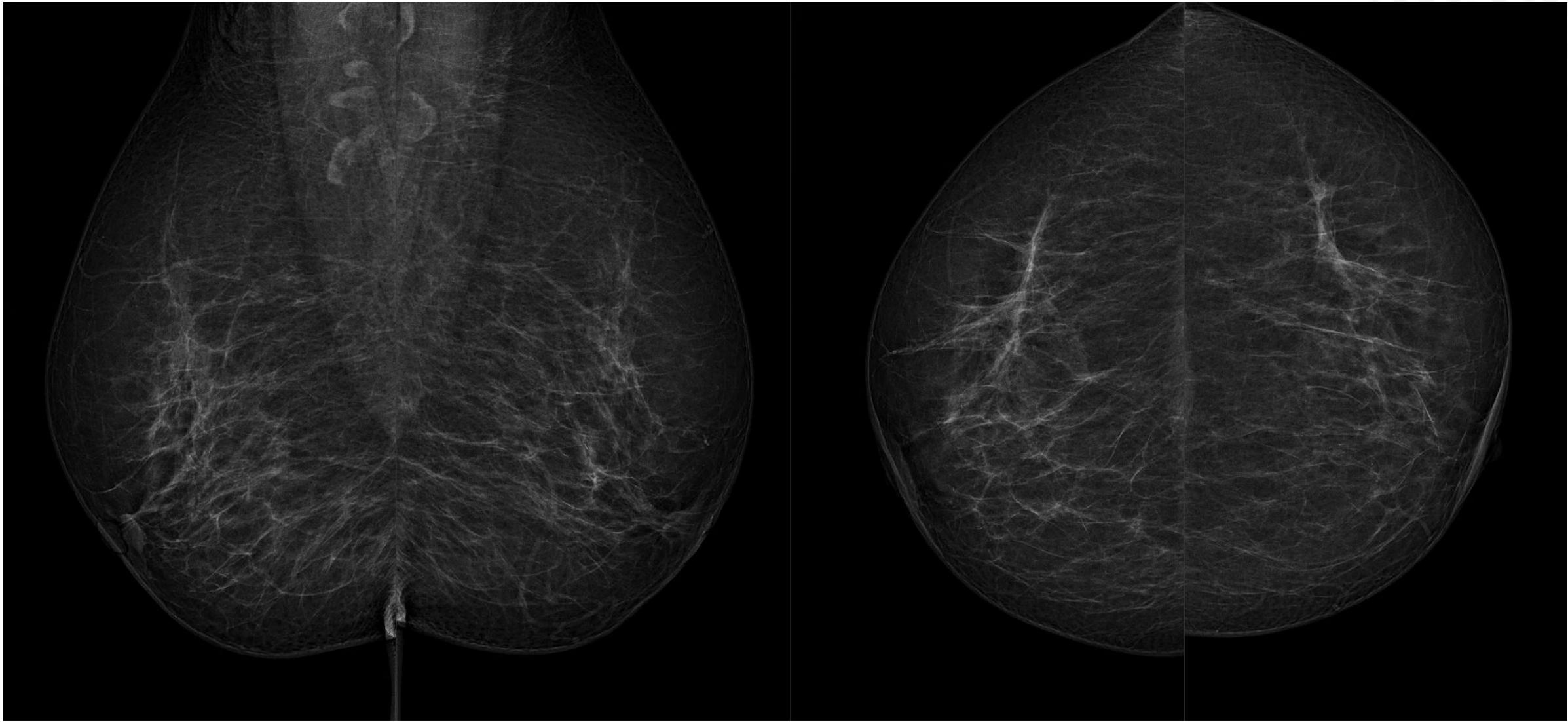
Large variety in data in the field:

- Population differences (age/ethnicity/...)
- Screening vs diagnostics
- Image types









# Calibration

Our product needs to work reliably on all these images

Robustness:

Ability of algorithms to handle different image types

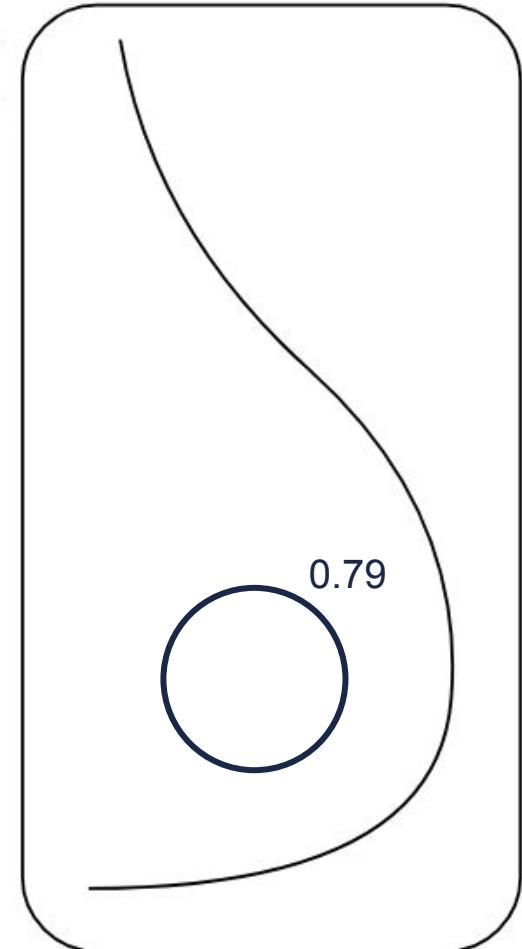
Calibration:

Convert algorithm output to interpretable number

Desired output distribution: 10% of exams  
in each 10-point bin

2 steps

Level of suspiciousness (fp-level)

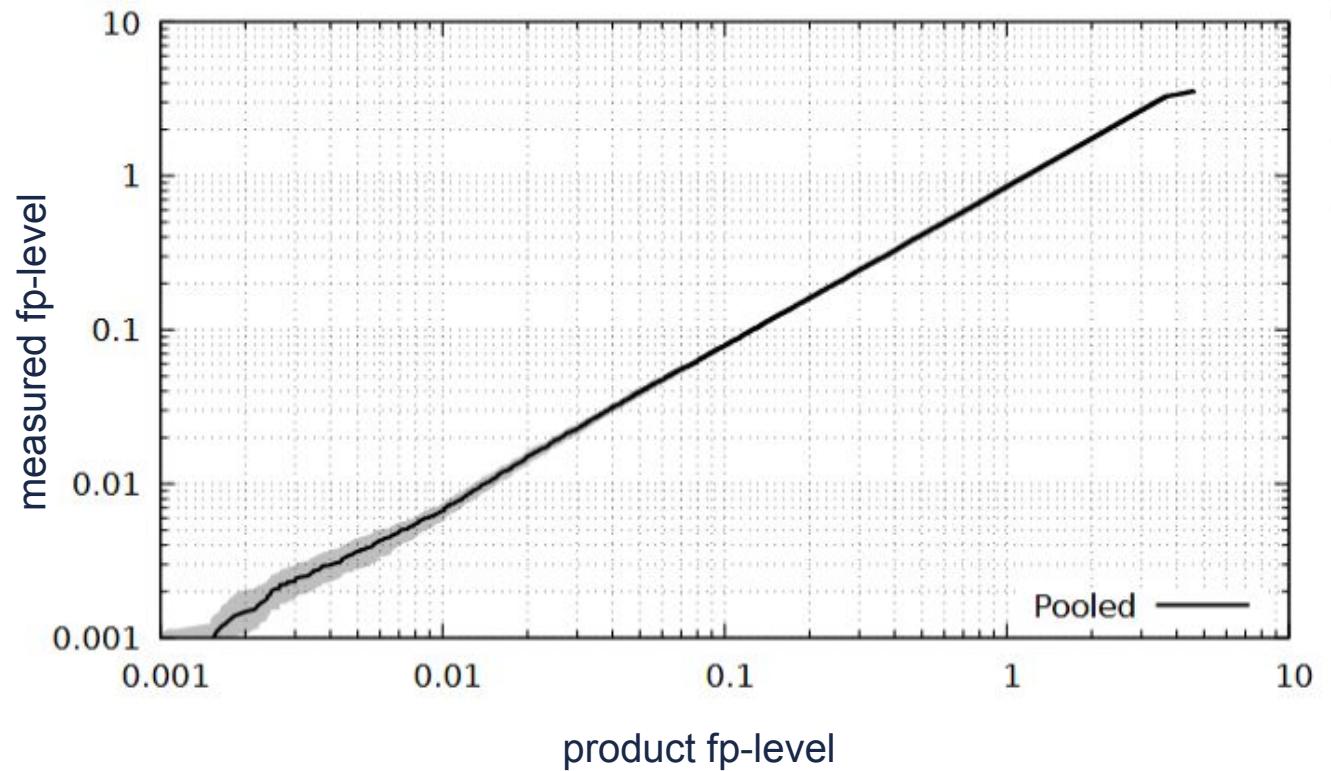


# Calibration

Calibration is done on fixed dataset

On a set of normal exams:  
Map algorithm output to  
measured fp-level

Tested on independent data



# Calibration

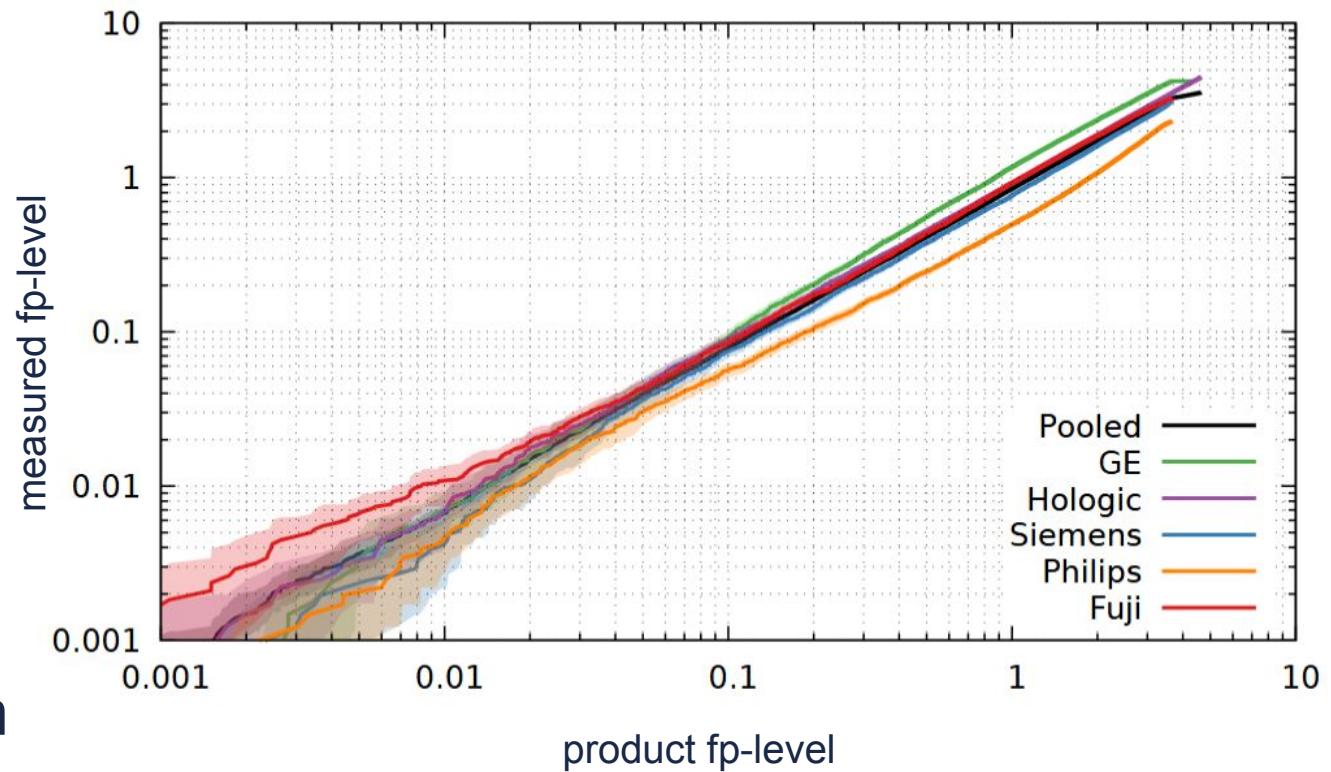
Calibrate on fixed dataset

On a set of normal exams:  
Map algorithm output to  
measured fp-level

Test on independent data

Customer doesn't care about  
Pooled!

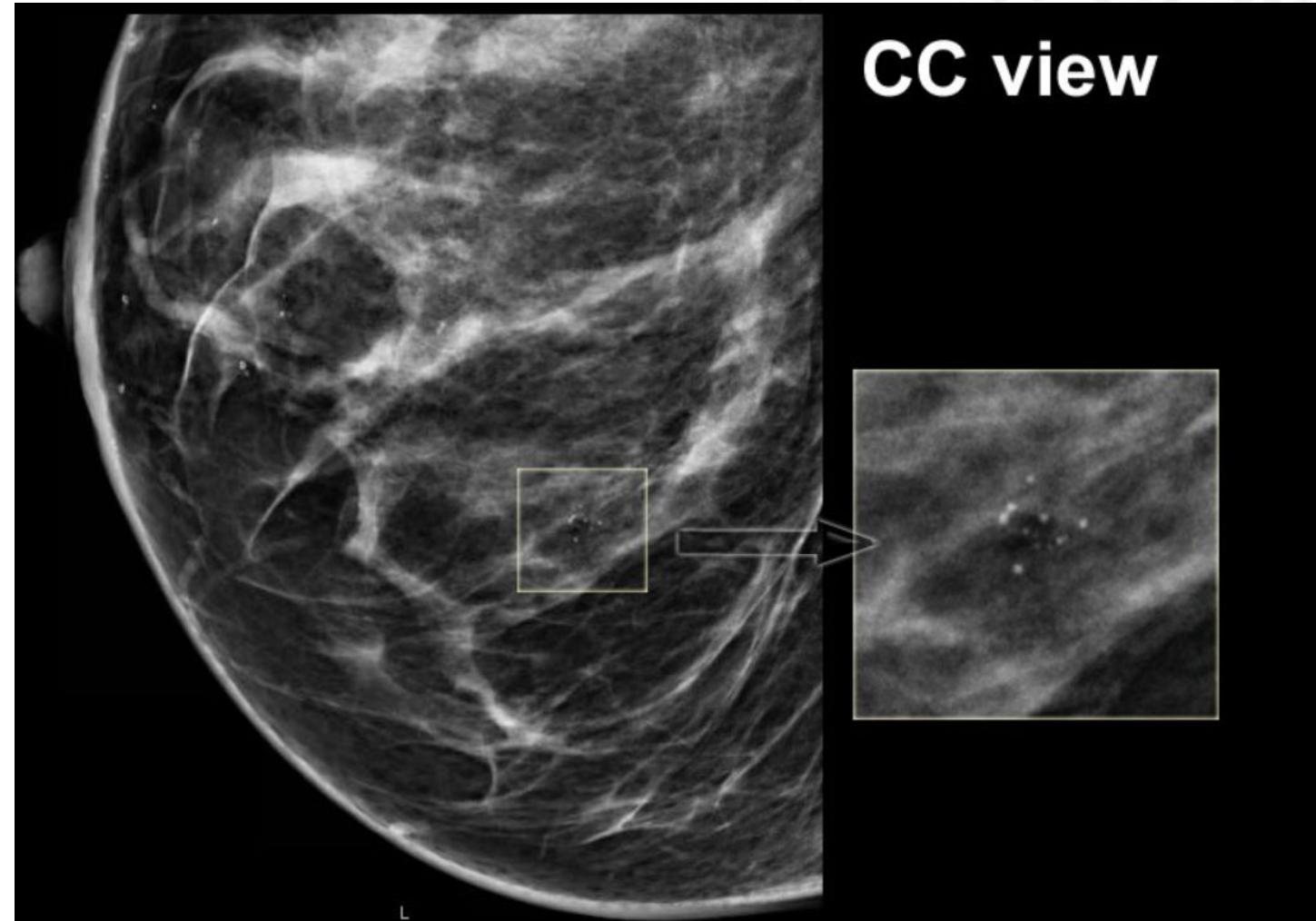
Manufacturer-specific calibration



# Calibration

But that's not the full story...

Micro calcifications



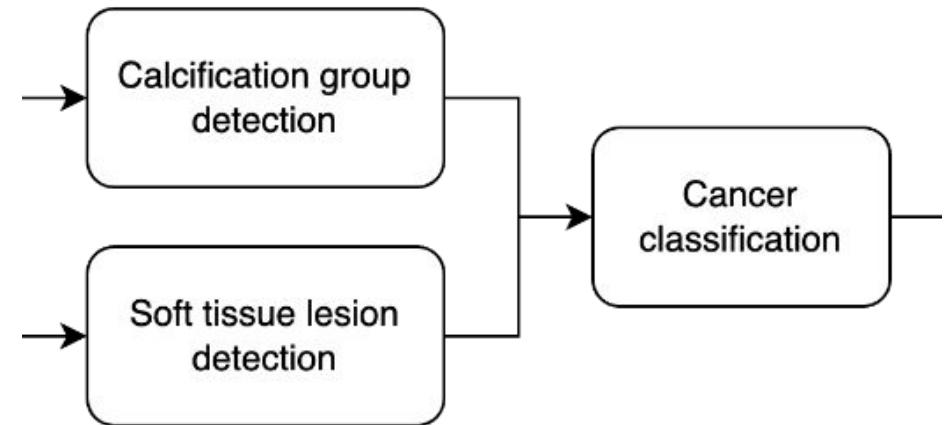
**CC view**

# Calibration

Separate algorithms for calcifications and soft tissue lesions

Cannot be combined directly

=> More calibration steps necessary



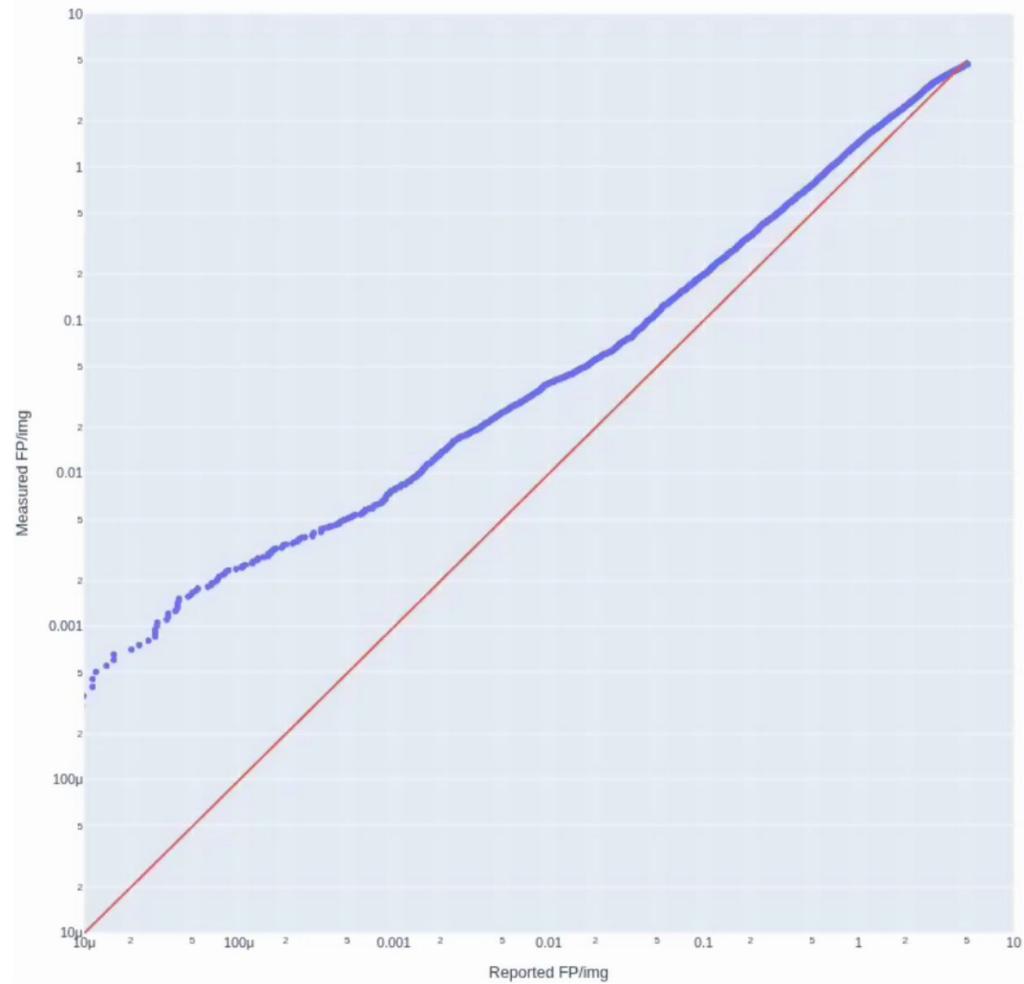
# Calibration

Customer complaint:

- New machine
- Population?
- Screening?
- Number of images in exam?
- ...

Options to address it?

- Custom calibration
- Retrain algorithms
- Retract compatibility



# Calibration

Conclusion:

Complicated pipeline

Need to understand every step

Many considerations

Why you need physicists!

# Life in a company

Very different from academia:

- Way of working: agile (ish)
- Short term gratification
- Business
- Colleagues with different backgrounds
- Everything is a collaboration

# Life in a company

Very different from academia:

- Not developing new technologies.  
Instead: bring new technology to market
- Very little physics in my daily life
- Code quality / documentation
- Amount of meetings

# Life in a company

But also quite similar

- International environment
- Smart people
- Conferences/workshops(/trade shows)
- Complexity of work (though on different timescale)
- Understand all the details of a problem
- Certain amount of freedom

# Contact details

Email: [ruud.peeters@screenpointmed.com](mailto:ruud.peeters@screenpointmed.com)

LinkedIn: <https://www.linkedin.com/in/ruud-peeters/>

Feel free to reach out!



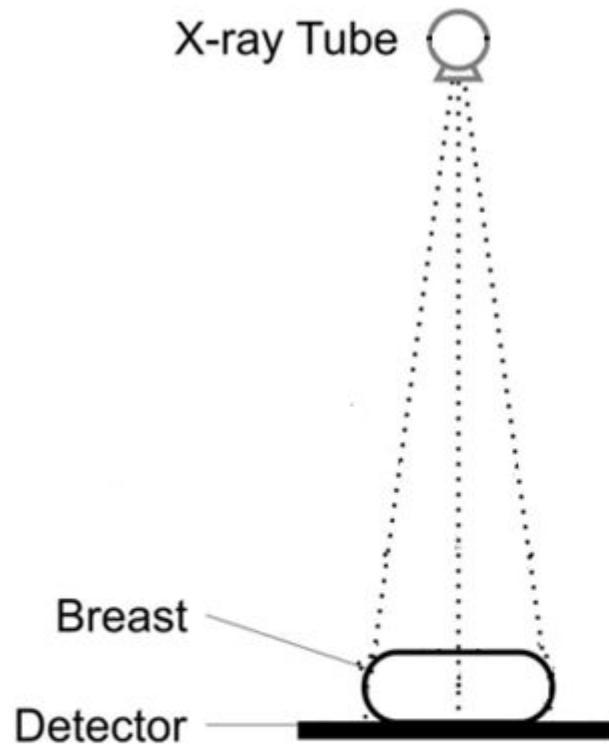
# Calibration

For 2D images, life is relatively easy

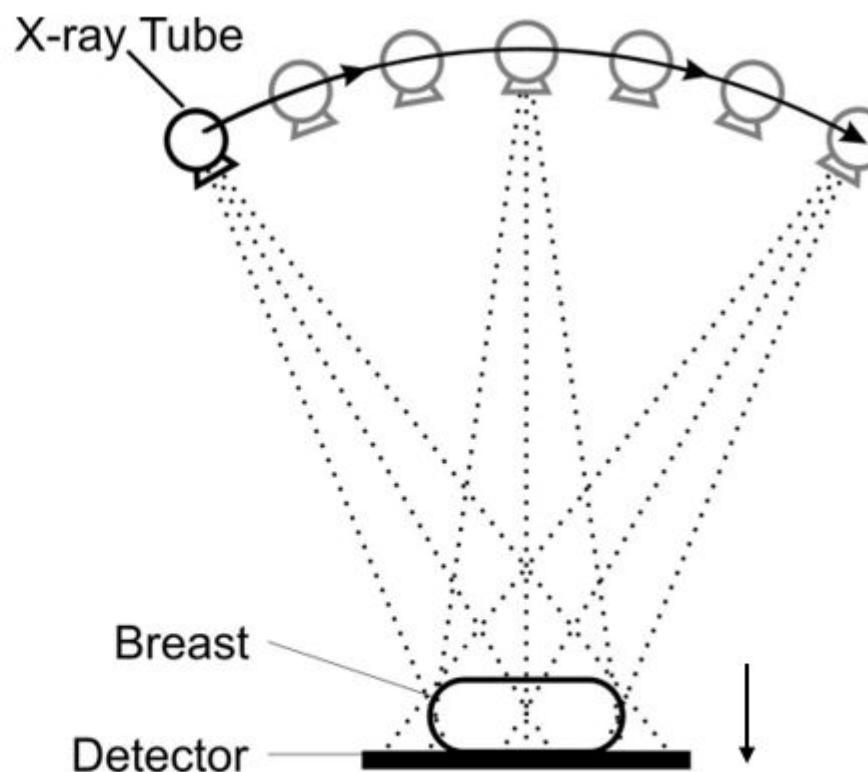
Lot of training data: algorithms “learn” to handle different inputs

But that's not the full story...

# Calibration

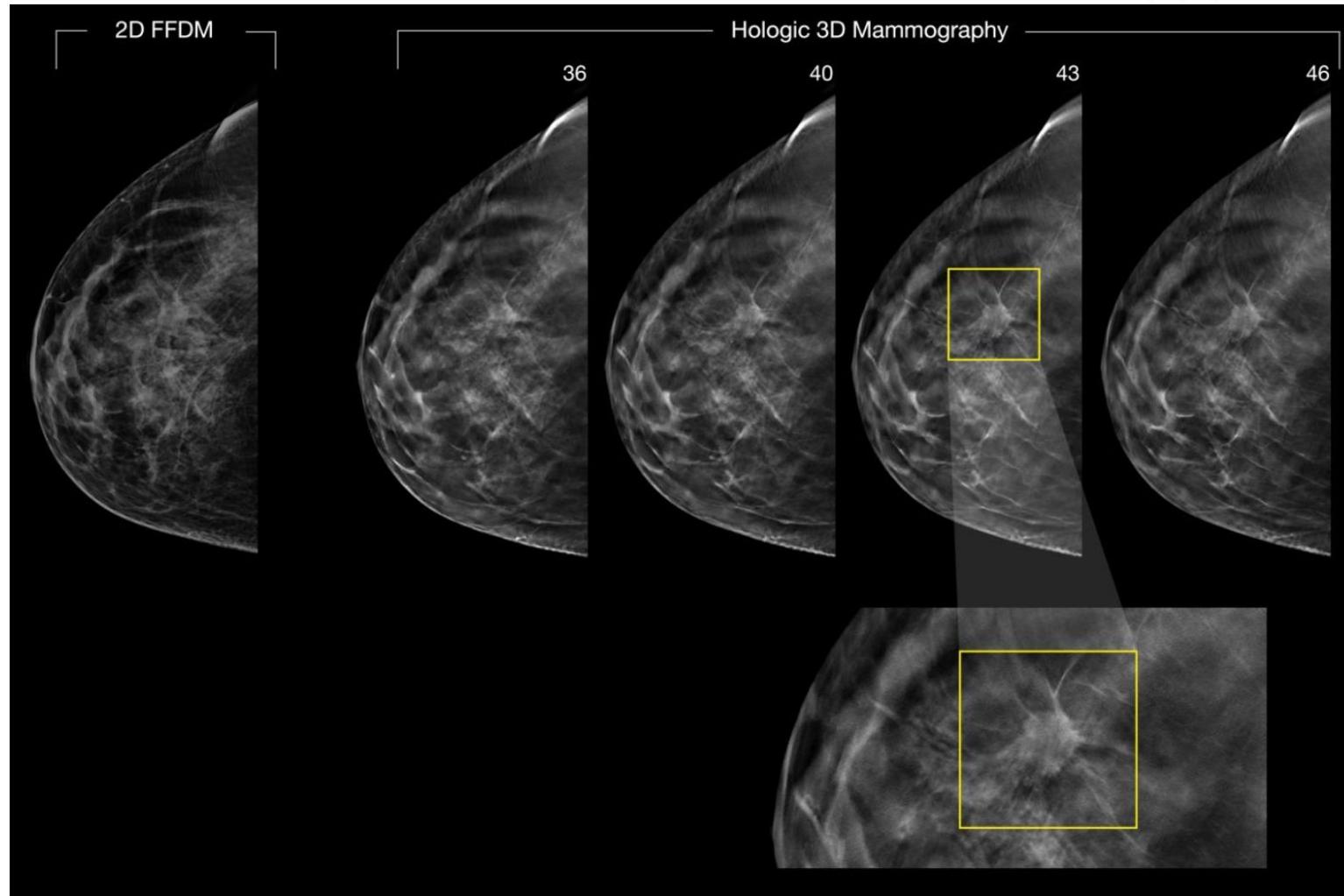


**2D Planar digital mammography**

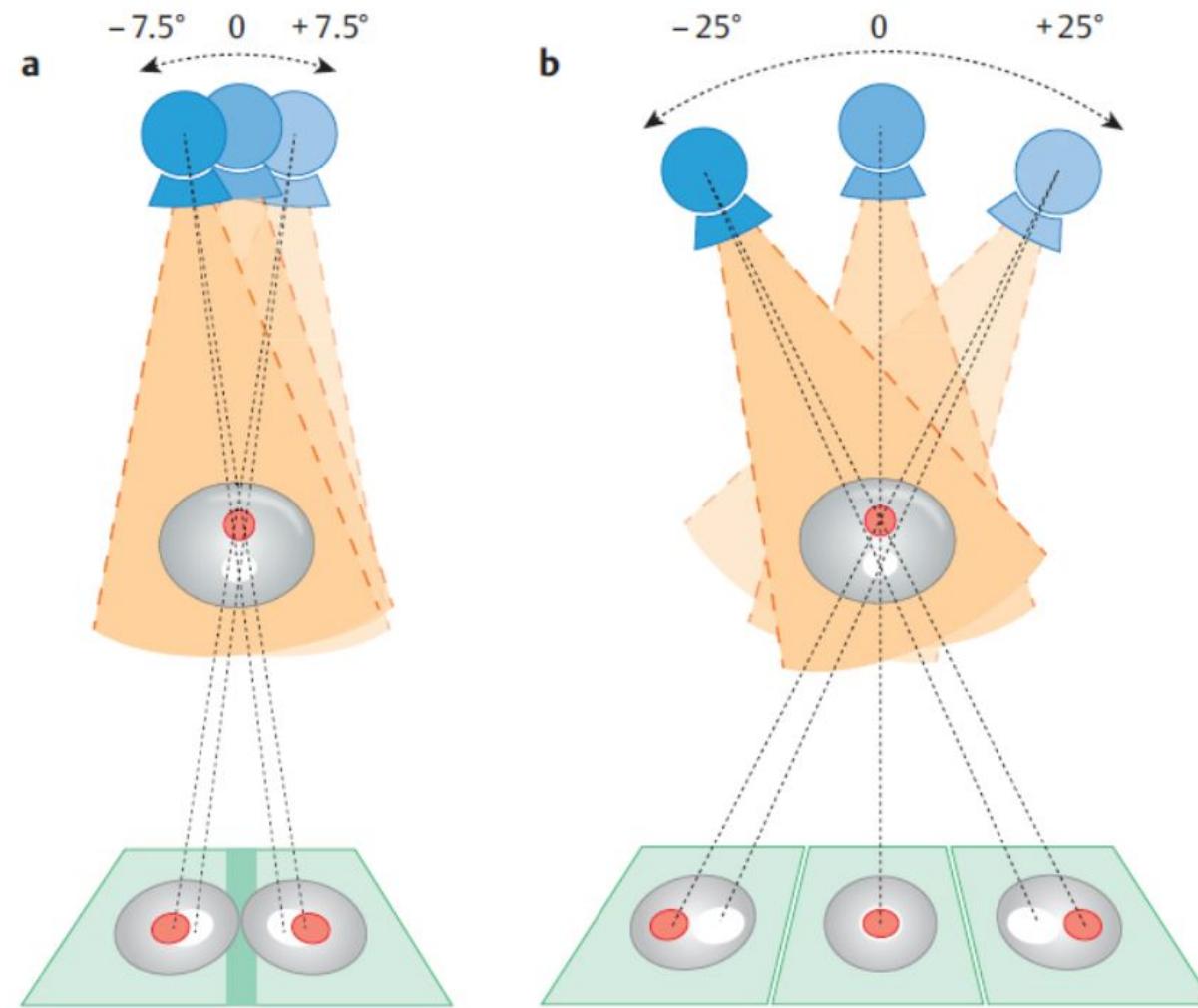


**Digital Breast Tomosynthesis**

# Calibration



# Calibration



# Calibration

For 3D images:

Separate calibration for narrow-angle and wide-angle images

Separate calibration for specific manufacturers

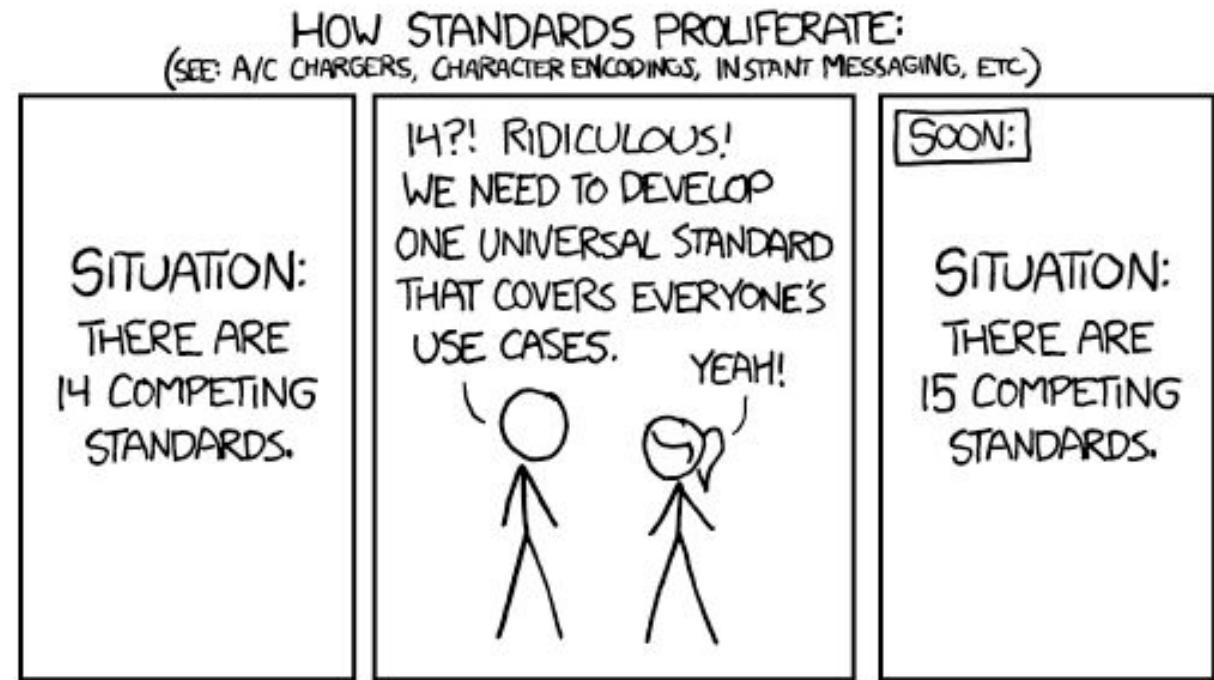
# Data

>600k 2D studies

>100k DBT studies

92 TByte

DICOM file format



# Less nice parts

Processes / regulations

Time to market

Changing priorities

Context switching

# Lessons learned

Talk to people

If you're eager to learn and interested you can learn anything

It helps when a company knows how valuable physicists are

# My journey

Was looking for clearer contribution to society

Interested in machine learning, though no hands-on experience

[Kaggle](#)

Found company via LinkedIn

# False positives

“A false-positive mark is a mark made by the CAD system that does not correspond to the location of a lesion”

**Only look at normal exams**

So every finding is a false positive

# False positives

Algorithm output: [0,1]

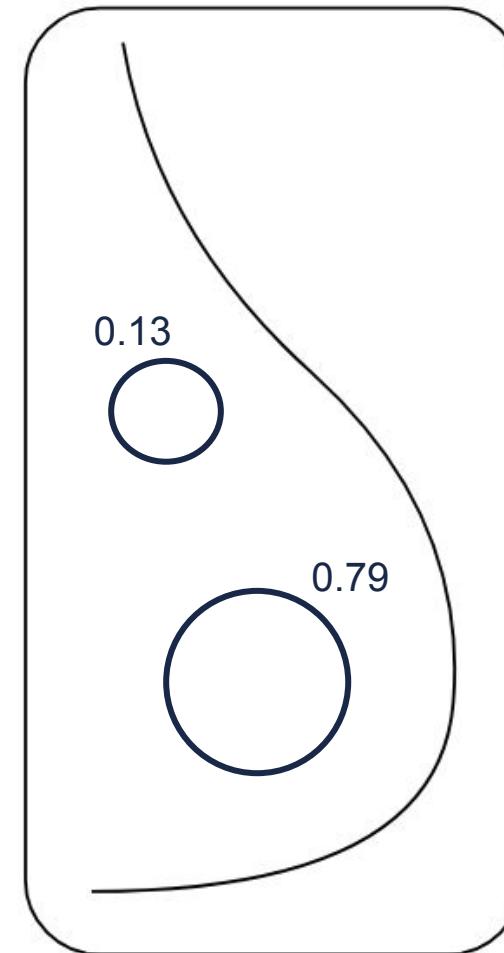
What does a score mean?

By itself: nothing

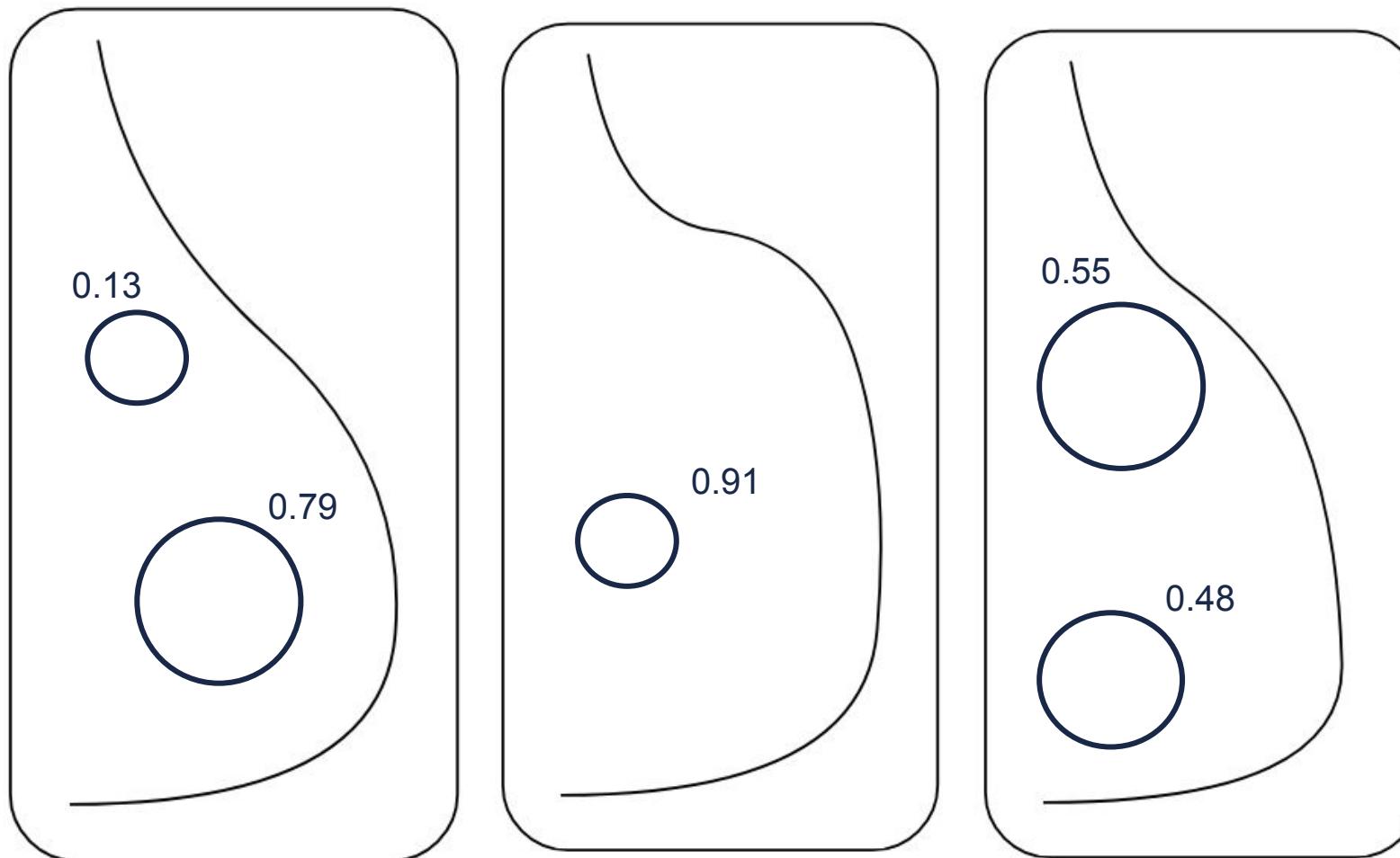
Need a way to ‘interpret’ what score means

Calibration

Toy example



# From network output to FP-level



Calibration dataset: 3 images

| Threshold | # FPs | fp/image |
|-----------|-------|----------|
| 0.0       | 5     | 1.667    |
| 0.13      | 5     | 1.667    |
| 0.45      | 4     | 1.333    |
| 0.55      | 3     | 1        |
| 0.79      | 2     | 0.667    |
| 0.91      | 1     | 0.333    |
| 1.0       | 0     | 0        |

# From network output to FP-level

Created a lookup-table (LUT)

For new findings:

Convert network output into  
expected number of false positives  
per image with at least that score

fp-level: expected number of  
false positives per image

Measure for how suspicious a finding is

| Threshold | # FPs | fp/image |
|-----------|-------|----------|
| 0.0       | 5     | 1.667    |
| 0.13      | 5     | 1.667    |
| 0.45      | 4     | 1.333    |
| 0.55      | 3     | 1        |
| 0.79      | 2     | 0.667    |
| 0.91      | 1     | 0.333    |
| 1.0       | 0     | 0        |

# From network output to FP-level

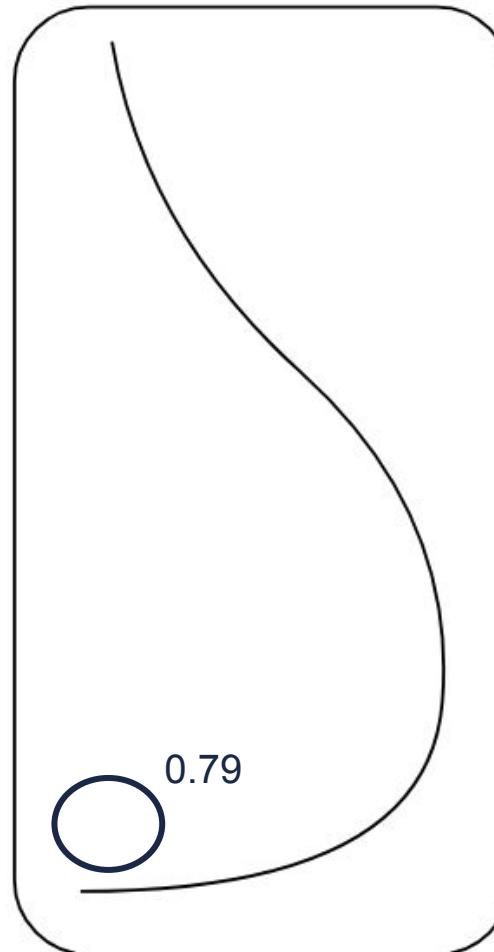
score: 0.79

fp-level: 0.667

Expect to see 0.667 findings  
per image with score = 0.79

Interpretable!

Very coarse:  
Use more data



| Score | fp-level |
|-------|----------|
| 0.0   | 1.667    |
| 0.13  | 1.667    |
| 0.48  | 1.333    |
| 0.55  | 1        |
| 0.79  | 0.667    |
| 0.91  | 0.333    |
| 1.0   | 0        |

# From network output to FP-level

In practice:

Calibrate on 1000 exams per vendor

Pooled of ~5000 normal exams

| Score     | fp-level  |
|-----------|-----------|
| 0.0000025 | 0.6420745 |
| ...       | ...       |
| 0.0013939 | 0.1458729 |
| 0.0013967 | 0.1457999 |
| 0.0013981 | 0.1457268 |
| 0.0013990 | 0.1456538 |
| 0.0013993 | 0.1455807 |
| 0.0014044 | 0.1455077 |
| 0.0014062 | 0.1454346 |
| 0.0014122 | 0.1453616 |
| 0.0014263 | 0.1452885 |
| 0.0014271 | 0.1452155 |
| ...       | ...       |
| 0.9976540 | 0.0000730 |

# Calibration curves

## **Calibration set:**

- > Perfect by definition

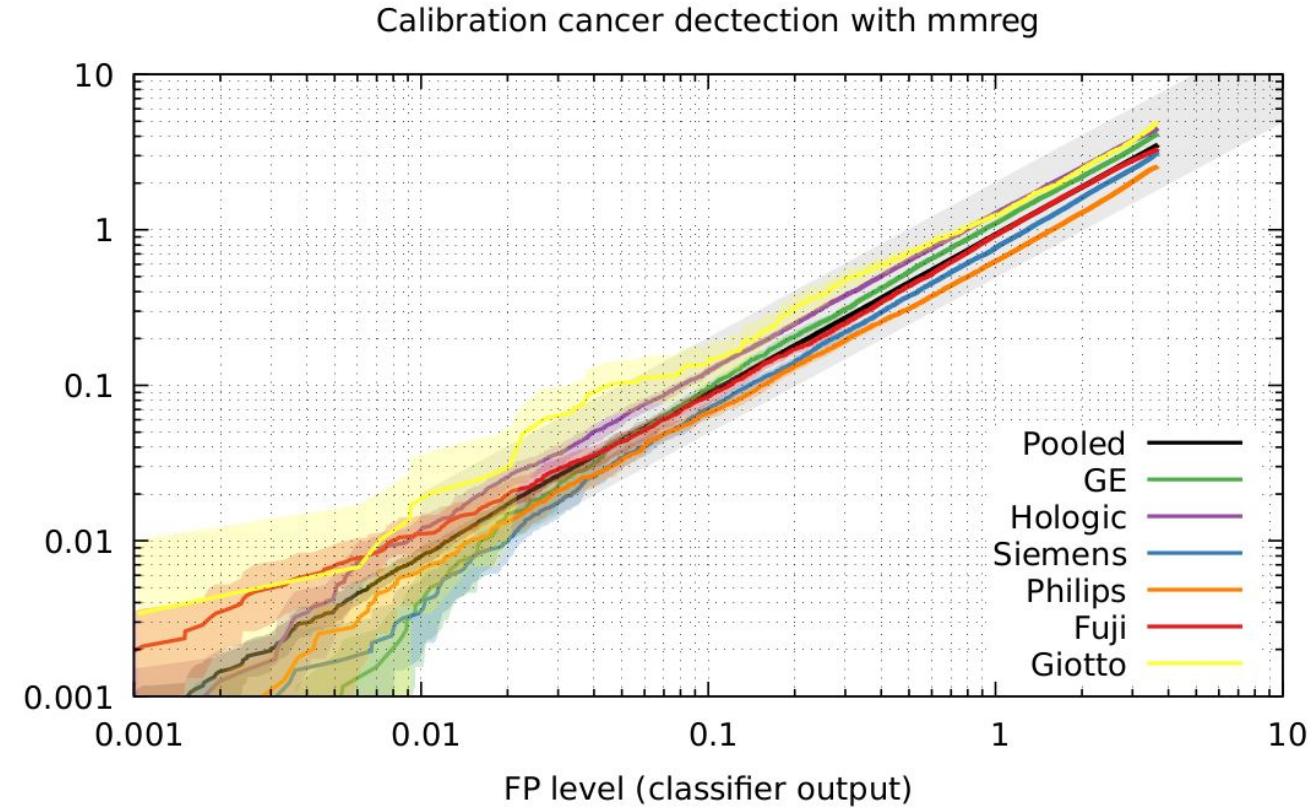
## **Test set:**

- > Some degree of deviation is acceptable

- > If a flavour is off, we can apply a flavour specific calibration

**Careful**, datasets are sensible to population changes (population, denser or bigger breast)

Measured (real)  
FP/image



*Expected by look up table (LUT)*