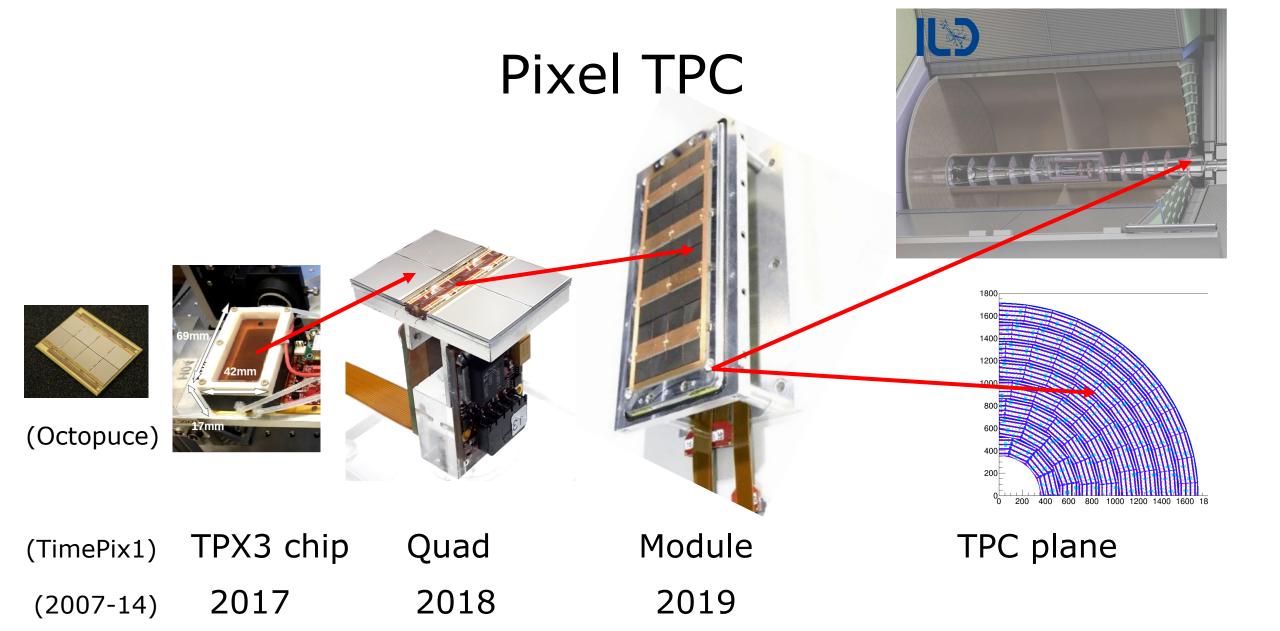


A (Pixel) TPC as a central tracker in a FCCee experiment

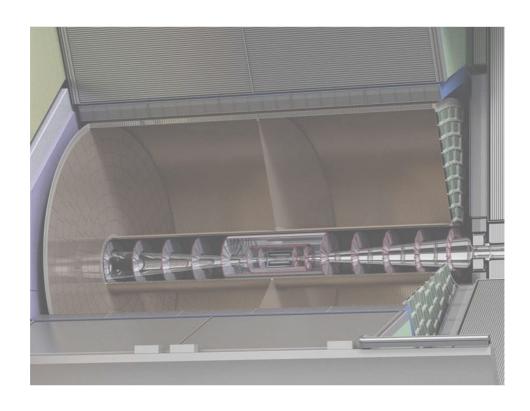
Yevgen Bilevych, Klaus Desch,
Sander van Doesburg, Harry van
der Graaf, Fred Hartjes, Jochen
Kaminski, Peter Kluit,
Naomi van der Kolk,
Cornelis Ligtenberg,
Gerhard Raven, and
Jan Timmermans



TPC requirements

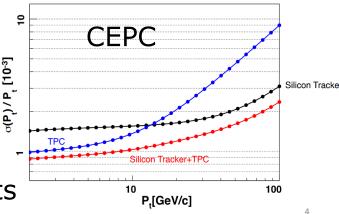
The R&D on a TPC for a e.g. Linear Collider is done in the LCTPC collaboration

Requirements for a TPC from the ILC TDR


Table, large TPC, for pad/pixel electronics

, ,	, , -		
Parameter			
B-field	3.5T		
Geometrical parameters	$egin{array}{cccccccccccccccccccccccccccccccccccc$		
Solid angle coverage	Up to $\cos \theta \simeq 0.98 (10 \text{ pad rows})$		
TPC material budget	$\simeq 0.05 \text{ X}_0$ including outer fieldcage in r		
	$< 0.25 X_0$ for readout endcaps in z		
Number of pads/timebuckets	$\simeq 10^6/1000$ per endcap		
Number of pixels/timebuckets	$\simeq 10^9/1000$ per endcap		
Pad pitch/ no.padrows	$\simeq 1 \times 6 \text{ mm}^2 / 213$		
$\sigma_{ m point} \ { m in} \ r \phi$	\simeq 60 μ m for zero drift, $<$ 100 μ m overall		
$\sigma_{ m point}$ in $r\phi$	$\simeq 0.055 mm/\sqrt{12}$ for zero drift,0.4mm for max drift		
$\sigma_{ m point}$ in rz	$\simeq 0.4 - 1.4 \text{ mm (for zero - full drift)}$		
2-hit separation in $r\phi$	$\simeq 2 \text{ mm}$		
2-hit separation in rz	$\simeq 6 \text{ mm}$		
dE/dx resolution	$\simeq 5~\%$		
dE/dx resolution	$\simeq 4~\%$		
Momentum resolution at B=3.5 T	$\delta(1/p_t) \simeq 10^{-4}/\text{GeV/c} \text{ (TPC only)}$		
Momentum resolution at $B=3.5 T$	$\delta(1/p_t) \simeq 0.8 \times 10^{-4}/\text{GeV/c} (60\% \text{ cov, TPC only})$		

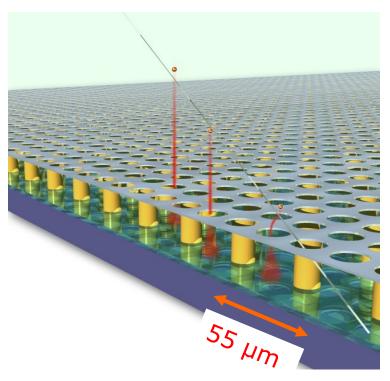
- ILD like detector concept with a TPC central tracker can be used for FCC
- Challenging tracking precision
 - driven by (Z) Higgs running
- For Z running the requirement on $\delta(1/p_t)$ can be loosened by e.g. a factor 10 (LEP like)

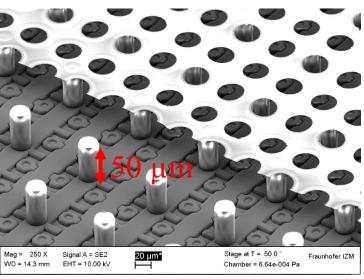


- Material budget is
 - \blacksquare 0.01 X₀ TPC gas
 - 0.01 X₀ inner cylinder
 - 0.03 X₀ outer cylinder
 - \blacksquare < 0.25 X₀ endplates (incl readout)
- Note the very low budget in the barrel region. Material budget can be respected by different technologies like GEM, MicroMegas and Pixels
- TPC is sliced between silicon detectors VTX, SIT and SET
- pixel readout is a serious option for the TPC readout plane @ ILC/FFC-ee/CLIC/CEPC colliders

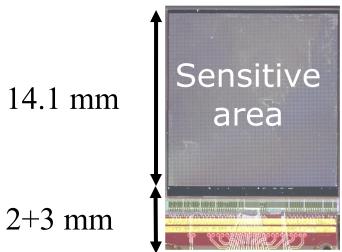

Why a (pixel) TPC as a central tracker

- Low material budget that allows high precision tracking
- Continuous 3D tracking (x,y, t) and track following
 - Excellent v0 reconstruction
 - Ideal for particle flow and combined calorimetry
- TPC is sliced between silicon detectors
 - provides required momentum resolution and constraints
- Very powerful particle identification based on dEdx
 - for electrons (suppress pions)
 - for kaons (H->ss) and protons
- TPC excellent option for FCCee WW, ZH, tt etc running
- Running at the Z is feasible but challenging (see discussion later)
- A pixel TPC combines a large drift volume with a silicon read out plane
 - tracking with high granularity and low systematic uncertainties due to "silicon" precision (1-10 μ m) in the production process
 - the best (see slides) PID performance dEdx and cluster counting

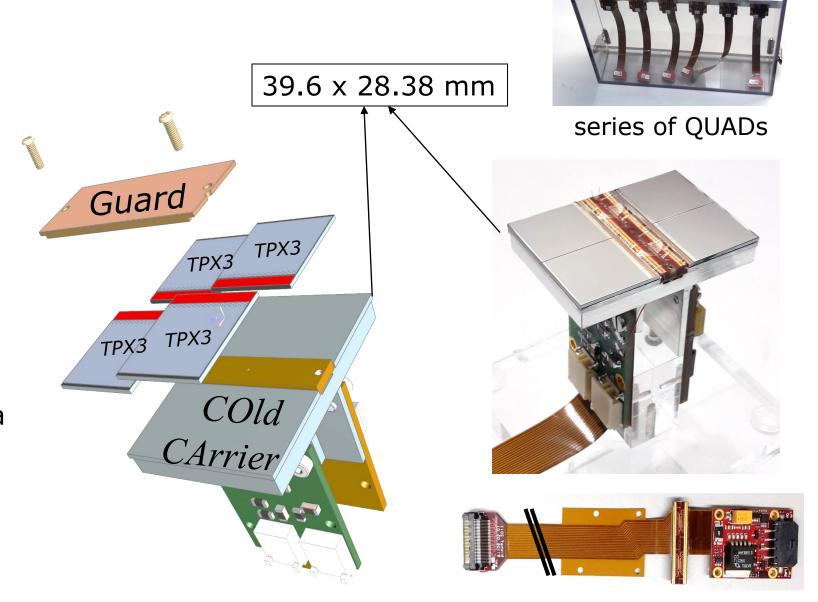



GridPix technology

- Pixel chip with integrated Grid (Micromegas-like)
- InGrid post-processed @ IZM (in 2025 @ Bonn)
- Grid set at negative voltage (300 600 V) to provide gas amplification
- Very small pixel size (55 µm)
- detecting individual electrons
- Aluminium grid (1 µm thick)
- 35 µm wide holes, 55 µm pitch
- Supported by SU8 pillars 50 µm high
- Grid surrounded by SU8 dyke (150 µm wide solid strip) for mechanical and HV stability

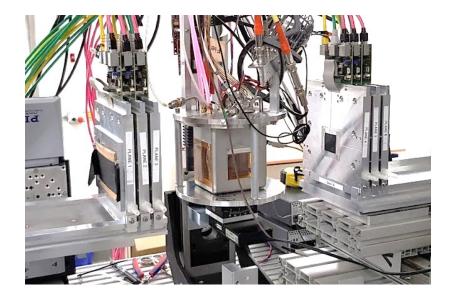


Pixel chip: TimePix3


- 256 x 256 pixels
- 55 x 55 µm pitch
- 14.1 x 14.1 mm sensitive area
- TDC with **640 MHz clock** (1.56 ns)
- Used in the data driven mode
 - Each hit consists of the **pixel address** and **time stamp** of arrival time (ToA)
 - Time over threshold (ToT) is added to register the signal amplitude
 - compensation for time walk
 - **Trigger** (for t₀) added to the data stream as an additional time stamp
- Power consumption
 - ~1 A @ 2 V (2W) depending on hit rate
 - good cooling is important

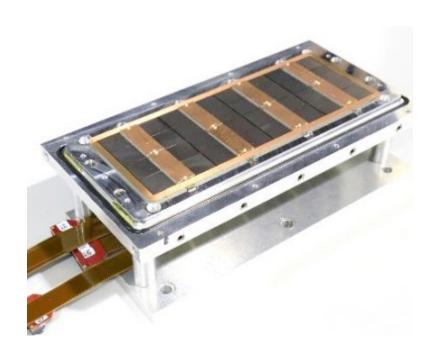
QUAD design and realization

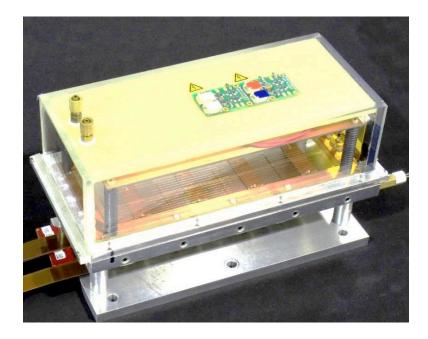
- Four-TimePix3 chips
- All services (signal IO, LV power) are located under the detection surface
- The area for connections was squeezed to the minimum
- Very high precision 10 µm mounting of the chips and guard
- QUAD has a sensitive area of 68.9%
- DAQ by SPIDR

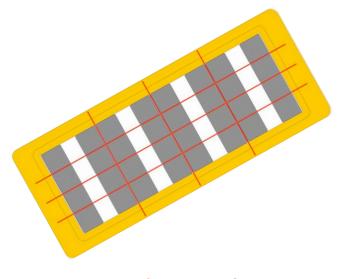

QUAD test beam in Bonn (October 2018)

- ELSA: 2.5 GeV electrons
- Tracks referenced by Mimosa telescope
- QUAD sandwiched between Mimosa planes
 - Largely improved track definition
 - \blacksquare 6 planes with 18.4 μ m \times 18.4 μ m sized pixels
- Gas: $Ar/CF_4/iC_4H_{10}$ 95/3/2 (T2K)
- $E_d = 400 \text{ V/cm}, V_{grid} = -330 \text{ V}$
- Typical beam height above the chip: ~1 cm

Scintillator 12.35 mm Quad detector Timepix3 Timepix3 am PC PC FCC Quad detector Timepix3 Tim

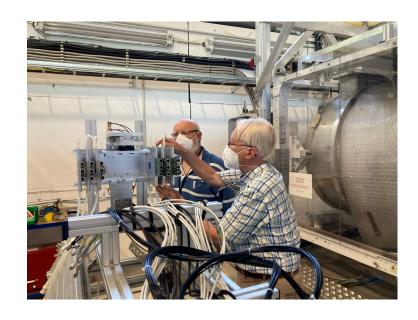

Published NIMA https://doi.org/10.1016/j.n

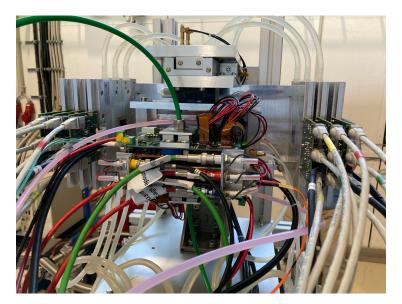

ima.2019.163331

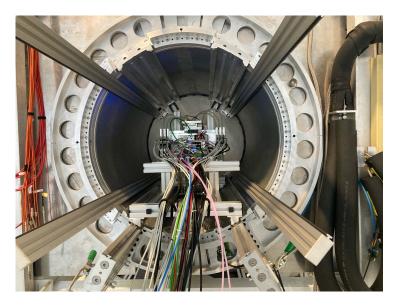


QUAD as a building block

8-QUAD module (2x4 quads) with field cage

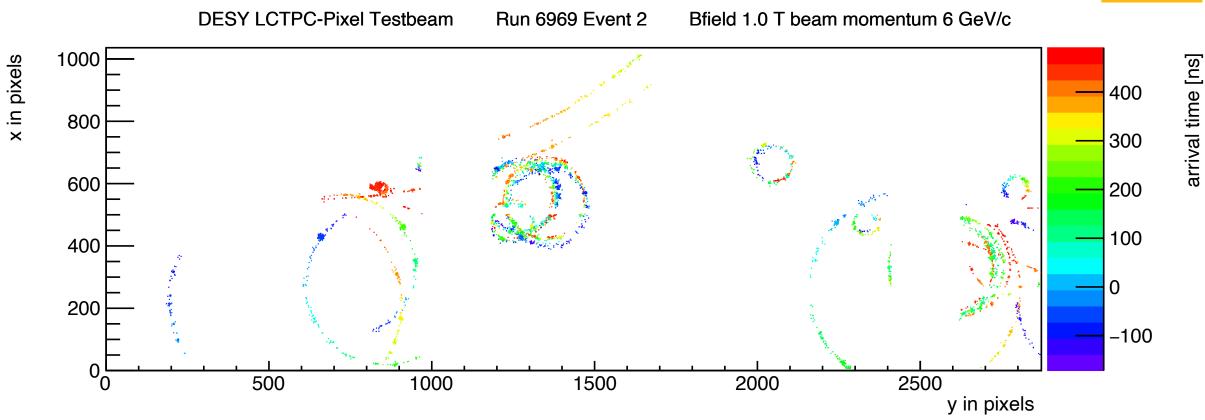

in red guard wires



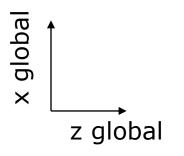

DESY testbeam June 2021

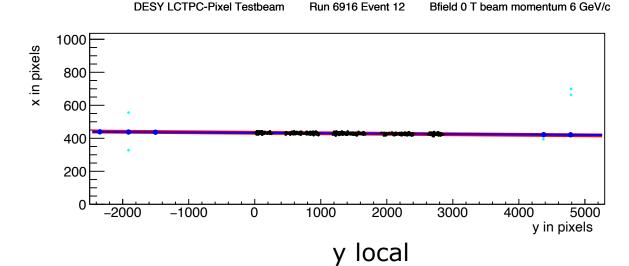
Mounting the 8 quad module between the silicon planes sliding it into the 1 T PCMAG solenoid

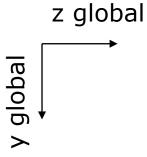
Towards a Pixel TPC part I: construction and test of a 32-chip GridPix detector, Nucl. Instrum. Meth. A 1075 (2025) 345

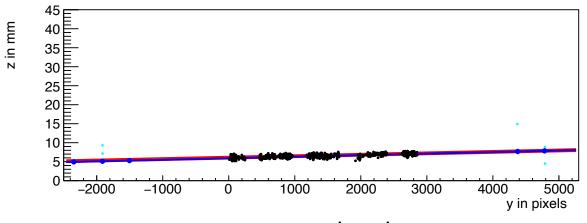


DESY testbeam June 2021









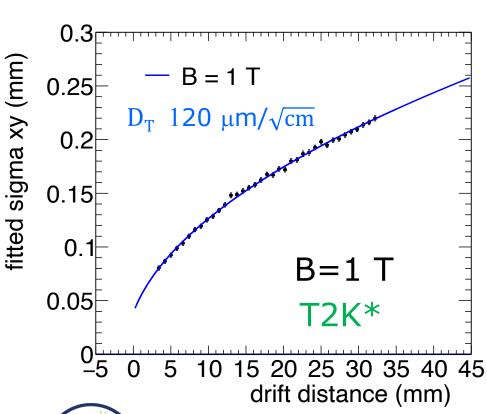
y local

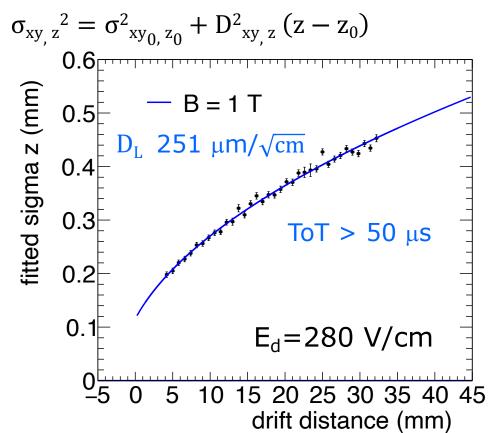
Event display with module and telescope

TPX3 track 1130 hits $\chi^2_{xy} = 677.5/1128$ $\chi^2_z = 775.9/1069$

Asymmetric tail outlier removal applied 1071 hits in z kept.

TPX3 track hits
Telescope track hits (off track green)





B=1 T p=5 and 6 GeV

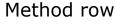
Fitted resolution

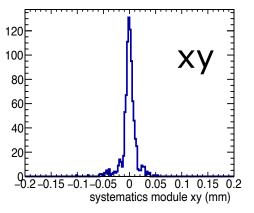
$$\sigma^2_{xy0} = \sigma^2_{pixel} + \sigma^2_{xy tele}$$
 $\sigma^2_{pixel} = 55^2/12 \mu m^2$
 $\sigma_{xy tele} = 42 \mu m$

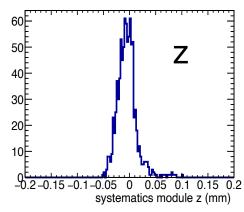
Magboltz gives for $D_T = 121 \mu m / \sqrt{cm}$

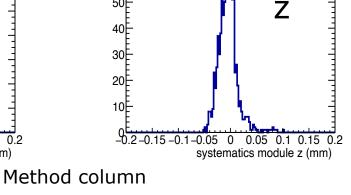
$$T2K^* = T2K gas$$

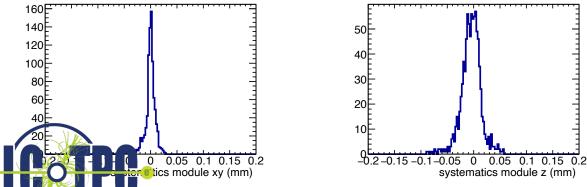
with O_2 and H_2O






B=1T p=5 GeV


UNIVERSITÄT BONN


Distribution of mean residuals in the module plane

B=1 T data set

method	rms (stat) xy	bins xy	rms (stat) z	bins z
row	13 (2) μm	896	19 (5) μm	896
column	11 (2) μm	880	20 (5) μm	880

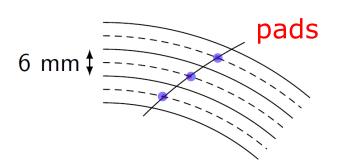
* We did not include the 4 corner chips and (11), 14, 8, 13 and 19. These are affected by the field cage and the short in chip 11.

Tracking resolution and precision

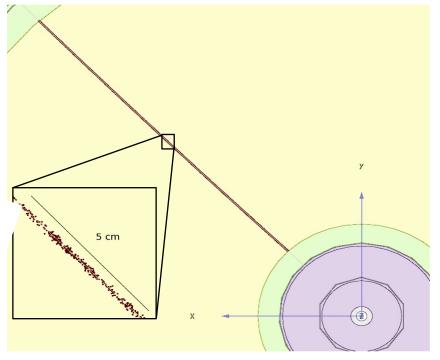
- The results of the 8 Quad Module in the DESY test beam in June 2021 have been presented
- One chip (nr 11) out of 32 was disconnected due to a short*
- In run 6916 e.g. 964 tracks were selected with 1009 hits on track
- The tracking precision: position 9 (xy) 13 μm (z) in angle 0.19 (dx/dy) 0.25 (dzdy) mrad for a module or tracklength is 157.96 mm
- The diffusion coefficients at B=0 T $D_{xy} = 287 \mu m/\sqrt{cm}$ $D_z = 273 \mu m/\sqrt{cm}$
- The diffusion coefficients at B=1 T is $D_{xy} = 120 \mu m/\sqrt{cm}$ $D_z = 251 \mu m/\sqrt{cm}$
 - In agreement with Magboltz $D_{xy} = 121 \mu m / \sqrt{cm}$

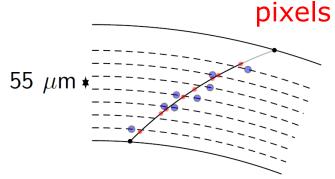
*the chip was successfully repaired in 2023 Bonn

Nik hef Tracking resolution and precision

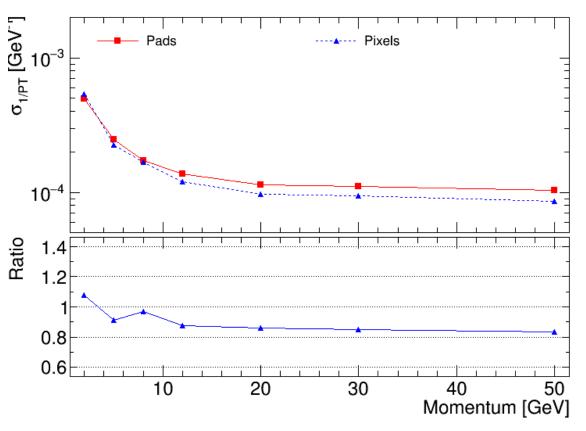

- Results for the module showed that:
 - the HV of the guard wires was well tuned
 - B=0 T rms residuals in the module plane xy 13 μm and z 15 μm
 - The results are compatible with (very) high stats quad measurement
 - B= 1 T rms residuals in the plane xy 13 μm and z 20 μm;
- High tracking precision is demonstrated with small systematics
 - deformations xy stay below 13 μm
- Published in Nucl. Instrum. Meth. A 1075 (2025) 345 Towards a Pixel TPC part I: construction and test of a 32-chip GridPix detector

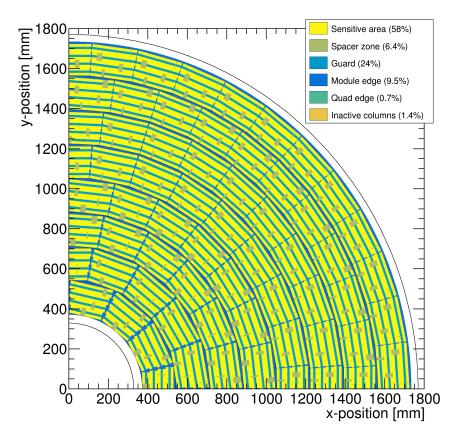
Simulation of ILD TPC with pixel readout


- To study the performance of a large pixelized TPC, the pixel readout was implemented in the full ILD DD4HEP (Geant4) simulation
- Changed the existing TPC pad readout to a pixel readout
- Adapted Kalman filter track reconstruction to pixels


22 electrons / hit ~ 200 hits / track

details: PhD <u>thesis</u> Kees Ligtenberg 2022


50 GeV muon track with pixel readout

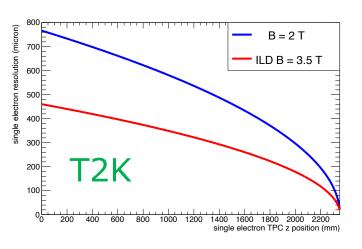


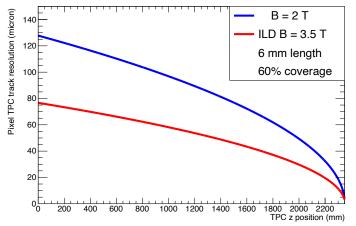
1 electron / hit ~ 10 000 hits / track

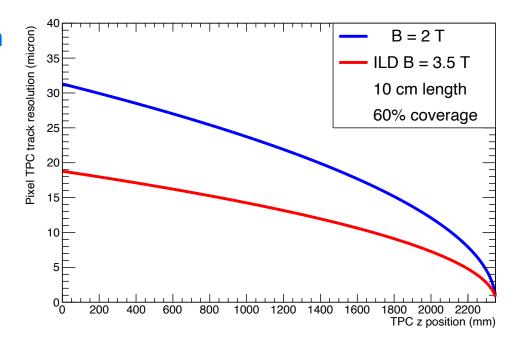
Performance of a GridPix TPC at ILC

- From full simulation the momentum resolution can be determined
- Momentum resolution is about 15% better for the pixels with realistic coverage (with the quads arranged in modules coverage 59%) and deltas.

Pixel TPC tracking studies


ILD tracking Performance for a Pixel TPC based on test beam


Running at B=3.5 T improves the resolution


10 cm track resolution

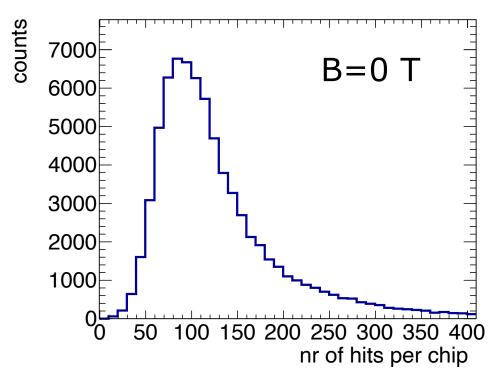
Single electron resolution

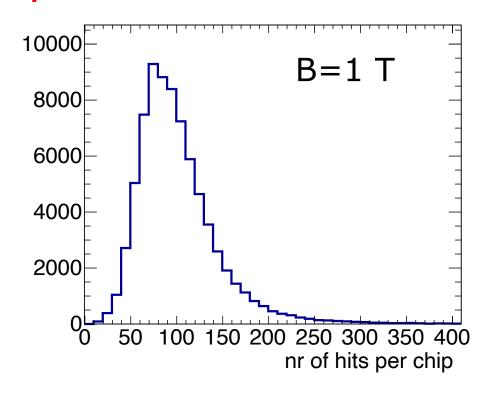
6 mm track("pad") resolution

Each 10 cm we have a point with a resolution of < 18 (31) μ m on the track Comparable to performance of a silicon detector (but TPC gas material).

Particle identification (PID) performance ERSITA

- It is possible to study in test beam data the dE/dx or dN/dx of electrons
- The Pixel TPC has measurements with 55 μm pixel size
- It detects single electrons with an efficiency > 85%
- This allows to measure the number of clusters (hits) as a function of the distance along the track dN/dx (dE/dx) with high granularity
- The advantage of hit counting in a Pixel TPC is due to the digital read out - that one is not including the fluctuations from the multiplication process in the charge measurement
- Using e.g. a pad readout, the charge is used as a measure of dEdx
 - This readout has a worse granularity and includes avalanche fluctuations
 - One has to go to very small pads ('pixels') to measure the clusters





Testbeam PID performance

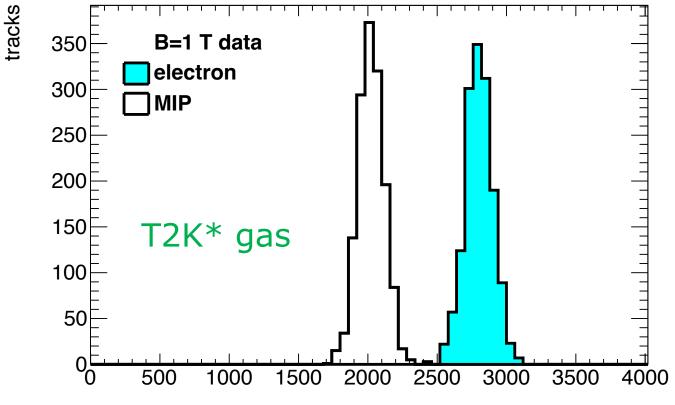
- B=0 T has a large Landau tail
- B=1 T smaller Landau tail and a more gaussian distribution
- An electron crossing 8 chips in the module has about 1000 hits

DESY testbeam Module Analysis Analysis of PID performance UNIVERSITÄT

Combine chips to form a 1 m long track with 60 % coverage for electrons

- Method 1 "dEdx truncation": reject large clusters and then run dEdx @ 90% using slices of 20 pixels along track (xy) (gives nr of selected hits). A large cluster has more than 6 hits in 5 consecutive pixels.
- Method 2 "Template fit": fit the slope of the N_{scaled} minimum distance (d) in xy distribution with an exponential function ($N_{scale}(d)$ =defines the inverse weights): $N(d)_{scaled} = N_{scale}(d) N_{observed}(d) N_{observed}(d)$ $N(d)_{scaled}$ is then fitted for each track with N_0 exp(-slope d)
- ✓ Calculate the PID observable for electrons and MIP (= 70% of hits)
 - method 1 = nr of selected hits, method 2 = fitted slope
 - Resolution is $\sigma = \sigma(PID)/PID$ (for σ we use the rms)

Published as "Towards a Pixel TPC part II: particle identification with a 32-chip GridPix detector", Nucl. Instrum. Meth. A 1081 (2026) 170849

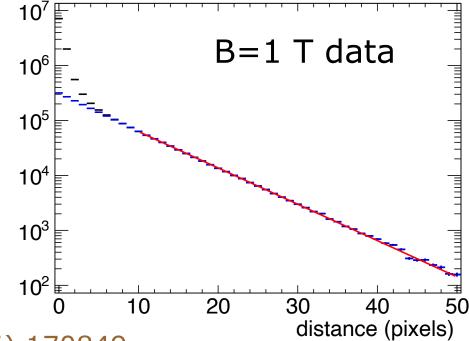

UNIVERSITÄT BONN

PID performance method "dEdx truncation"

Electron resolution 3.6% 1 m track 60% and coverage

Linearity MIP-e = 1.03 z drift=5-15 mm (flat)

MIP distribution is obtained by dropping 30% of the hits


PID performance method "Template fit WIVERSITÄT

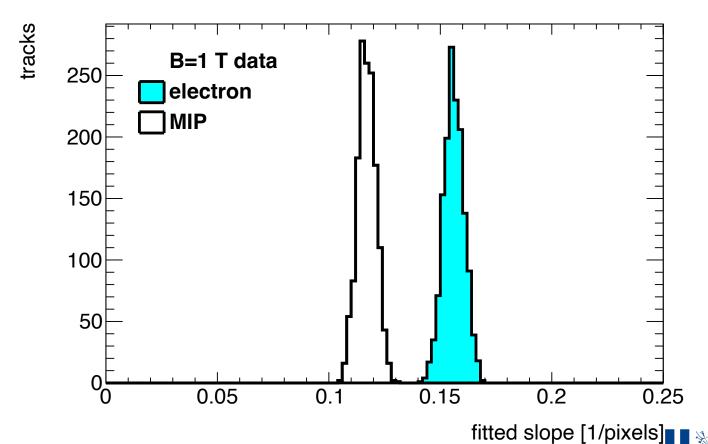
counts

Calculate minimum distance between the hits. The slope of the distribution is related to the number of primary clusters /cm

The diffused peak at d<10 (black) comes from clusters with more than 1 hit. Weights are applied at d<10 to the follow the exponential cluster distance distribution (blue). In red the exponential function.

Per 1 m track the slope is fitted to the full distance distance distribution using a ML fit.

Nucl. Instrum. Meth. A 1081 (2026) 170849



PID performance method "Template fit"

Electron resolution
2.9%
1 m track 60% and
coverage
Linearity MIP-e = 1.07

Ideally this is 1. A number larger than 1 means that the resolution is +7% larger

Summary of PID performance

The PID resolution for electrons from data by combining tracks to form a 1 m long track with realistic coverage ~60% coverage.

Method	B=0 Resolution (%)	B= 1 T Resolution (%)
(1) dEdx truncation	6.0	3.6
(2) Template fit	5.4	2.9

The resolution for B=0 is worse than of the B=1 T data because of the larger fluctuations, that were already observed at the chip level.

NIM paper submitted: Towards a Pixel TPC part II: particle identification with a 32-chip GridPix detector

dEdx Performance extrapolated to the ILD detector

Test beam B = 1 Tp=5,6 GeV/c

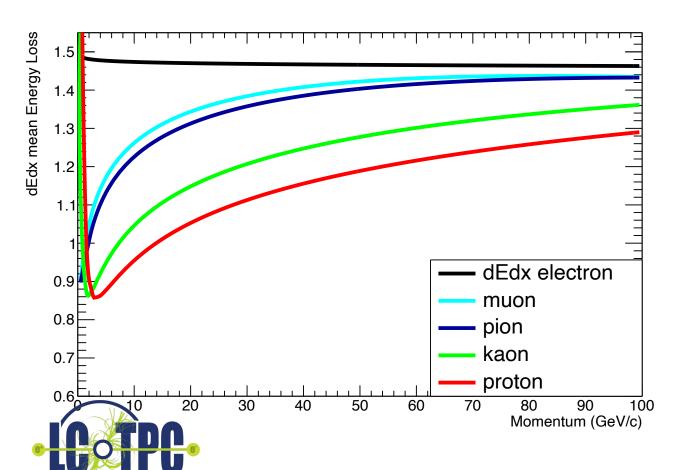
electron resolution 2.9(3.6)% for method 2 (1)

1 m track 60% and coverage

ILD detector

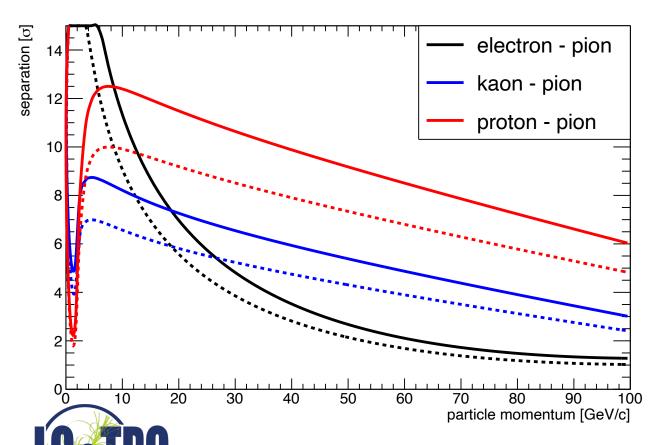
rInner = 329 rOuter = 1770 mm halflength (z) = 2350 mm electron resolution = 2.5(3.0)% at θ = π /2 for method 2 (1)

Assume Pixel TPC performance at B = 1 T at p = 5,6 GeV/c



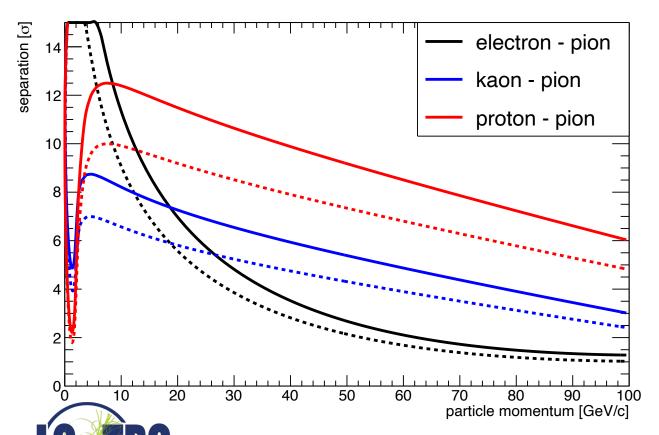
ILD dEdx performance for T2K gasiversitat

- Ullrich Einhaus performed dEdx studies in ILD and extracted the ILC soft parametrisations for energy loss based on G4 and full simulation of the ILD TPC with T2K gas
- <u>Link</u> to the software. Samples were generated in 2020 with ILC soft v02-02 and v02-02-01



Pixel TPC PID performance

- ILD Performance with specified detector dimensions for particles at $\cos \theta = 0$
- Pixel TPC resolution from electron p = 5 (6) GeV test beam (for B = 1 T) of 2.5% and 3% (--- = method 1) at cos θ = 0
- Separation electron pion defined as: |<Eloss e> <Eloss $\pi>$ | / σ_{π}
- Separation pion kaon as: |<Eloss $\pi > - <$ Eloss $K > | / <math>\sigma_{\pi}$


Nucl. Instrum. Meth. A 1081 (2026) 170849

Pixel TPC PID performance

- The expected pion-kaon separation for momenta in the range of 2.5-45 GeV/c at $\cos\theta$ = 0 is more than 5.5(4.5) σ for the two resolution scenarios.
- At a momentum of 100 GeV/c the separation is still $3.0(2.0)\sigma$.
- Protons can be separated from pions for momenta in the range of 2.5-100 GeV/c with more than $6.0(4.8)\sigma$.

Nucl. Instrum. Meth. A 1081 (2026) 170849

Pixel TPC PID performance

- The PID resolution for an electron with p=5,6 GeV/c of 1 m track length with 60% coverage is measured to be 2.9(3.6)% at B=1 Tesla.
- The extrapolated PID resolution for an ILD detector is 2.4% (3 %)
- This allows for particle identification and separation of kaons from pions up to momenta of 45 GeV with more than 5.5σ (4.5 σ) for cos θ = 0. The separation increases up to cos θ = 0.85 (see back up slide).
- As demonstrated, the digital read out of a pixel TPC with a small pixel size allows to perform hit and cluster counting
- Currently a coverage of ~60% is realized with the TPX3 chip. Using the next generation TPX4 chip with Through Silicon Via's will allow to enlarge the coverage and increase the PID and tracking performance. The R&D is part of the DRD1 program

At the FCCee a pixel TPC as a central tracker – sliced between silicon detectors as in the ILD concept detector - is well suited to carry out the WW, ZH and tt physics program.

At the CEPC a pixel TPC is selected as one of the baseline CDR/TDR detectors

A more challenging situation for a TPC is running at the Z and in particular the FCCee Tera Z program with $L = 140 \ 10^{34} \ cm^{-2}s^{-1}$ and Z bosons produced at a rate of ~40 kHz and huge beam backgrounds*.

A 10 Giga-Z FCCee physics program looks realistic with a GridPix pixel TPC and the current FCCee MDI design.

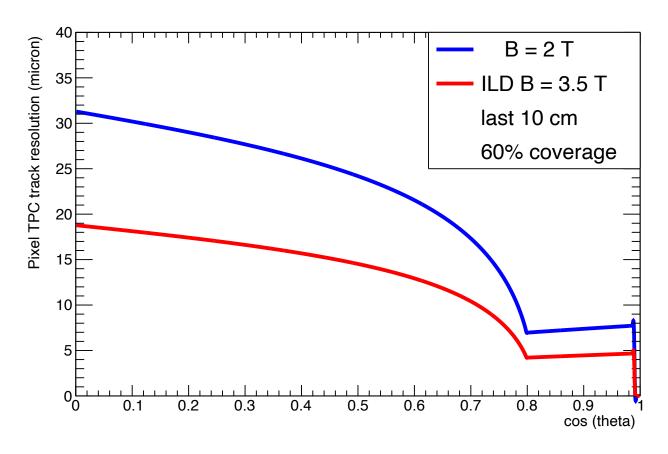
^{*}For detailed questions/answers see backup slides

Conclusions: Pixel TPC at a circular collider

- The performance of a pixel TPC based on GridPixes has been studied based on prototypes and test beam measurements. It provides
 - high precision continuous tracking with a low material budget
 - very powerful particle identification
- At the FCCee a pixel TPC as a central tracker sliced between silicon detectors as in the ILD concept detector - is well suited to carry out the WW, ZH and tt physics program.
- A 10 Giga-Z FCCee physics program looks realistic with the proposed pixel TPC and the current FCCee MDI design.
- After years of R&D, a pixel TPC has become a realistic viable option for experiments
- R&D on a Pixel TPC with GridPix devices with reduced ion back flow based on the TPX3 or TPX4 ASICs are part of the DRD1 program

Backup plots

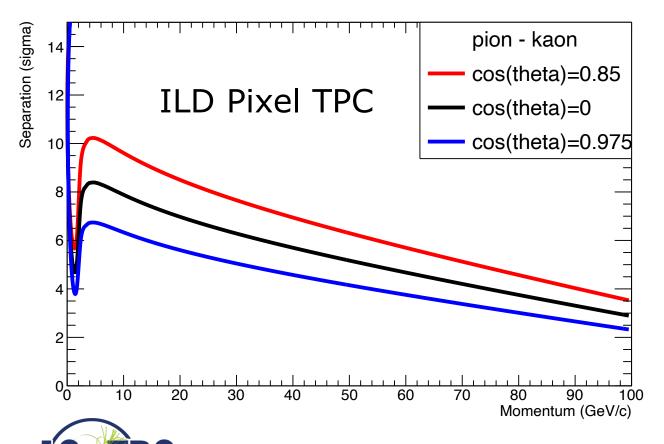
Pixel TPC tracking studies



ILD tracking Performance for a Pixel TPC based on test beam

The last 10 cm track provides very high resolution 'point' in the endcap ($\cos \theta > 0.8$). This is due to the short drift distance and the high resolution pixel readout.

Question can we use the endcap 'point' and calibrate out the TPC distortions?



Pixel TPC dEdx performance

- Separation pion kaon |<Eloss $\pi > <$ Eloss $K > | / \sigma_{\pi}$
- Separation pion kaon for different cos(theta) values due to the track length dependence
- For cos(theta)=0 till 0.95 the separation lies between the black and red curves. Only above 0.95-0.975 the separation drops till the blue curve.
- Excellent performance over very large polar angle range

- Can a pixel TPC reconstruct the Z events?
 - The TPC total drift time is about 30 μs
 - This means that there is on average 1.2 event / TPC readout cycle
 - YES: The excellent time resolution: time stamping of tracks < 1.2 ns allows to resolve and reconstruct the events
- Can the current readout deal with the Z rate?
 - Link speed of Timepix3 (in Quad): 2.6 M hits/s per 1.41 × 1.41 cm² In the module testbeam we tested up to rates of 5.7 kHz
 - YES: This is sufficient to deal with hits from Z's in high luminosity Z running
 - Expect about 90 kHz/cm² from hadronic Z decays@inner radius
- What is the current power consumption?
 - No power pulsing is possible at a circular collider (at e.g. ILC power pulsing is possible)
 - Current power consumption TPX3 chip ~2W/chip per 1.41 × 1.41 cm²
 - So: good cooling is important but no show-stopper.
 - In LCTPC, CO2 cooling has been developed and tested for the MM read-out technology
 - To save power the TPX3/4 chips can be run in LowPowerMode: reduction factor 10.

- The importance of the beam background and the optimization of the FCCee machine detector interface MDI
 - Hit rates are currently dominated by the beam background (not by Z decays)
 - The beam background study presented in the October 2024 ECFA meeting by Daniel Jeans (for a 2 T B field) would correspond to a sizeable background rate of about 300 MHz/cm² (@inner radius).
 - Since October 2024, the FCCee MDI has improved, a B field of 2.5(3-3.5?) T is possible. It is important to study the impact of the reduced background level
 - The Pixel TPC due to the high granularity has an occupancy of < 1% for 300 MHz/cm² (@inner radius). The read-out speed of the current TPX3 has to be upgraded to cope with the large background rate. R&D for a fast read-out based on TPX3/4, like the VeloPix (LHCb) is needed.

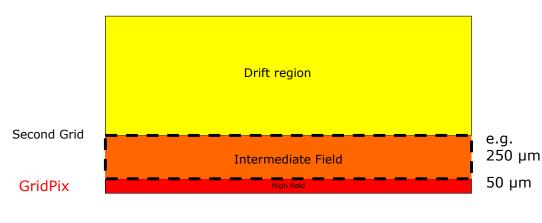
- What about track distortions?
 - Not an issue for running at cms energies of WW, ZH, tt
 - There are two important sources of track distortions of the TPC drift field:
 - the slowly drifting primary ions (from Zs and background)
 - the ions produced in the amplification process flowing back (IBF)
 - At the ILC gating is possible to reduce the IBF; at FCC-ee this is not realistic, for a Pixel TPC a double grid is the best solution (see below)
- Is it possible to reduce the IBF for a pixel TPC?
 - IDEA: by making chip with a double grid structure (see back up slide)
 - This idea was already realized as a 'TWINGRID' NIMA 610 (2009) 644-648
 - For GEMs for the ALICE TPC this was also the way use several GEMs to reduce IBF
 - The IBF* can be easily modelled and with a hole size of 25 µm an IBF of 3 10⁻⁴ can be achieved and the value for IBF*Gain (2000) would be 0.6.
 - YES: the IBF can be reduced. It needs R&D that can be done in the detector lab in Bonn.

^{*} Measured IBF of single grid GrixPix is 1.3% and IBF*Gain (2000) is 26.

- What would be the size of the TPC distortions at a TeraZ factory?
 - <u>Tera-Z studies</u> by Daniel Jeans and <u>Keisuke Fuji</u> show that for FCC-ee this means: distortions from Z decays up to $< O(100) \mu m$
 - The problem is that the beam backgrounds are by far the dominant source for the ions in the TPC volume. A reduction of that background is important.
 - The beam background study presented in the October 2024 ECFA meeting by Daniel Jeans (for a 2 T B field) gave estimates for the old MDI but it is likely that the numbers can go down substantially. The MDI for ILC (ILD_I5_v02_2T) yields a background that is a factor 40 lower than the FCCee.
 - There is also an idea to operate the TPC with a Neon based gas that could bring the backgrounds down by an order of magnitude. This needs study.
 - It can be argued that in an ILD like detector the distortions can be mapped out using the silicon VTX-SIT/SET detectors. See e.g. the backup slide on fitting out TPC distortions.

- A Tera Z FCCee physics program* could be carried out, but
 - It needs a lot of power to process the large amounts of background hits in the tracking detectors
 - It needs more study to reduce the beam background by an improved MDI
 - Fitting techniques should be studied to correct for the TPC distortions
 - The current TPX3 read out should be optimized to cope with the high readout rate and minimise the power consumption

^{*} The physics case seems IMO rather weak to go beyond 10 Giga Zs


Fitting out and reducing TPC distortions

- It is possible to map out distortions using e.g. muons from Z decays
 - E.g. by fitting the 3D spatial distribution as a function of time as was done by ALEPH and more recently by ALICE. Using this distribution the hits positions are corrected and the TPC track refitted.
- However, with silicon trackers around the TPC, more elaborate methods can be used. One can use the track predictions based of the silicon trackers SIT and SET to correct on a track-by-track level the TPC track.
 - One can use as a constraint that the extrapolated positions and angles agree with the measured in the SIT and SET.
 - Practically, one can e.g. correct the TPC track parameters
- The ultimate way is a **fitting technique** similar to ATLAS. In the ATLAS track fit the common systematics is fitted out for sets of Muon hits. For ILD @ FCC the fit would fit free parameters in the distortion model, while using as a constraint the SIT and SET position and direction measurements.
 - The simplest case is a model where the strength (amplitude) and radial dependence would be scaled and a model is used for the 3D extrapolations.

Reducing the Ion back flow in a Pixel TPC

The Ion back flow can be reduced by adding a second grid to the device. It is important that the holes of the grids are aligned. The Ion back flow is a function of the geometry and electric fields. Detailed simulations – validated by data - have been presented in <u>LCTPC WP #326</u>.

With a hole size of 25 μ m an IBF of 3 10^{-4} can be achieved and the value for IBF*Gain (2000) would be 0.6.

Ion backflow	Hole 30 µm	Hole 25 µm	Hole 20 µm
Top grid	2.2%	1.2%	0.7%
GridPix	5.5%	2.8%	1.7%
Total	12 10-4	3 10-4	1 10-4
transparancy	100%	99.4%	91.7%