The direct detections of gravitational waves:

The first discoveries, and where we go from here
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Direct detection of gravitational waves

|2 Selected for a Viewpoint in Physics week ending
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Observation of Gravitational Waves from a Binary Black Hole Merger

B.P. Abbott et al.”

(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave
Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in
frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 x 10~2!, It matches the waveform
predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the
resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a
false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater
than 5.16. The source lies at a luminosity distance of 4101180 Mpc corresponding to a redshift z = 0.09702°.
In the source frame, the initial black hole masses are 361L3M o and 291;‘114 o» and the final black hole mass is
6271 Mg, with 3.0702 M ;,c? radiated in gravitational waves. All uncertainties define 90% credible intervals.
These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct
detection of gravitational waves and the first observation of a binary black hole merger.

DOL 10.1103/PhysRevLett.116.061102

http://journals.aps.org/pril/abstract/10.1103/PhysRevl ett.116.061102




What are gravitational waves?

O Einstein field equations:

G = 87r§TW

O Far from the source: metric is flat with small perturbation

uv = Muv + hp:v

O Far from the source: Einstein equations reduce to wave equation
for the perturbation:
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What are gravitational waves?

O Gravitational waves have the effect of traveling tidal waves
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Detection of gravitational waves: laser interferometers

O Laser interferometer:

O Arms are periodically stretched and compressed by passing
gravitational wave:

O Extreme sensitivities required: AL/L ~ 10°°




LIGO Livingston, LA LIGO Hanford, WA

GEO600, Hannover, Germany S Virgo, Cascina, Italy Kagra, Kamioka, Hida, Japan




Sources of gravitational waves

Coalescing binary neutron stars and black holes Fast-spinning neutron stars

“Stochastic” gravitational waves




Coalescence of binary black holes

Quasi-circular Plunge Ringdown
inspiral and merger

L

Black hole
Post-Newtonian Numerical perturbation
techniques relativity =~ methods




The Advanced LIGO detectors
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Searching for a signal

O Search by “matched filtering”

* Integrate signal against data for fixed choice

pr—————— of masses and spins

1 iramge = 44, theged | |
L1 frange = 36 SMpc) ||

* Weigh the integrand with detector sensitivity
as function of frequency

— “Signal-to-noise ratio”

O Repeat for large number of parameter choices

e+« bulk
+«*s edge

= |  “Template bank”
m i | * Density of templates determined by how
' different waveforms get as parameters are

varied

O If high signal-to-noise ratio attained:

« Waveform shape consistent with signal?

 Coincident between detectors?

j » Consistent parameter between detectors?

O Time-slide data streams w.r.t. each other

10*H «» « Closed Box Background

« Obtain distribution of false positives
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The first detection
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O Found in “unmodeled” and “modeled” searches

16 18 20 22 24

O “Modeled search” (which makes use of waveform predictions) using
16 days of coincident Livingston-Hanford data

0 At time of first publication:

False alarm rate < 1 in 203000 years

Significance > 5.1¢0




The first detection

Hanford, Washington (H1) Livingston, Louisiana (L1)
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The first detection

O Signal consistent with binary black hole merger

OParameters measured by matching millions of trial
waveforms in 15-dimensional parameter space
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At least four breakthroughs in one

OFirst direct detection of gravitational waves
OFirst direct evidence for the existence of black holes
OFirst observation of a binary black hole merger

MFirst tests of genuinely strong-field dynamics of GR




The second detection: GW151226
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The third detection: GW170104

19.5 + 31 solar masses
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Unexpected variety of black holes!
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Unexpected variety of black holes!

Black Holes of Known Mass
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X-Ray Studies
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“3.9 detections”
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O Complementary information:

« GW150914: merger at the most sensitive detector frequencies
« GW151226: long inspiral in sensitive frequency band

« GW170104: twice as far away — study propagation over large distances



Was the inspiral as predicted by general relativity?

1

L b - = = kW
T T o
y!

hew(t)/107%!

fow(t) (Hz)

S

(=]

=0.15 =0.10 -0.05 0.00
Time (seconds)

O Orbital phase during inspiral as a function of (ever increasing) orbital speed:

o) = (1) "3 [en+ e ()] ()"

n=0
O Up to factor of 2, this is also the GW signal during inspiral
0O In general relativity, the coefficients ¢ _and <pn(’) are known functions of masses

and spins

O Can we put bounds on possible deviations from the GR predictions?
http://arxiv.org/abs/1602.0384 1



http://arxiv.org/abs/1602.03841

Was the inspiral as predicted by general relativity?
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Was the frequency of the final black hole as predicted?
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O From the inspiral, we can predict that ringdown frequency should be ~250 Hz

... and that's what we measure

http://arxiv.org/abs/1602.03841
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Does the graviton have mass?
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Do gravitational waves propagate as predicted?

Anomalous dispersion of gravitational waves
(violating local Lorentz invariance): E? = p2¢2 + Ap®*c®
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Where do we go from here?




Observing plans for the coming years

Progressive improvements in sensitivity:
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0 2015-2016 (O1): 4-month run with only Advanced LIGO

Detection of GW150914

Second half not yet analyzed — may contain further detection(s)!

0O 2016-2017 (02): longer run with Advanced Virgo joining

0 2018-2019 (03): longer run: LIGO + Virgo + KAGRA?

0 2019+: LIGO + Virgo (towards full sensitivity) + KAGRA

0O 2022+: LIGO-India joins the network

LIGO-India project approved!

http://arxiv.org/abs/1304.0670




Detecting binary neutron stars

O Equation of state of neutron stars is currently unknown

O With multiple binary neutron star coalescences, from the GW signal alone

7 1] 7 (13

one can distinguish between “soft”, “intermediate”, “hard” equation of state
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Detecting binary neutron stars

O Would be helpful to see electromagnetic counterpart

O Sky map for GW150914 was sent to astronomers, and they looked
(though no EM emission expected from binary black holes!)

Footprints of Tiled Observations

Area Contained probability (%)

Group (deg?) cWB? LIB? LALInf®

Swift 2 0.6 0.8 0.1

DES o4 32.1 134 6.6

INAF 93 28.7 9.5 6.1

J-GEM 24 0.0 1.2 0.4

MASTER 167 9.3 33 6.0

16h™. Pan-STARRS 355 27.9 229 8.8
Gw 3 SkyMapper 34 9.1 79 1.7

Heray [ TZAC 29 151 35 1.6

opticalfiR ZTF 140 3.1 29 0.9

radio (total optical) 759 76.5 46.8 239
20h LOFAR-TKSP 103 26.6 ] 0.5
MWA 2615 97.8 71.8 59.0

VAST 304 25.3 1.7 6.3

(total radio) 2623 97.8 71.8 59.0

(total) 2730 978 768 621 2




Detecting binary neutron stars

O What if we had seen binary neutron star coalescence as loud as GW1509147?

O With Advanced Virgo included, 90% confidence sky error box would be
reduced from ~180 deg” to ~10 deg®

20h

LIGO Hanford + LIGO Livingston LIGO Hanford + LIGO Livingston

+ Advanced Virgo




Cosmography with gravitational waves

O Gravitational waves are cosmic distance markers:

A(i) - M5/3(m1,m2)g§’ qb, j ?f))FQm(t)

« Masses m, m, can be obtained from the phase

« Same with instantaneous frequency F(t)

«  With multiple detectors, information about sky position (6,¢) and orientation (1,p)

Can extract distance D!

O If both distance D and redshift z are known, can perform independent measurement
of the Hubble constant H,

Use electromagnetic counterparts to find z

Or, infer it approximately from 3D position + galaxy catalogs
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“Background noise” from binary black hole mergers

00 Binary black hole signals arriving regularly, but most will be too quiet to
pick out individually

O However, they cause “noise” that is correlated between detectors
O Very characteristic spectrum: ~ f?up to ~100 Hz, then rapid fall-off

O Could be detected by the end of the decade!

% | o 4 | _8;%12"]? 10' : ' — ——————
|‘ ’ f’ ,_,' — 052020:22 5(3' - ___oama
“ .!'. " =—Total 3".3' >
3 . i - = = Aesidual >
R F s [_IPgisson F
-8 . & i
10 ‘ 10&
am
Z aaaaaa
W
107}/
---residual |
10 2 | 10722 : : , [ lPaisson

10
Frequency (Hz) Observation time (months)
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Primordial gravitational waves from early Universe

O Between initial and final
advanced detectors:
Factor 10* gain in Q.

» Better sensitivity overall

* Wider frequency band

O Possible signals from a fraction
of a second after Big Bang:

 Termination of inflation
(e.g. axion inflation)

 Phase transitions:
fundamental forces splitting
off

* Cosmic strings

+Roll Inﬂatron
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The unknown?

O Different scenarios yield
different spectra, which would
allow us to distinguish




The next few decades

O Einstein Telescope (~20307?)

« 3" generation observatory
« 10°binary mergers per year
* Evolution of the Universe (e.g. dark energy)

e Build in The Netherlands?
O LISA (approved for 2034)

e 3 probes in orbiting the Sun, 5 x 10°km distance
*  Probe low frequencies: 10°— 10" Hz

* Mergers of supermassive binary black holes
throughout the Universe; study their growth

'"‘ﬁl

Spacecraft #1

 Pathfinder mission launched in 2015

O Pulsar timing arrays (active now)

» Correlate variations in pulse arrival times between
widely spaced pulsars to see effect of GWs

e  Ultra-low frequencies: 10° — 10°Hz

* Supermassive binaries long before they merge

Together provide wide range of frequencies to search for
primordial gravitational waves!




The next few decades
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