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I. DETECTION OF GRAVITATIONAL-WAVE “CHIRPS”
A. Waveforms

Consider a system of two compact stars (black holes or neu-
tron stars) with masses m; and m, in a circular orbit. Such a
system will lose energy by gravitational-wave (GW) emission
and the stars will spiral inwards such that the orbital frequency
increases with time following Kepler’s third law. The emitted
gravitational waveform is a “chirp” (similar to the chirping
of birds) with both amplitude and frequency increasing with
time. When the stars are widely separated, the problem can
be treated perturbatively. In the leading order post-Newtonian
approximation, the observed GW signal, which is a linear
combination of the two polarizations A, (f) and hy(f), can be
computed as:

h(t) = A(t) cos ©(1). (1.1)

The amplitude A(f) depends on a particular combination of
the masses, called the chirp mass M, the instantaneous fre-
quency F(f) of GWs, the luminosity distance D to the source,
and a geometric factor C that depends on the location of the
source in the sky and its orientation with respect to the detec-
tor.
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For simplicity, we shall assume C = 1 which implies that
the binary is conveniently oriented giving circular polarization
and the source is located along the direction where the detec-
tor shows maximum directional sensitivity. The chirp mass
can be expressed in terms of the total mass M = m; + m; and
reduced mass u = mymy/M as M = 1> M?3. The frequency
evolution F(¢) is given by
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where F) is the starting frequency of the signal: F := F(t =
0). It can be seen that the frequency sweeps from lower to
higher frequencies, until the approximation breaks down at
t = t.. The coalescence time t. can be computed as
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Finally, the phase ¢(r) of the GW signal can be expressed as
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where ¢ is the phase at ¢t = 0. Waveforms computed in this
lowest order approximation are sometime called “Newtonian
chirps”.

Units: All expressions in this Section are written in ge-
ometrized units, in which G = ¢ = 1. Mass and distance
have units of seconds. Physical units can be obtained by re-
placing a mass M by GM/c?, and a distance D by ¢D. In
geometrical units, 1My = 4.92549095 x 107® s and lpc =
1.0292712503 x 10% s. A sample Newtonian chirp waveform
is shown in Fig. 1.
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FIG. 1: An example of a “Newtonian chirp”, with chirp mass M =
10M,, distance D = 100 Mpc, initial phase ¢y = O and start fre-
quency Fy = 40 Hz.

B. Matched filter

In the case a known signal A(¢) buried in stationary Gaus-
sian, white noise, the optimal technique for signal extraction
is the matched filtering, which involves cross-correlating the
data with a template of the signal.

The correlation function between two time series x(f) and
h(7) for a time shift 7 is defined as:

R(7) = f N x()) h*(t = 7) dt. (1.6)
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Above, * denotes complex conjugation, and hft) = h()/||h|,
where the norm ||/|| of the template is defined by

Ie
AP = f hOP /o dt,
0

where o is the variance of the noise. The optimal signal-
to-noise ratio (SNR) is obtained when the template exactly
matches with the signal.

SNR = ||| (L7

If the SNR is greater than a predetermined threshold (which
corresponds to an acceptably small false alarm probability), a
detection can be claimed. Note that the actual detector data
is neither white and is only approximately Gaussian, which
makes actual GW detection a siginificantly more complex ex-
ercise than mentioned above!

C. Problems

1. Write a code to generate the Newtonian chirp waveform
h(t) for arbitrary values of M, D, ¢o.

2. A data set containing a Newtonian GW signal

with D = 100 Mpc, ¢9 = 0, Fy = 40Hz,
but unknown M can be downloaded from
https://home.icts.res.in/~archis/share/

exercises/GWSchool_2015/gw_ex_data.dat.gz.
The data d(¢) is comprised of the signal A(f) and Gaus-
sian white noise n(f) of standard deviation o = 107!
That is, d(t) = h(t) + n(t). Write a code to detect
the signal using the simple matched filtering method
mentioned in the previous section. Since you don’t
know the chirp mass of the signal, choose a grid of
chirp masses in the interval M e (8, 12)M, with some
appropriate grid spacing. This is your template “bank”™!

. A sample of LIGO S5 L1 strain data can be downloaded

fromhttp://www.ligo.org/science/GRB051103/
index.php (download the file L1-STRAIN_4096Hz-
815045078-256.txt.gz). This contains 256 seconds of
LIGO data from 2005, sampled at a rate of 4096 Hz.
Compute the power spectral density of the data.
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