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The discovery of pulsars
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The first signal
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The first signal
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What is a neutron star?
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Demorest et al., 2010, Nature, 467, 1081



Pulsars: end products of stellar evolution




100,000,000 NSs

Image: Hessels
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Pulsars and
Neutron Stars

There are thought to be ~100 million neutron
stars in the Milky Way.

The Galactic pulsar population is estimated to
be around only 30,000 (0.03% of all neutron
stars).

Currently only 2,500 radio pulsars are known.



Pulsars: compact objects

Highly magnetised,

Pulsars are very stable rotators, & | . .
used as cosmic clocks S [ralie e tew T L8
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Figure: Pulsar Handbook (Lorimer & Kramer)

rapidly rotating neutron stars
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Handbook of Pulsar Astronomy”™ by Loe



P-Pdot Diagram

O SROP 0ufe S 9, & v £ 1 8 NN SN AR U 5 0 0 0 ) SN SN NS 08 .
.

a0
.I

=

log[ Period derivative (s s™') ]

Period (s)



Formation of Millisecond Pulsars
pulsar “recycling”

1. Start with a massive star with a lower-mass companion. (a binary system)

2. The massive star goes supernova and forms a young pulsar.

3. The companion evolves, fills its Roche lobe (gravitational equipotential), and
begins mass transfer.

4. The accretion transfers angular momentum to the pulsar, thereby increasing
its spin rate.



Pulsar observations in NL: Westerbork Synthesis Radio Telescope

Part of the European Pulsar Timing Array collaboration



Pulsar observations in NL: Low-Frequency Array (LOFAR)

Pulsar timing observations
at very low frequencies:
100-200MHz

VERY good for ISM work!




Pulsar Timing

Pulsars are very stable rotators, use as cosmic clocks

Rotation axis .
Mean pulse profile

= A= Reference clock N

- - = TOA
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Q Telescope
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Neutron star
Radio beam Ny De-dispersion &
N . .
on-line folding

Receiver

N

Pulsar timing is about measuring the arrival times of pulses at many different
epochs and then determining a model for the physical effects that influence
the observed rotation rate of the pulsar.

Figure: Pulsar Handbook (Lorimer & Kramer)



Collect pulses in timing
observation

Pulsar Timing

M
A

Dedisperse, fold and
cross-correlate with
template
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54255.4418456543355

54255.5001234234688

Times of arrival
(“TOAs”, measured in
Modified Julian Day)



Pulsar Timing
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individual pulses are buried in the noise



Timing model

N

Basic timing model predicts rotation of
the pulsar for future observation




Pulsar Timing

N1 P

Fold

‘.L Timing model

Count number of rotations between
observations according to model:
account for every single rotation of PSR




Timing model

L

Compare new arrival time with — [—
prediction model




Pulsar Timing
Pulsars are very stable rotators, use as cosmic (perfect?) clocks
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compare arrival time (TOA) with model | [~Residual (us to ns)
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Pulsar timing:
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Figures: Pulsar Handbook (Lorimer & Kramer); Weisberg & Taylor



Nobel Prize Physics 1993

Russell Hulse & Joseph Taylor
"for the discovery of a new type of
pulsar, a discovery that has opened up
new possibilities for the study of
gravitation”
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Mass B (Mg,.)

The Double Pulsar: testing GR
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Relativistic binary:

Need post-keplerian
parameters to model the
binary orbit

Periastron advance (wdot)
Orbital Decay (Pbdot)
Shapiro Delay (r,s)

Time dilation / grav. redshift
(gamma)

When two PK parameters
known: masses determined
Multiple: test of GR



Influences on pulsar timing signals

Even when timing model is good, still effects that disturb quality of residuals

Pulse jitter (30 ns): need minimum integration time to get stable profile;

can’t go to

larger telescopes

ISM effects (100 ns — 10 ps): Dispersion measure and scattering
Timing noise (10 pus — 1 ms): Random rotational/magnetospheric/glitches

Need to understand and disentangle effects from potential GW signal (10ns)

Frequency (MHz)
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Pulsar Timing: a very powerful tool

Pulsars can probe a wide range of (astro)physics!

Rotation axis .
Mean pulse profile

= A= Reference clock N

- = TOA
Telescope
Neutron star |
Radio beam
Av;

N

De-dispersion &
on-line folding

Receiver
* Pulsar parameters * Equation of state
* Binary parameters * Emission mechanism
e Astrometry * Solar system ephemerides
* ISM studies * Clock offsets

* Gravity tests (GR) e Gravitational wave astronomy



Using pulsars to detect GWs

What does a GW signal look like in pulsar timing data?
What sources generate the GW signals in the PTA bands?
Which of the GW sources are we (most) sensitive to?
What signal will a PTA detect first?

When will we detect GWs with a PTA?



GW experiments
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Detecting GWs with a Pulsar Timing Array

* Pulsars are endpoints of a galaxy-scale detector
* GWs distort space-time at the pulsars and the Earth AR
Earth term & Pulsar term . .
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Hellings & Downs 1983 - Figure: Champion/Hobbs
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Detecting GWs with a Pulsar Timing Array
* Earth-term: residuals are correlated for pulsar pairs dependent on separation
angle on the sky

* Correlations in TOAs due to GW signal is quadrupolar: Hellings & Downs curve

* Need multiple pulsar-pairs on the sky for detection
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Hellings & Downs 1983 - Figure: Champion/Hobbs



GW:s from supermassive black hole binaries

Stochastic background (binary ensemble)

S

" Continuous wave (single binary)
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2 Burst (merger event)
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PTA main sources: SMBH binaries
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From De Lucia et al 2006
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PTA as a nHz gravitational wave detector

GW sources: SMBHBs; cosmic strings; cosmological
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GWB shape predictions; the effect of the environment
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Turnover not a huge problem: P(f) o hif“?’

Still benefit from red power GW spectrum for next ~20 years
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Current limits are getting interesting
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residual (ns)

Detecting a single GW source using pulsar timing

e Each SMBHB produces periodic signal; possibly above GW background

e Signal contains information from two distinct epochs

* Difficult to distinguish from
other timing effects
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Pulsar timing array GW detections

* PTA detections are different from LIGO/VIRGO/eLISA
— nHz GWs = periods of years!

— Require years of integration, evidence will build up over years

e Definition of a detection important
— Different signatures for GW Background, single sources, bursts

— False-alarm probabilities and understanding of other noise sources
— Tests on data to assess noise statistics etc

» Verification and validation/reproducibility
— Simulations, multiple pipelines, quadrupolar nature, signal strength vs time

— What data products/software/detection algorithms to release



What is required for a PTA GW detection?

* Detecting gravitational waves requires:
* Long-term stable pulsars

* Timing models that include all non-GW effects
 Understanding of other red noise processes in the timing data

e What do we need for that:
e Alot of MSPs

* Alot of observing time -> total time = max GW period

A Amplitude
e Alotof TOAs J\Cfp fa?ig rI:(I:Jelsars
* Checks across instruments, pulsars, etc %EL‘?Z;IEMS
[ ]

Noise component modelling, analysis techniques

And... SKA! (Phase-I Key Science Goal: fundamental physics with NS)
 Testing GR in the strong-field regime
* Detecting nHz graviational waves




The European Pulsar Timing Array

* Collaboration of pulsar groups working with 5 (6) large radio telescopes,
observing programmes coordinated (including NL: WSRT and LOFAR)
* Long-term timing programmes at all telescopes: more data!
* Theory/analysis groups -> GW source predictions, analysis methods,
detection protocols

Three PTAs in existence: Europe, North America and Australia

Working together as the International pulsar timing array
http://www.iptadgw.org

Looking forward towards SKA: MeerKAT, SKA1-Low, SKA1-Mid
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LEAP: Large European Array for Pulsars

Real-time coherent addition of large
European telescopes

Fully steerable dish of 200m
Calibration of instrumental delays between

telescopes

Improvement in timing precision by order of

magnitude
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http://www.leap.eu.org



SAUARE KILOMETRE ARRAY

Key science project:
gravity tests with pulsars
(both GR tests in binaries and GWs)

Meerkat -> SKA1-Mid:
Intermediate frequencies (1-3*GHz)
High-precision timing and searches
SKA1-Low:
Low frequencies (<350MHz)
Searches and ISM monitoring

SKA GW astronomy: Janssen et al. POS(AASKA14)037




Y From limit to detection to GW astronomy
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=== The Role of SKA in GW detection/astronomy

e GW characterization

SKA1:

e Confirmation of the signal AN J
* Source identification (characterize spectrum) "1/ b stalz0n
* Background characterization (anisotropy search)
* Source localization

(Full-)SKA science: GW astronomy
* Constrain/study Galaxy evolution
* Input for EM counterpart studies
e Characterization of inspiral phase of SMBHBs

e Tests of gravity y Wy
[c] © 04 GR Breathing 08 T
* Polarization properties C) () \/ N
* Mass of graviton T e T o EEN et N
i N s, Sietml‘gﬁ 5 5w W pee o of 2008 S “Le\;%‘;et 212610




Summary

Pulsar timing can be used to detect GWs at nanohertz frequencies
Before GW signals can be detected, other sources of noise

need to be understood/measured/corrected

 However, IPTA GW limits close to predictions

*  First detection of GWB expected with IPTA in 5-10 yrs, maybe less. The S/N will have
to grow over time.

*  SKA KSP: gravity tests with pulsars
* SKA will characterize GW signals and do GW astronomy

Thank you!

PhD project available: Testing gravity by timing pulsars with the SKA

AST({O N Radboud University %



