Detecting gravitational waves with a pulsar timing array

Gemma Janssen

2P

The discovery of pulsars

The first signal

The first signal

What is a neutron star?

Demorest et al., 2010, Nature, 467, 1081

Pulsars: end products of stellar evolution

Pulsars and Neutron Stars

- There are thought to be ~100 million neutron stars in the Milky Way.
- The Galactic pulsar population is estimated to be around only 30,000 (0.03% of all neutron stars).
- Currently only 2,500 radio pulsars are known.

Image: Hessels

Pulsars: compact objects

Pulsars are very stable rotators, used as **cosmic clocks**

Highly magnetised, rapidly rotating neutron stars

Figure: Pulsar Handbook (Lorimer & Kramer)

P-Pdot Diagram

Formation of Millisecond Pulsars pulsar "recycling"

- 1. Start with a massive star with a lower-mass companion. (a binary system)
- 2. The massive star goes supernova and forms a young pulsar.
- 3. The companion evolves, fills its Roche lobe (gravitational equipotential), and begins mass transfer.
- 4. The accretion transfers angular momentum to the pulsar, thereby increasing its spin rate.

Pulsar observations in NL: Westerbork Synthesis Radio Telescope

Part of the European Pulsar Timing Array collaboration

Pulsar observations in NL: Low-Frequency Array (LOFAR)

Pulsar Timing

Pulsars are very stable rotators, use as cosmic clocks

Pulsar timing is about measuring the arrival times of pulses at many different epochs and then determining a model for the physical effects that influence the *observed* rotation rate of the pulsar.

Figure: Pulsar Handbook (Lorimer & Kramer)

Pulsar Timing

Collect pulses in timing observation

Dedisperse, fold and cross-correlate with template

54255.1231254524233 54255.2643443523453 54255.3123524545899 54255.3513745623467 54255.4418456543355 54255.5001234234688

Times of arrival ("**TOAs**", measured in Modified Julian Day)

Pulsar Timing

individual pulses are buried in the noise

Pulsar Timing Fold Fold Timing model Compare new arrival time with prediction model

Pulsar timing: Residuals

Residual (ms)

0.5

0.5

50

0

-50

Residual (ms)

Timing model contains: -Rotational, astrometric, binary parameters

Unmodelled effects: -measurement errors -spin irregularities -interstellar weather effects -gravitational waves

GWs first *indirectly* detected by pulsar timing Nobel prize Hulse & Taylor 1993

Figures: Pulsar Handbook (Lorimer & Kramer); Weisberg & Taylor

Nobel Prize Physics 1993

Russell Hulse & Joseph Taylor "for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation"

The Double Pulsar: testing GR

$$f(m_1, m_2) = \frac{4\pi^2}{G} \frac{(a \sin i)^3}{P_b^2} = \frac{(m_2 \sin i)^3}{(m_1 + m_2)^2}$$

- Relativistic binary:
- Need post-keplerian parameters to model the binary orbit
- Periastron advance (wdot)
- Orbital Decay (Pbdot)
- Shapiro Delay (r,s)
- Time dilation / grav. redshift (gamma)
- When two PK parameters known: masses determined
- Multiple: test of GR

Influences on pulsar timing signals

- Even when timing model is good, still effects that disturb quality of residuals
- Pulse jitter (30 ns): need minimum integration time to get stable profile; can't go to larger telescopes
- ISM effects (100 ns 10 μs): Dispersion measure and scattering
- Timing noise (10 μs 1 ms): Random rotational/magnetospheric/glitches
- Need to understand and disentangle effects from potential GW signal (10ns)

Pulsar Timing: a very powerful tool

Pulsars can probe a wide range of (astro)physics!

- Pulsar parameters
- Binary parameters
- Astrometry
- ISM studies
- Gravity tests (GR)

- Equation of state
- Emission mechanism
- Solar system ephemerides
- Clock offsets
- Gravitational wave astronomy

Figure: Pulsar Handbook (Lorimer & Kramer)

Using pulsars to detect GWs

- What does a GW signal look like in pulsar timing data?
- What sources generate the GW signals in the PTA bands?
- Which of the GW sources are we (most) sensitive to?
- What signal will a PTA detect first?
- When will we detect GWs with a PTA?

GW experiments

(Figure: Siemens)

Pulsar Timing Array: A galaxy-scale gravitational wave detector

Detecting GWs with a Pulsar Timing Array

- Pulsars are endpoints of a galaxy-scale detector
- GWs distort space-time at the pulsars and the Earth Earth term & Pulsar term

Hellings & Downs 1983 - Figure: Champion/Hobbs

Detecting GWs with a Pulsar Timing Array

- Earth-term: residuals are correlated for pulsar pairs dependent on separation angle on the sky
- Correlations in TOAs due to GW signal is quadrupolar: Hellings & Downs curve
- Need multiple pulsar-pairs on the sky for detection

Hellings & Downs 1983 - Figure: Champion/Hobbs

GWs from supermassive black hole binaries

PTA main sources: SMBH binaries

From De Lucia et al 2006

~1Myr

-There are ~10⁹ MW equivalent galaxies at z<1 -Suppose each galaxy has 1 merger at z<1 -If a binary emits at few nHz for

There are 10⁵ SMBH binaries in the PTA band at any time!

(Slide: Sesana)

PTA as a nHz gravitational wave detector

GW sources: SMBHBs; cosmic strings; cosmological

GWB amplitude predictions

(Sesana et al. 2016)

GWB shape predictions; the effect of the environment

(Kocsis & Sesana 2011, Sesana 2013, Ravi et al. 2014)

~10⁻⁸ Hz

(Figure: Sesana)

Detecting a single GW source using pulsar timing

- Each SMBHB produces periodic signal; possibly above GW background
- Signal contains information from two distinct epochs

Difficult to distinguish from

Pulsar timing array GW detections

- PTA detections are **different** from LIGO/VIRGO/eLISA
 - nHz GWs = periods of years!
 - Require years of integration, evidence will build up over years
- Definition of a detection important
 - Different signatures for GW Background, single sources, bursts
 - False-alarm probabilities and understanding of other noise sources
 - Tests on data to assess noise statistics etc
- Verification and validation/reproducibility
 - Simulations, multiple pipelines, quadrupolar nature, signal strength vs time
 - What data products/software/detection algorithms to release

What is required for a PTA GW detection?

- Detecting gravitational waves requires:
 - Long-term stable pulsars
 - Timing models that include all non-GW effects
 - Understanding of other red noise processes in the timing data
- What do we need for that:
 - A lot of MSPs
 - A lot of observing time -> total time = max GW period
 - A lot of TOAs
 - Checks across instruments, pulsars, etc
 - Noise component modelling, analysis techniques
- And... SKA! (Phase-I Key Science Goal: fundamental physics with NS)
 - Testing GR in the strong-field regime
 - Detecting nHz gravitational waves

A Amplitude $N_p \#$ of pulsars c cadence σ pulsar RMS T obs time

The European Pulsar Timing Array

- Collaboration of pulsar groups working with 5 (6) large radio telescopes, observing programmes coordinated (including NL: WSRT and LOFAR)
- Long-term timing programmes at all telescopes: more data!
- Theory/analysis groups -> GW source predictions, analysis methods, detection protocols

Three PTAs in existence: Europe, North America and Australia Working together as the International pulsar timing array <u>http://www.ipta4gw.org</u>

Looking forward towards SKA: MeerKAT, SKA1-Low, SKA1-Mid

Improving sensitivity: larger telescope

- LEAP: Large European Array for Pulsars
- Real-time coherent addition of large European telescopes
- Fully steerable dish of 200m
- Calibration of instrumental delays between telescopes
- Improvement in timing precision by order of magnitude

http://www.leap.eu.org

Future outlook: the SKA

Key science project:

gravity tests with pulsars

(both GR tests in binaries and GWs)

Meerkat -> SKA1-Mid:

Intermediate frequencies (1-3⁺GHz) High-precision timing and searches

SKA1-Low:

Low frequencies (<350MHz) Searches and ISM monitoring

SKA GW astronomy: Janssen et al. PoS(AASKA14)037

From limit to detection to GW astronomy

IPTA is getting close already!

SKA1 – more pulsars, better sensitivity will 'easily' make a first detection

SKA2 – will do GW astronomy

A Amplitude N_p # of pulsars C cadence σ pulsar RMS T obs time

Rosado, Sesana & Gair 2015, MNRAS 451, 2417

The Role of SKA in GW detection/astronomy

9

• GW characterization

SKA1 :

- Confirmation of the signal
- Source identification (characterize spectrum)
- Background characterization (anisotropy search)
- Source localization

(Full-)SKA science: GW astronomy

- Constrain/study Galaxy evolution
 - Input for EM counterpart studies
- Characterization of inspiral phase of SMBHBs
- Tests of gravity
 - Polarization properties
 - Mass of graviton

Summary

- Pulsar timing can be used to detect GWs at nanohertz frequencies
- Before GW signals can be detected, other sources of noise need to be understood/measured/corrected
- However, IPTA GW limits close to predictions
- First detection of GWB expected with IPTA in 5-10 yrs, maybe less. The S/N will have to grow over time.
- SKA KSP: gravity tests with pulsars
- SKA will characterize GW signals and do GW astronomy

Thank you!

PhD project available: Testing gravity by timing pulsars with the SKA

