Follow up of gamma-ray burst afterglows at the highest resolution

Benito Marcote marcote@jive.eu

8 September 2025 CTAO/KM3 NeT community day

Benito Marcote

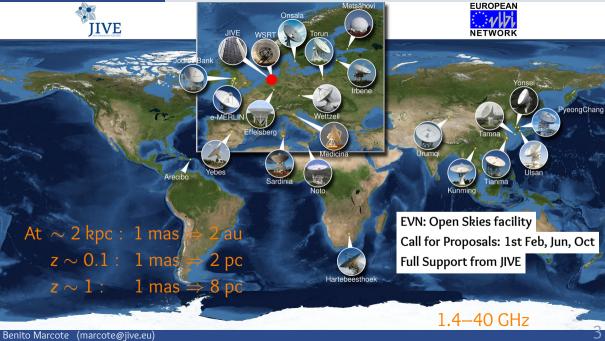
Senior Support Scientist

JIVE & ASTRON at Dwingeloo

Guest researcher at API/LIVA

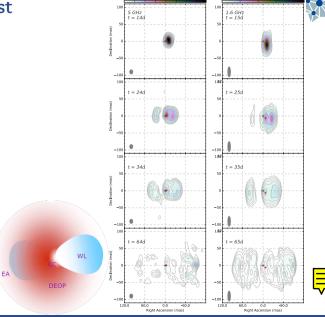
Observational radio astronomer Follow up of high-energy transients

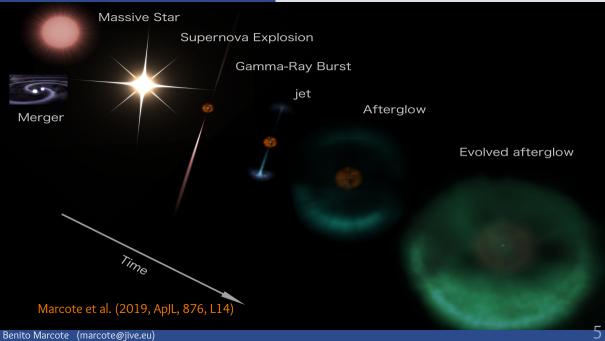
High-Energy Binaries


Gamma-Ray Bursts

Fast Radio Bursts

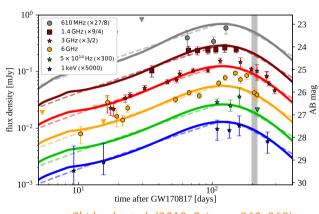
RS Oph Novae — 2021's outburst

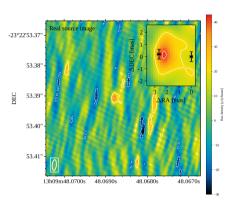

Proton acceleration in the nova shock MAGIC Collaboration et al. (2022)


Radio campaign 14-320 d post-outburst. Munari, Giroletti, Marcote et al. (2022). Rocco et al. (2024)

Expansion velocity of $\sim 7000 \text{ km s}^{-1}$

Central and compact core Bipolar outflow up to \sim 540 AU (+65 d).


 $\sim 4.3 \times 10^{-6} \, \mathrm{M}_{\odot}$ at the DEOP, \sim 10% accreted by the white dwarf.

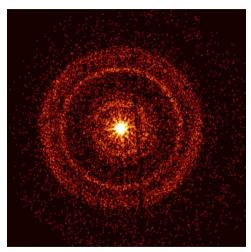

The first NSB merger: GW 170817

Ghirlanda et al. (2019, Science, 363, 968)

Structured jet successfully broke through the ejecta

Narrow ($\theta_c=3.4\pm1^\circ$), and energetic ($E_{iso}\approx2.5\times10^{52}$ erg) jet, with a viewing angle of $\sim15^\circ$.

The BOAT: GRB 221009A

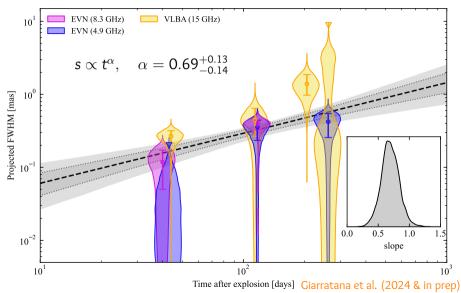

The Brightest Of All Time

Detected > 1 TeV.

First clear evidence for a (IC) component beyond synchrotron emission in the GRB afterglow, with comparable power.

Reverse and forward shock contribution in the early radio afterglow.

We observed 40-261 d post-burst.



Swift's scattered rings (Tiengo et al. 2022)

The BOAT: GRB 221009A

SKA-LOW

SKA-MID

THE SKA'S MID-FREQUENCY TELESCOPE

SOUTH AFRICA

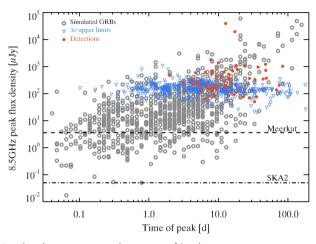
FREQUENCY RANGE:

| MM///// 350 MHz—

| MM///// 15.4 GHz

| WITH A GOAL OF 24 GHz

197 DISHES
(INCLUDING 64 MEERKAT DISHES)



MAXIMUM BASELINE:

150km

GRBs in the SKA era

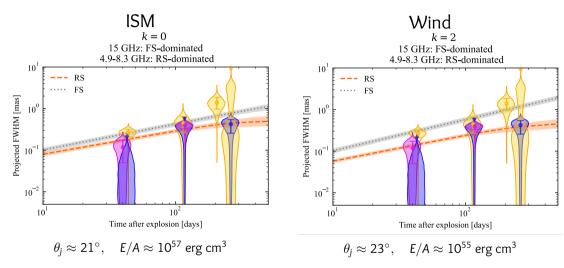
From \sim 30% of radio detections to almost 100%. Plus constraints on expansion and proper motion (structure and geometry) with SKA-VLBI

Giarratana et al. (in prep) & adapted from Ghirlanda et al. (2013)

1(

Take home messages

The radio domain can significantly contribute to the high energies and particle physics!


VLBI at gigahertz frequencies is key to characterize a significant fraction of transient events.

With SKA we will be able to detect and follow up most of the reported GRBs

Measuring the afterglows would allow us to have a detailed and direct evolution of their reverse and forward shocks, plus the cocoon/jet interaction.

Benito Marcote (marcote@jive.eu)

The BOAT: GRB 221009A

(Giarratana et al. 2024, Giarratana et al. in prep)