

Extending Neural Likelihood Estimators for Gravitation-Wave Analysis through Transfer Learning

Martijn Teunissen, Luca Negri, Anuradha Samajdar

NNV fall meeting 7 November 2025

Overview

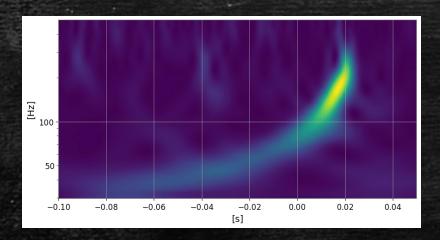
- Parameter Estimation
- FLEXible Neural Likelihood Estimator (FLEX)
- Transfer Learning with FLEX

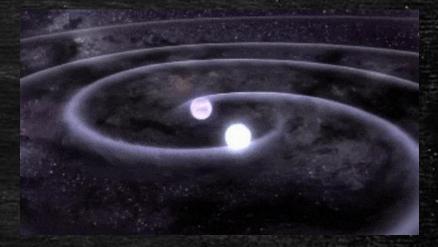
Paper: FLEX

https://arxiv.org/pdf/2509.17606

Parameter Estimation

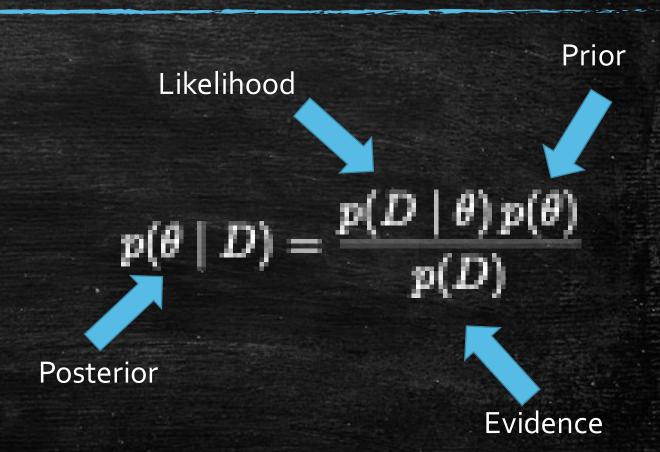
• How do we link the data to the physics underneath?





Parameter Estimation with Bayes Theorem

- Posterior is the goal
- Evidence can be used for model comparison
- Between 9 and 17 parameters #
- Posterior is found trough Stochastic sampling
 - $O(10^6)$, $O(10^7)$

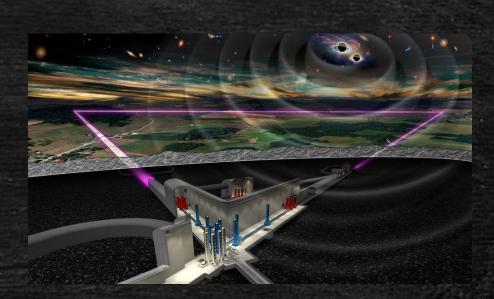


 $oldsymbol{ heta} = (m_1, m_2, \mathbf{S}_1, \mathbf{S}_2, lpha, \delta, \psi, \iota, r, t_c, \Phi_c)$

Further challenges

- More signals (x1000)
- Each signal will take longer to analyse
 - Louder
 - Longer
 - Overlapping

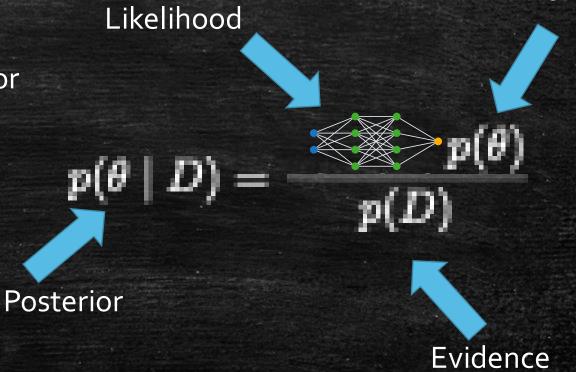
Preparation means faster and accurate inference



A first step: FLEX

A FLEXible Neural Likelihood Estimator

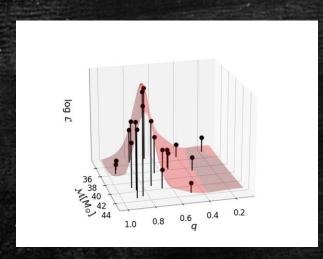
- Train on the fly
- 1 ms vs 1µs



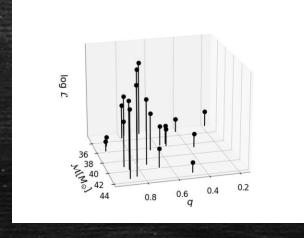
Prior

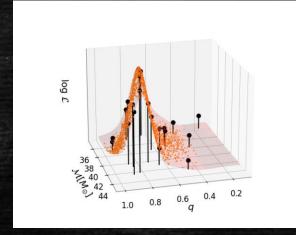
The FLEX Cycle

2: Train Neural Likelihood

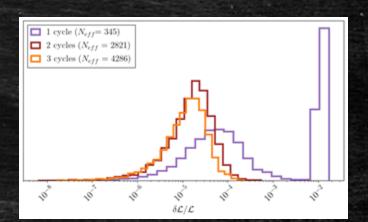


3: Run sampler on the Neural likelihood



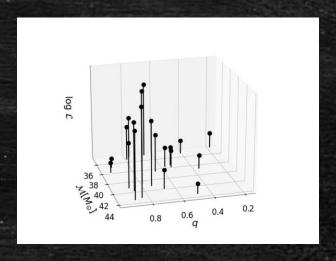


1: Generate training samples



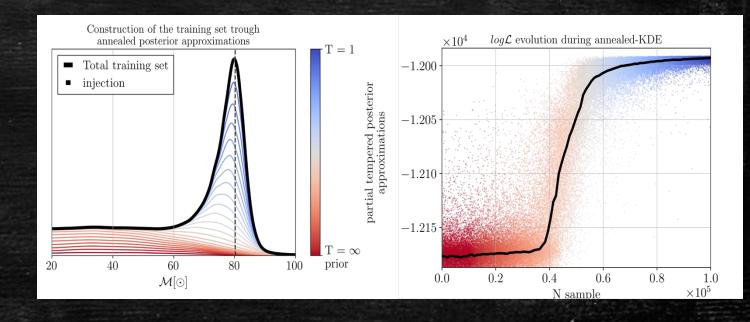
• 4: Check results and retrain

Phase 1: Generate training samples



Phase 1: Generate training samples

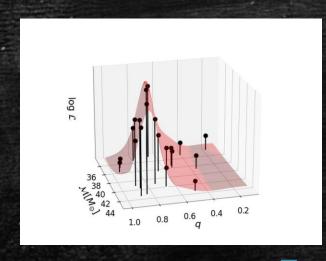
- Annealed series tempered Kernel Density Estimators (KDE)
- Interpolates between prior and posterior
- $N_{train} << N_{MCMC} (10^{6-7})$
- $N_{initial} = 1e5$



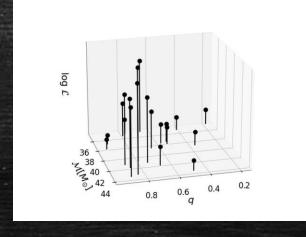
$$\theta_i \sim p(\theta|y, \mathcal{M})^{1/T}$$

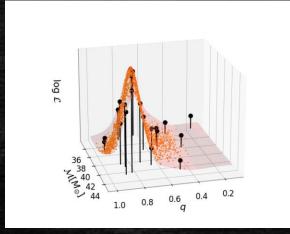
The FLEX Cycle

2: Train Neural Likelihood

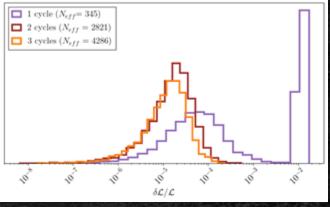


3: Run sampler on the Neural likelihood





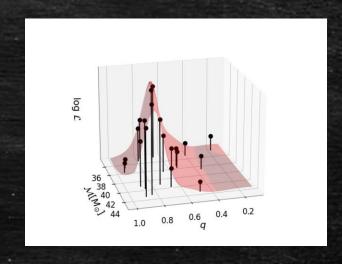
1: Generate training samples



4: Check results and retrain

Phase 2: Train Neural Likelihood

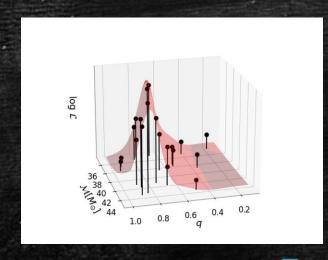
- Small ResNet, fully connected
- ~15k trainable parameters
- Fast to train, fast to analyze
- N_{epochs} = 700



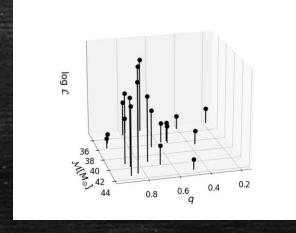
Loss =
$$\frac{1}{N_t} \sum_{i=0}^{N_t} (e^{\log \mathcal{L}(\theta_i)} - e^{\text{NN}(\theta_i)})^2 w_i$$

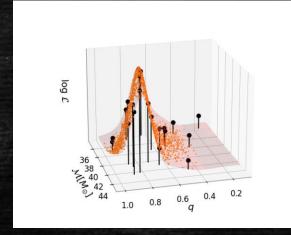
The FLEX Cycle

2: Train Neural Likelihood

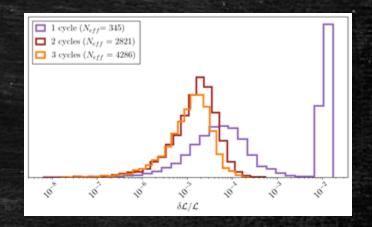


3: Run sampler on the Neural likelihood





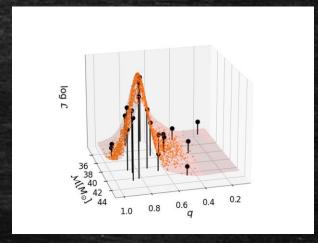
1: Generate training samples

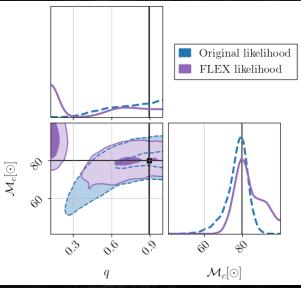


4: Check results and retrain

Phase 3: Run sampler on the Neural likelihood

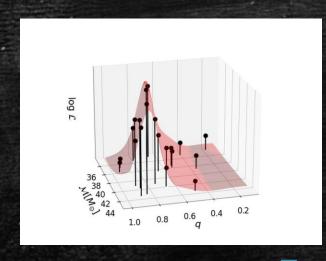
- MCMC with parallel tempering
- Modest hardware (CPU)
- ~ 1 minute



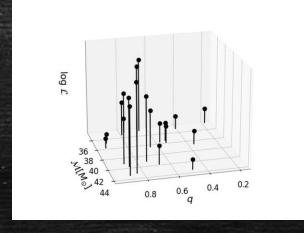


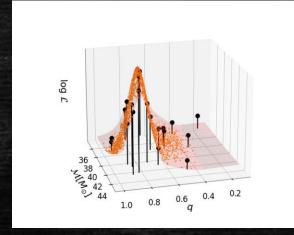
The FLEX Cycle

2: Train Neural Likelihood

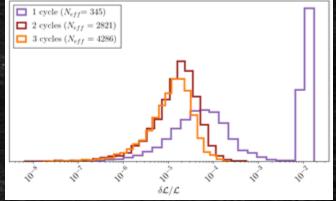


3: Run sampler on the Neural likelihood





1: Generate training samples

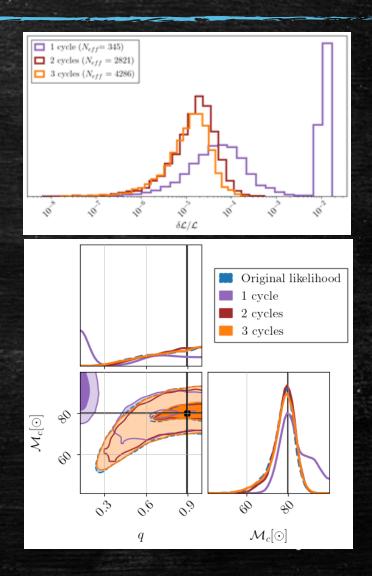


4: Check results and retrain

Phase 4: Check results and retrain

- Calculate the Effective Sample Size (ESS)
- If ESS/N_{post} < threshold
 - Append N_{retrain_samples} to samples
 - Restart cycle
 - Maximum of 6 cylces
 - Threshold = 50%
 - $N_{post} = 5000$
 - N_{retrain_samples} = 2000

$$w_i = rac{\mathcal{L}(heta_i)}{\mathrm{NN}(heta_i)} \hspace{1cm} ESS = rac{(\Sigma_i w_i)^2}{(\Sigma_i w_i^2)}$$

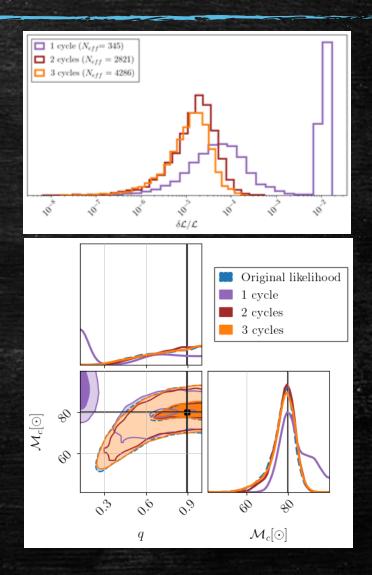


Phase 4: Check results and retrain

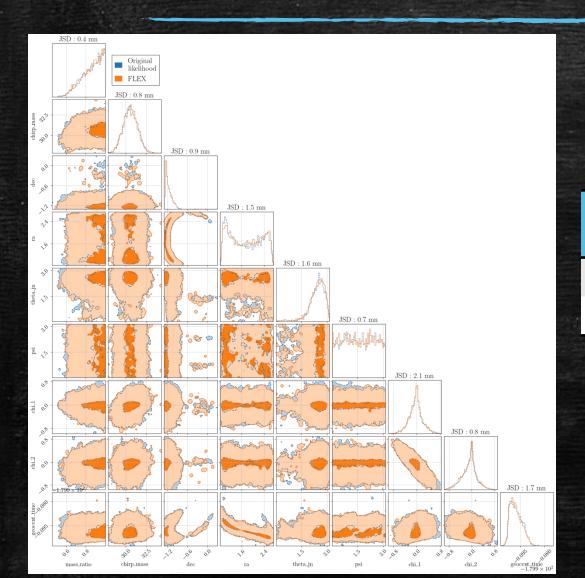
- Calculate the Effective Sample Size (ESS)
- If ESS/N_{post} > threshold
 Convergence reached!

 - Terminate cylce

$$w_i = rac{\mathcal{L}(heta_i)}{ ext{NN}(heta_i)} \hspace{1cm} ESS = rac{(\Sigma_i w_i)^2}{(\Sigma_i w_i^2)}$$



Standard test with real data: GW150914



The first GW signal detected

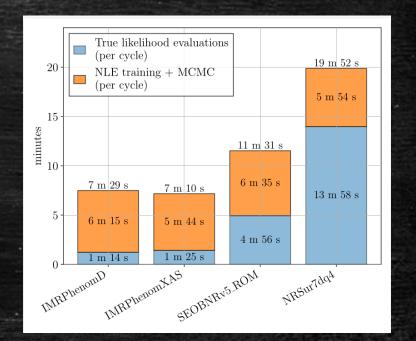
Model	Time	Number of likelihood evals
Eryn (blue)	~12 hours	~ 1.3e7
FLEX (orange)	~ 36 minutes	~ 1.8e5

60 times reduction

With much room for optimization

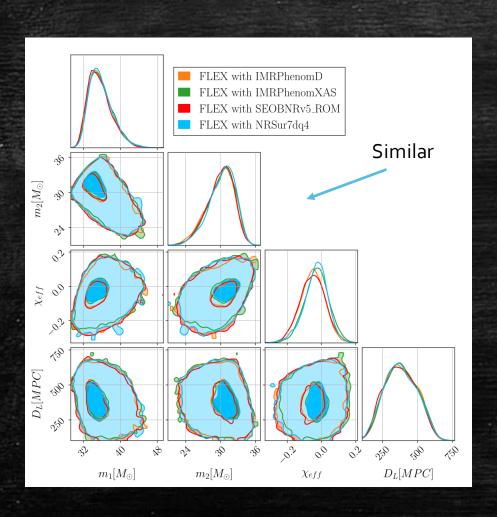
Different waveform models

- Different models used to describe the data
 - IMRPhenomD
 - IMRPhenomXAS
 - SEOBNRv5_ROM
 - NRSur7dq4



- Phenom waveforms are cheaper because they:
 - Are a hybrid of analytical approximations and fits to numerical relativity simulations
 - Don't need to solve expensive differential equations

Results: Robust on different waveform models



Model (FLEX)	Log evidence
IMRPhenomXAS	285.10
SEOBNRv ₅	285.05
NRSur7dq4	284.67
IMRPhenomD	285.2

Can we use this similarity?

- The idea: Use transfer learning to reduce the number of likelihood evaluations needed to train FLEX
 - Train FLEX on a computationally cheap waveform
 - IMRPhenomD
 - IMRPhenomXAS
 - Use what these NLE has learned to inform the training of FLEX on an expensive waveform
 - SEOBNRv5_ROM
 - NRSur7dq4

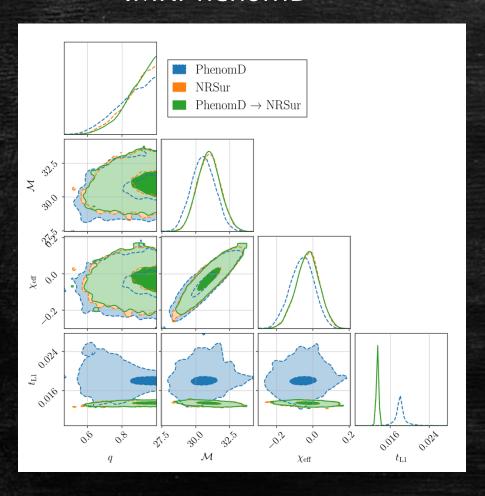
Method

- Transfer the NLE model weights
- Transfer a subset of the training samples an recalculate the loglikelihoods
 - Random selection
 - Vary the number of transferred samples

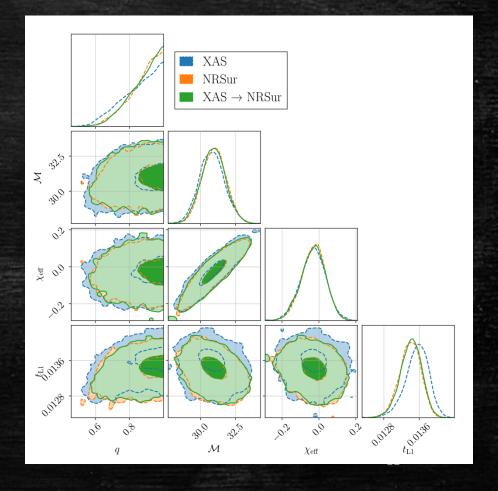
- Average number of True likelihood evaluations
- Jensen–Shannond divergence
 - Measures similarity between distributions
 - Below 3 mnats is essentially the same
- Do the FLEX runs converge

Results:NRSur

IMRPhenomD



IMRPhenomXAS

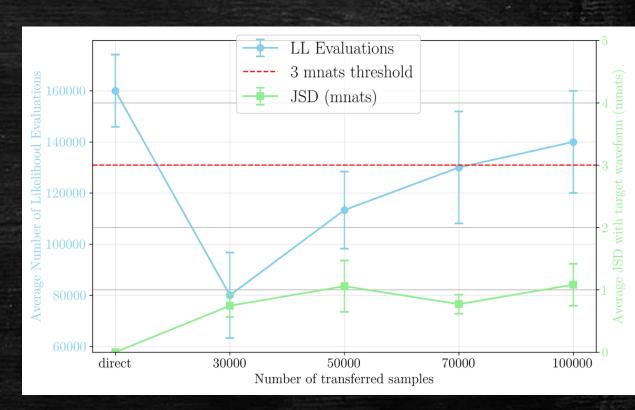


Results: NRSur

IMRPhenomD

LL Evaluations 3 mnats threshold JSD (mnats) ₹ 110000 direct 30000 50000 70000100000 Number of transferred samples

IMRPhenomXAS



Conclusions and outlook

- Transfer Learning can reduce the number of likelihood evaluation without losing accuracy
- These results were a proof a concept
 - Get smarter about data transfer
 - Source likelihood weighted sample selection
 - Combine with FLEX KDE algorithm
 - Including a weighted training data set from the source model
 - Heterogeneous transfer learning
 - Train FLEX on a subset of parameters
 - Transfer to a run including more parameters/physics

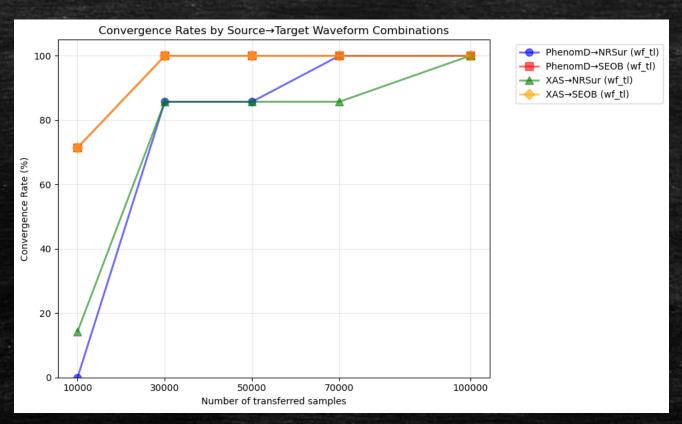
Paper: FLEX

https://arxiv.org/pdf/2509.17606

Questions?

Results: Convergence

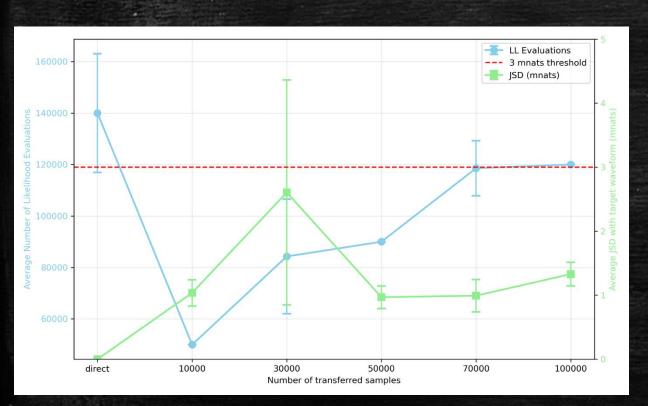
Convergence direct runs 100%

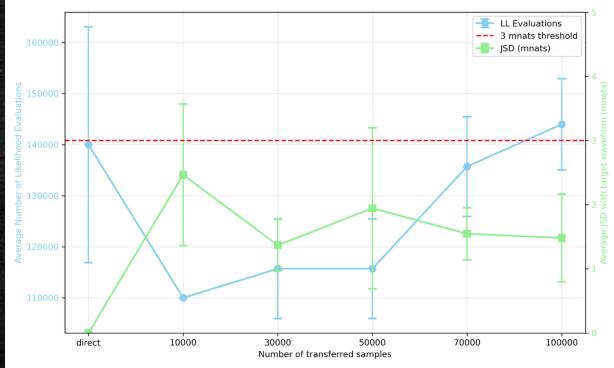


Results: Target SEOBNRv5_ROM

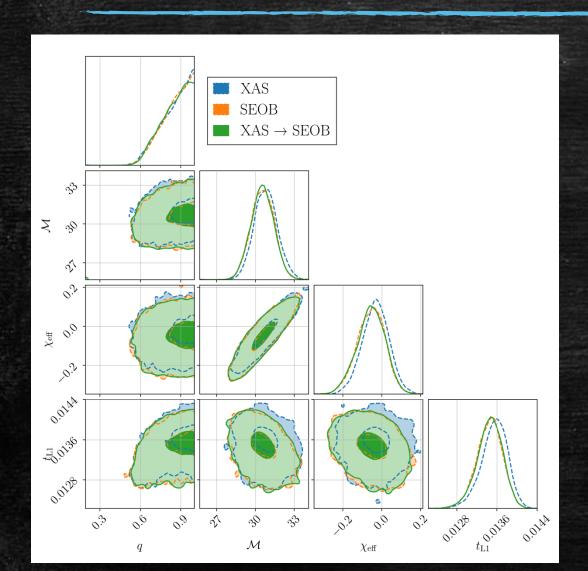
Source: IMRPhenomXAS

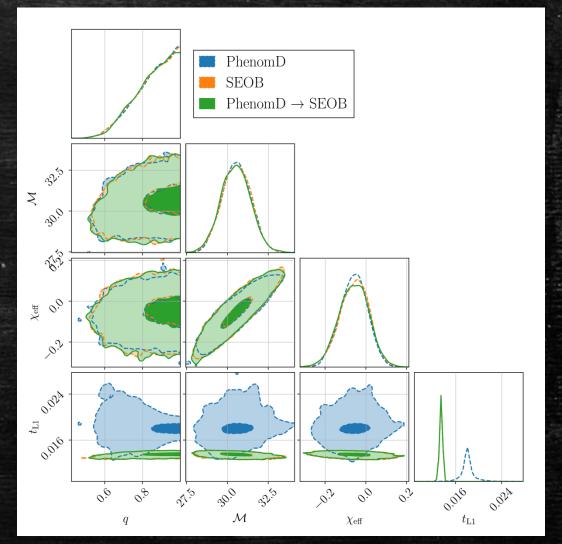
Source: IMRPhenomD





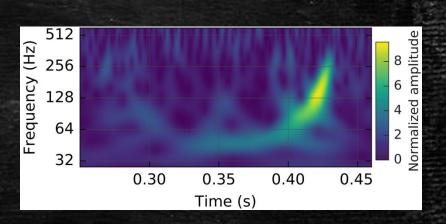
Results: SEOBNRv5_ROM



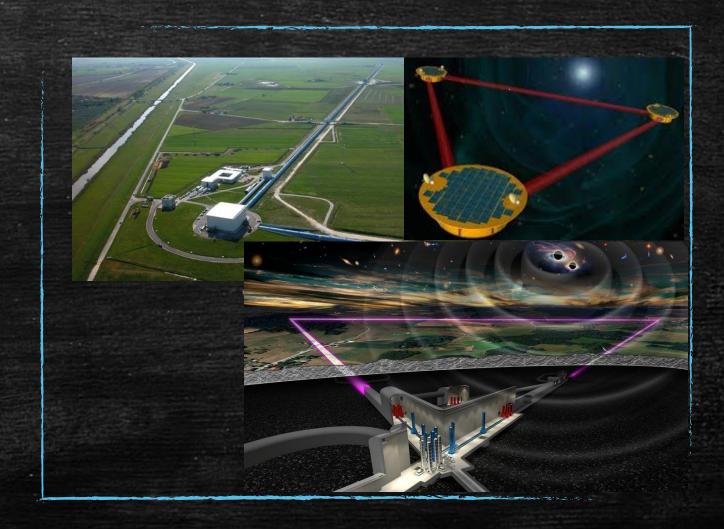


What signal type will we tackle?

- We start with the easiest problem in GWs
 - Heavy mass, short duration, BBHs [20-100 chirp mass]
 - SNR<40
 - 2-3 detector networks, current sensitivity
 - Aligned spin (no precession) IMRPhenomD
 - Distance & phase analytical marginalization
 - Sampling over 9 parameters
 - $[M, q, \chi_1, \chi_2, \theta_{jn}, \psi, \text{zenith, azimuth, } t_{det}]$



Interferometers to detect GWs



Detected using interferometers