

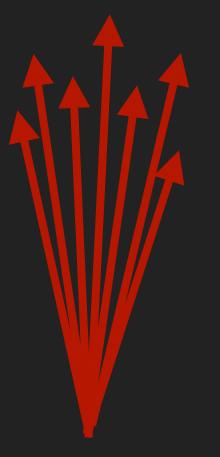
## SAMUEL JANKOVYCH

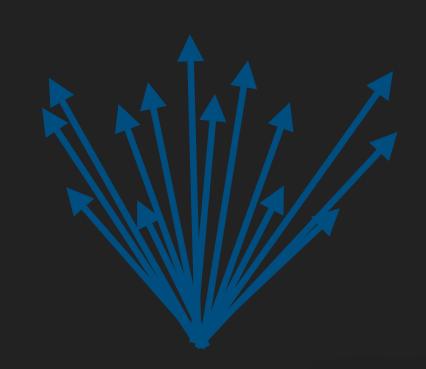
PERFORMANCE AND EFFICIENCY MEASUREMENT OF A TRANSFORMER-BASED QUARK GLUON JET TAGGER

NATLAS

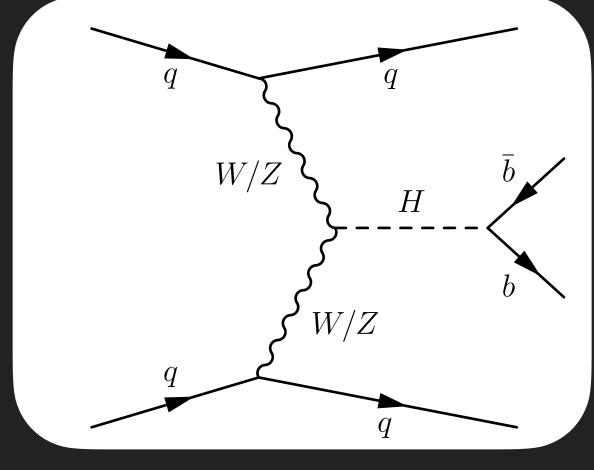
# What?

# Quarks vs. Gluons

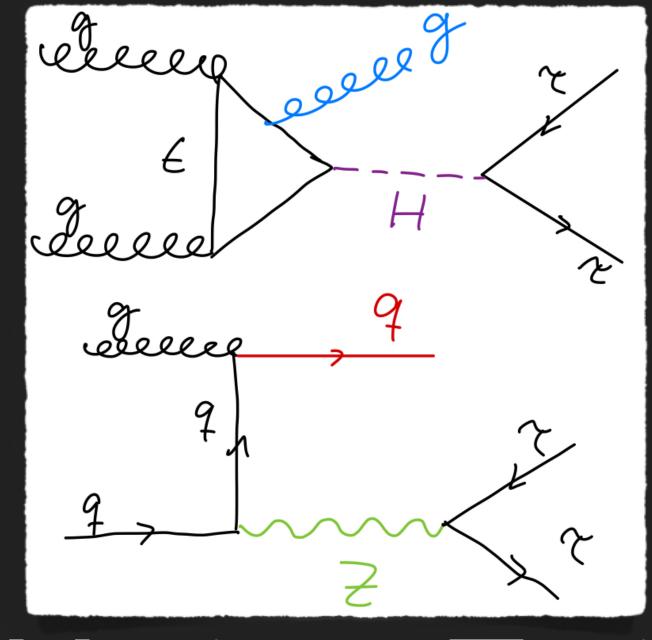




Why?



VBF VBS



H+j vs Z+j

## OLD

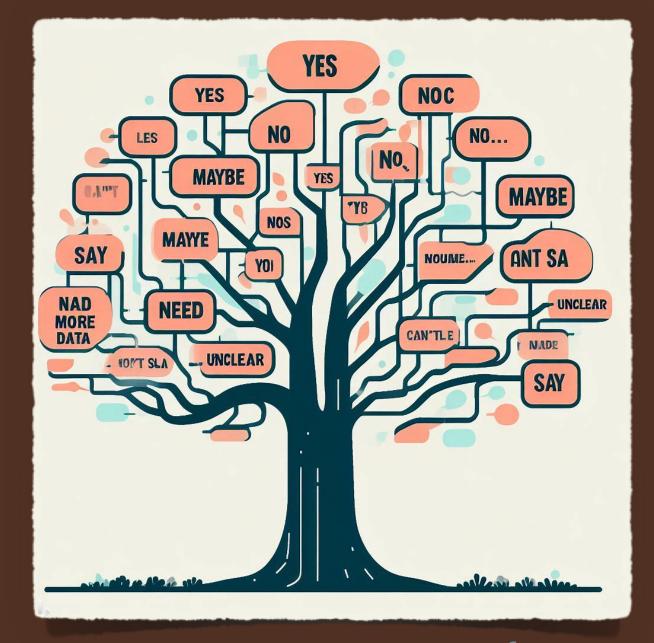
NEW

arxiv:1405.6583

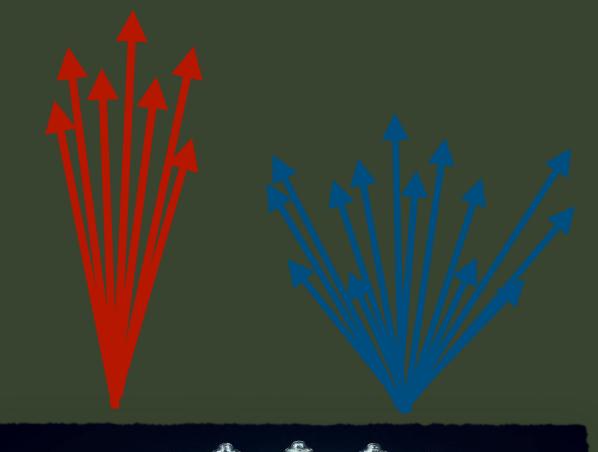


DALL-E's impression of cut-based tagger





DALL-E's impression of BDT





DALL-E's impression of Transformer

# INPUT VARIALBES

### Constituent Variables

$$\log \frac{p_{\mathrm{T}}}{p_{\mathrm{T}}^{\mathrm{jet}}}$$
 $\log \frac{E}{p_{\mathrm{T}}^{\mathrm{jet}}}$ 
 $\Delta \eta = \eta - \eta^{\mathrm{jet}}$ 
 $\Delta \phi = \phi - \phi^{\mathrm{jet}}$ 
 $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$ 
is Charged
is Topo



C =# of constituent variables = 7

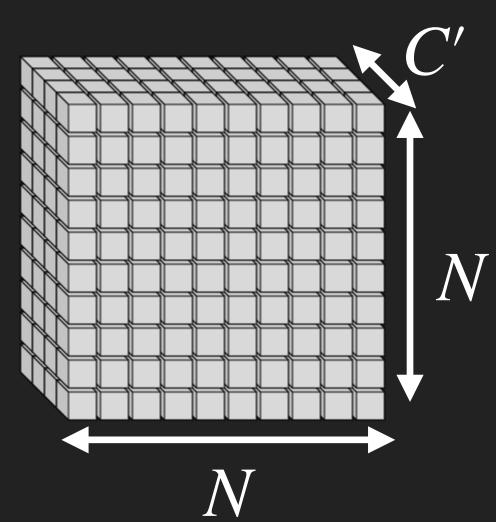
### **Constituent Interaction Variables**

$$\log \Delta^{ab} = \log \sqrt{(\eta^{a} - \eta^{b})^{2} + (\phi^{a} - \phi^{b})^{2}}$$

$$\log m^{2,ab} = \log ((p^{a} + p^{b})^{2} / (p_{T}^{jet})^{2})$$

$$\log k_{T}^{ab} = \log (\min \left(\frac{p_{T}^{a}}{p_{T}^{jet}}, \frac{p_{T}^{b}}{p_{T}^{jet}}\right) \Delta^{ab})$$

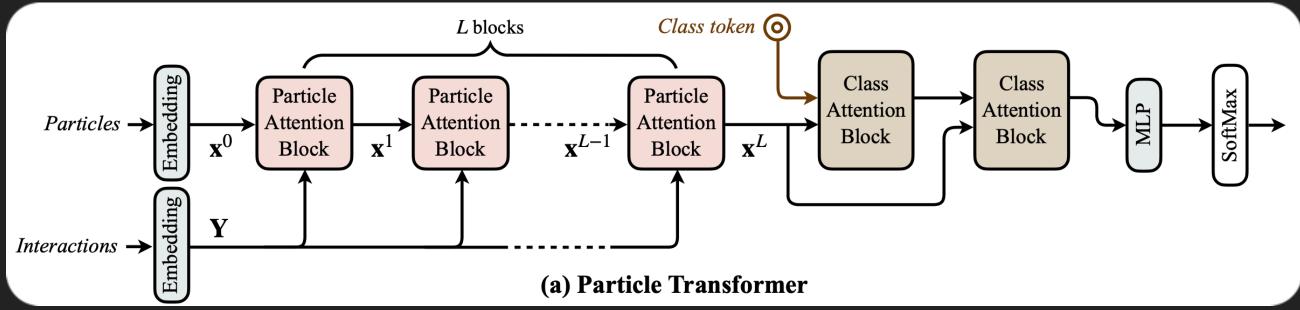
$$z^{ab} = \min (p_{T}^{a}, p_{T}^{b}) / (p_{T}^{a} + p_{T}^{b})$$

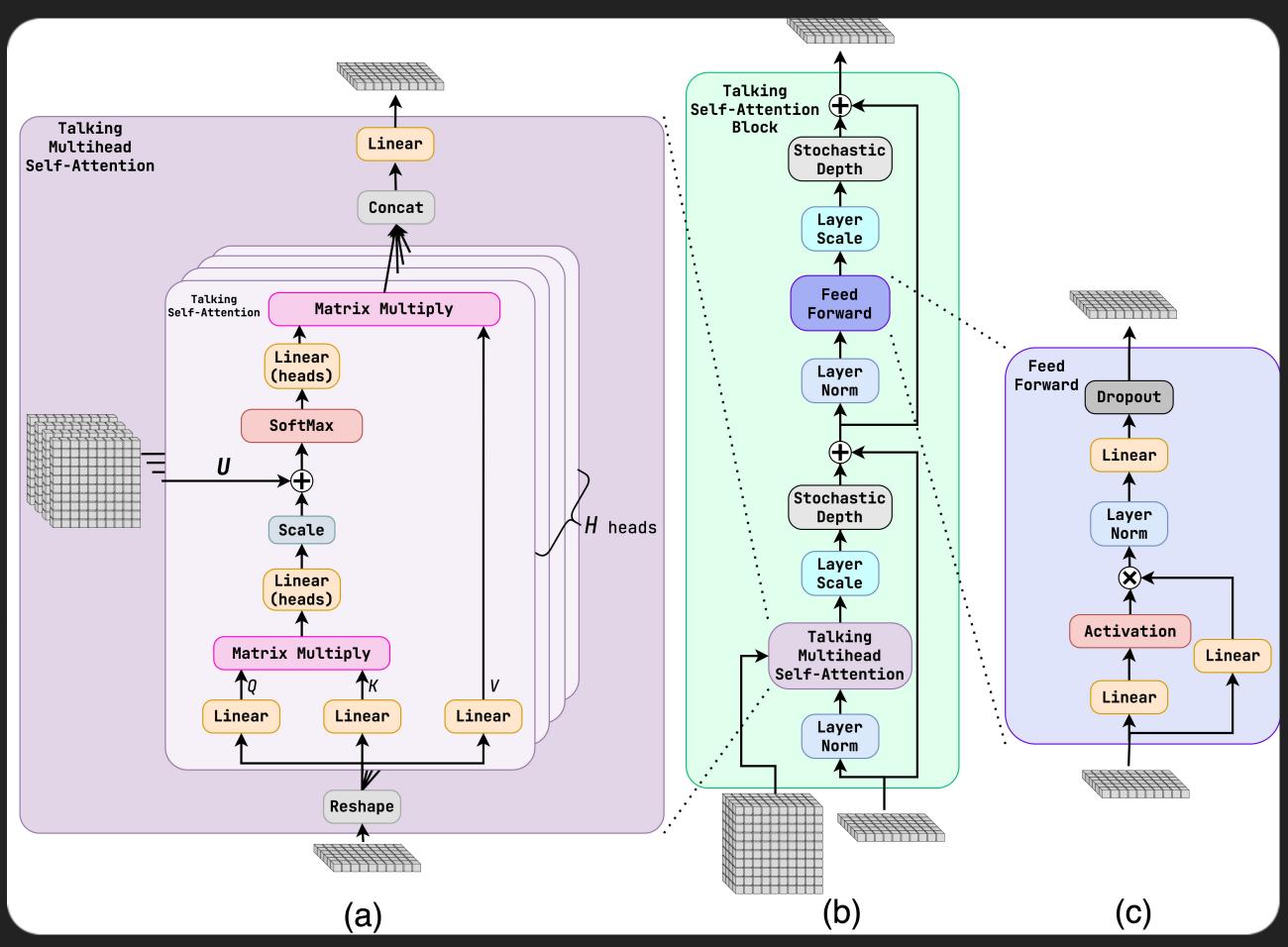


C=# of constituent interaction variables = 4

N =# of constituents (max 60)

# DYNAMICALLY ENHANCED PARTICLE TRANSFORMER





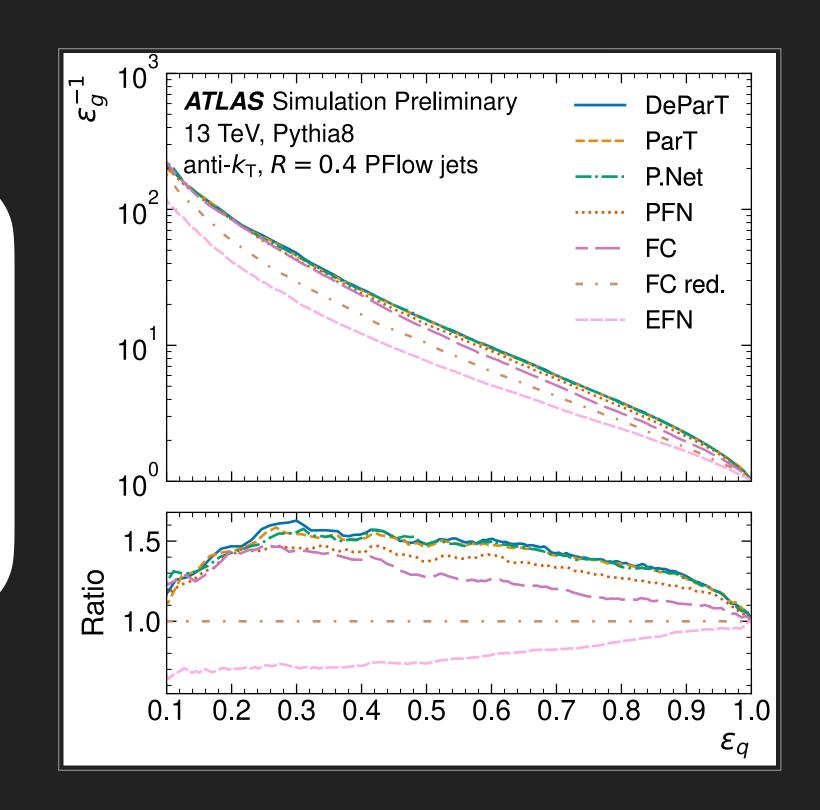
- enhancement of ParT
- DeiT III deeper models
  - stochastic depth
  - layer scale
- gated FFN
- Talking Heads arxiv:2003.02436
  - more communication

# TAGGER PERFORMANCE

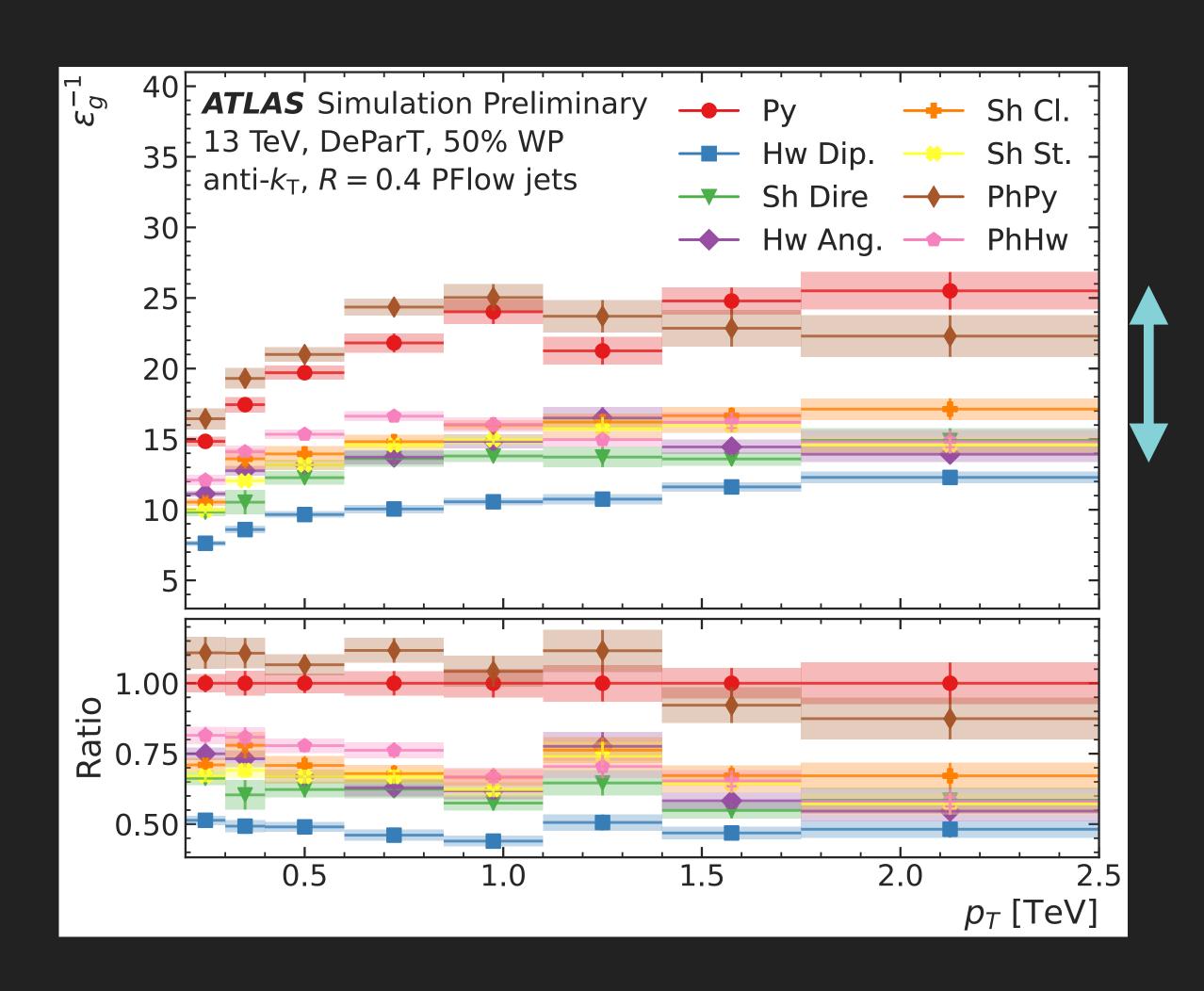
| Model       | AUC    | $\varepsilon_g^{-1}@\varepsilon_q = 0.5$ | # Params [10 <sup>6</sup> ] | Inference Time [ms] | GPU Memory [MB] |
|-------------|--------|------------------------------------------|-----------------------------|---------------------|-----------------|
| DeParT      | 0.8489 | 15.4242                                  | 2.62                        | 266.51              | 1684            |
| ParT        | 0.8479 | 15.2457                                  | 2.62                        | 233.84              | 1730            |
| ParticleNet | 0.8476 | 15.4402                                  | 2.59                        | 768.74              | 5410            |
| PFN         | 0.8406 | 14.2387                                  | 2.64                        | 136.93              | 393             |
| FC          | 0.8280 | 13.5199                                  | 2.63                        | 65.53               | 76              |
| FC reduced  | 0.8038 | 10.3639                                  | 2.63                        | 84.84               | 47              |
| EFN         | 0.7761 | 7.7222                                   | 2.60                        | 101.53              | 337             |



- DeParT outperforms ParT
- ParticleNet expensive at 2.6M params

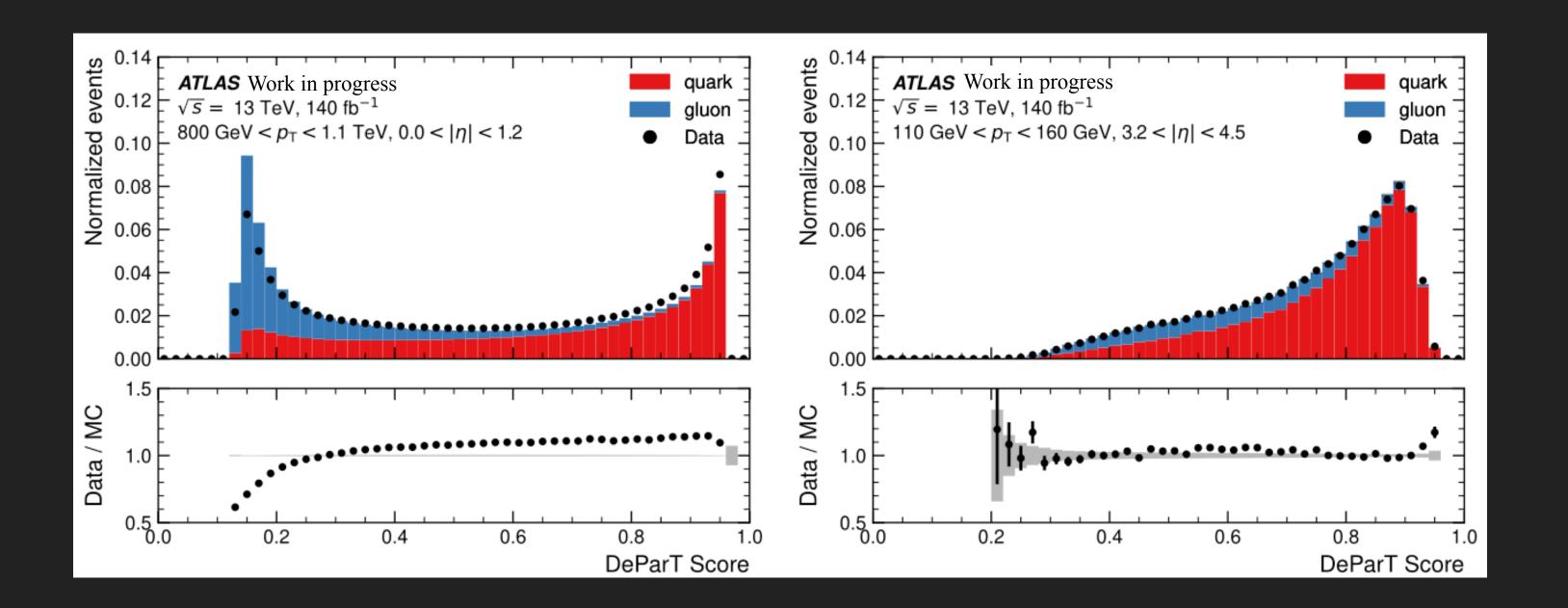


# MONTE CARLO DEPENDENCE



- big difference from nominal
- only PhPy is similar
  - the same PS and Had.
- ▶ PS and Had. -> big effect

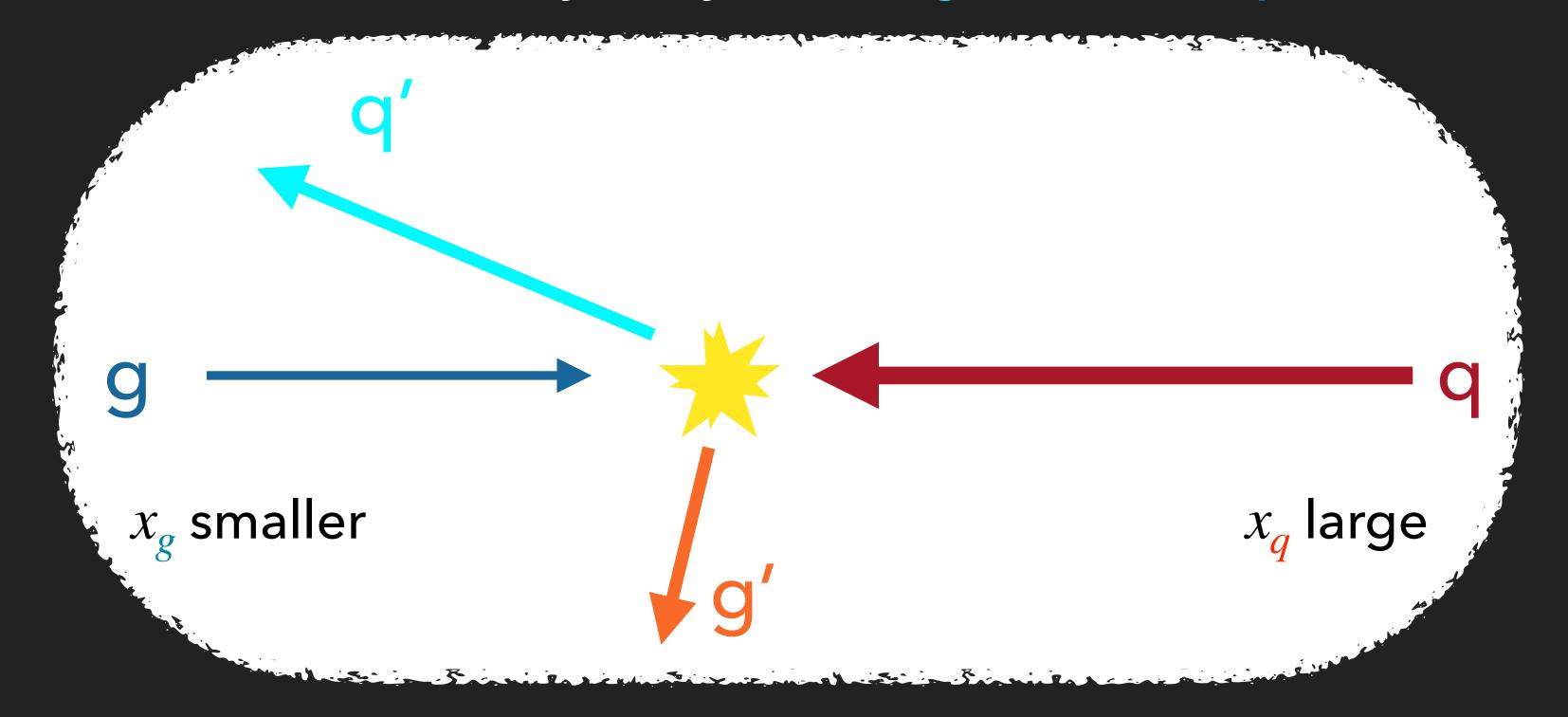
### EFFICIENCY MEASUREMENT



- measure efficiency on data
- calibration = correct differences between MC and data

Need pure quark and gluon samples in data

dijet event central jet = jet w/ lower eta = gluon enriched forward jet = jet w/ higher eta = quark enriched



$$p_F(x) = f_F^q p_q(x) + (1 - f_F^q) p_g(x)$$

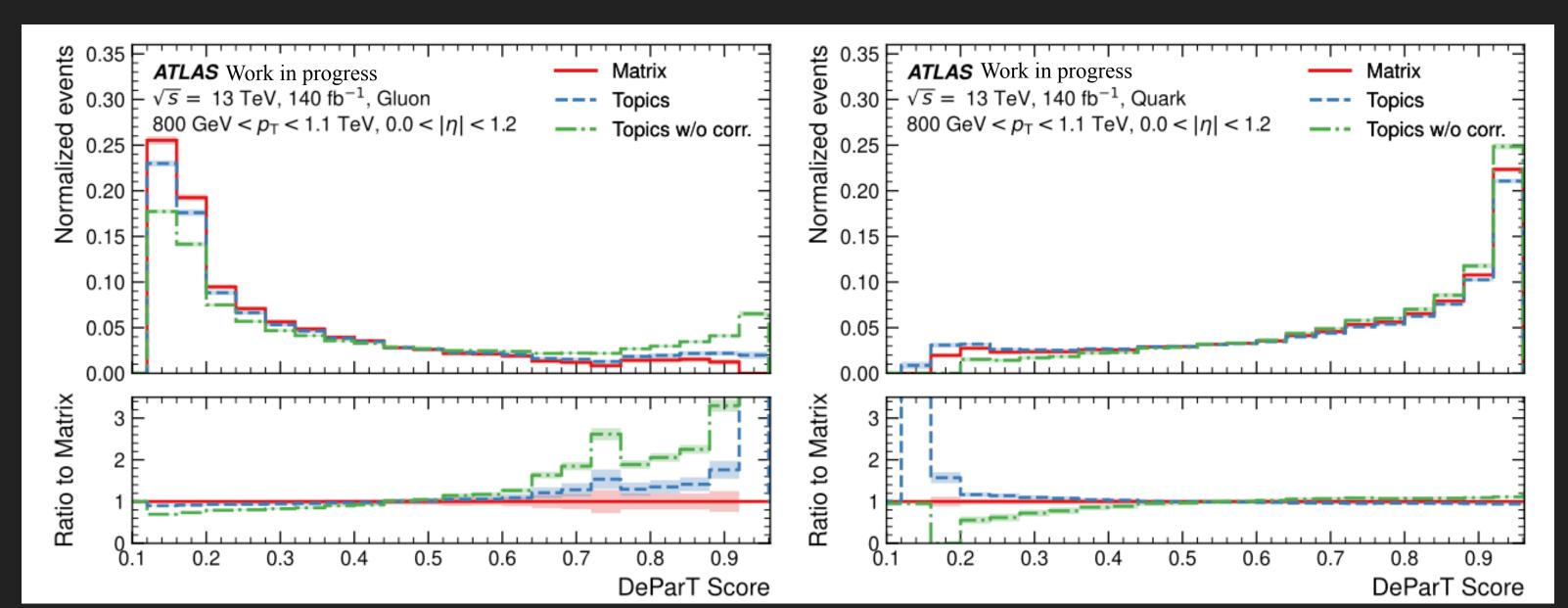
$$p_{C}(x) = f_{C}^{q} p_{q}(x) + (1 - f_{C}^{q}) p_{g}(x)$$

# Matrix Method

- estimate mixing fractions  $f_F^q, f_C^q$  from MC
- > solve equations for  $p_g(x)$ ,  $p_g(x)$
- MC based

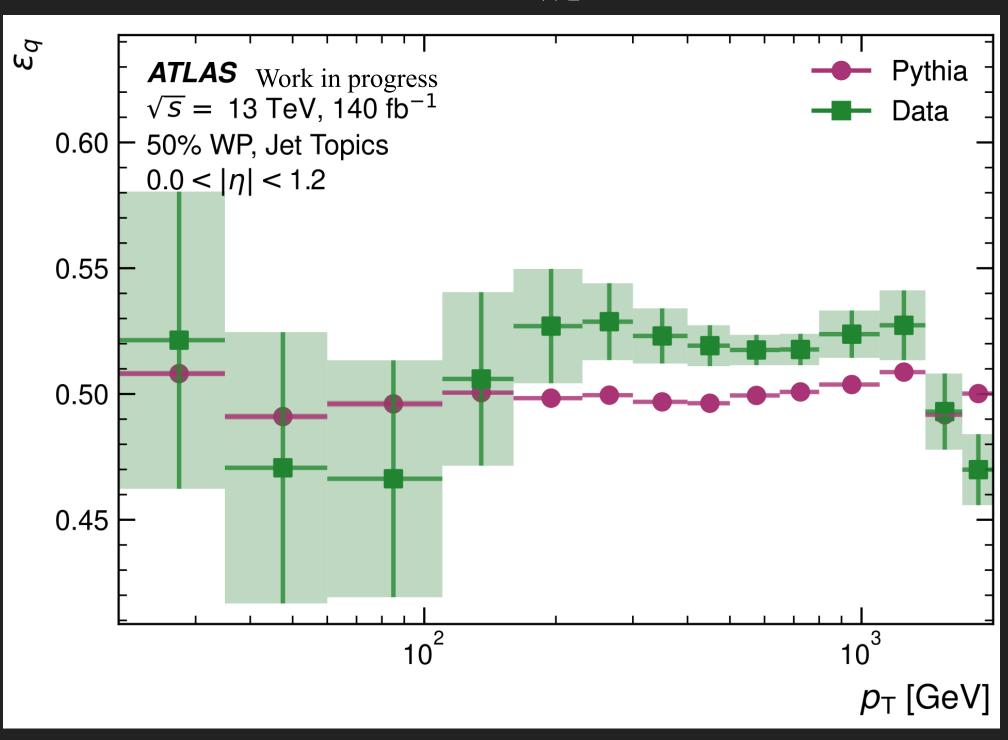
# Jet Topics

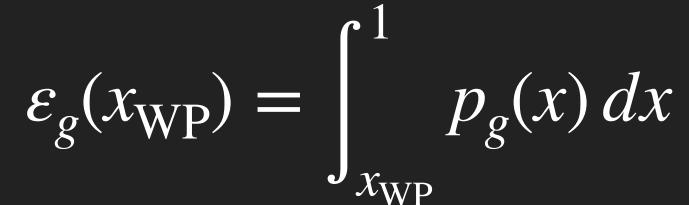
- assume additional condition (mutual irreducibility) on  $p_g(x)$ ,  $p_q(x)$
- get  $p_g(x)$ ,  $p_q(x)$  directly from  $p_F(x)$ ,  $p_C(x)$
- use MC only as a correction
- reduced MC dependance

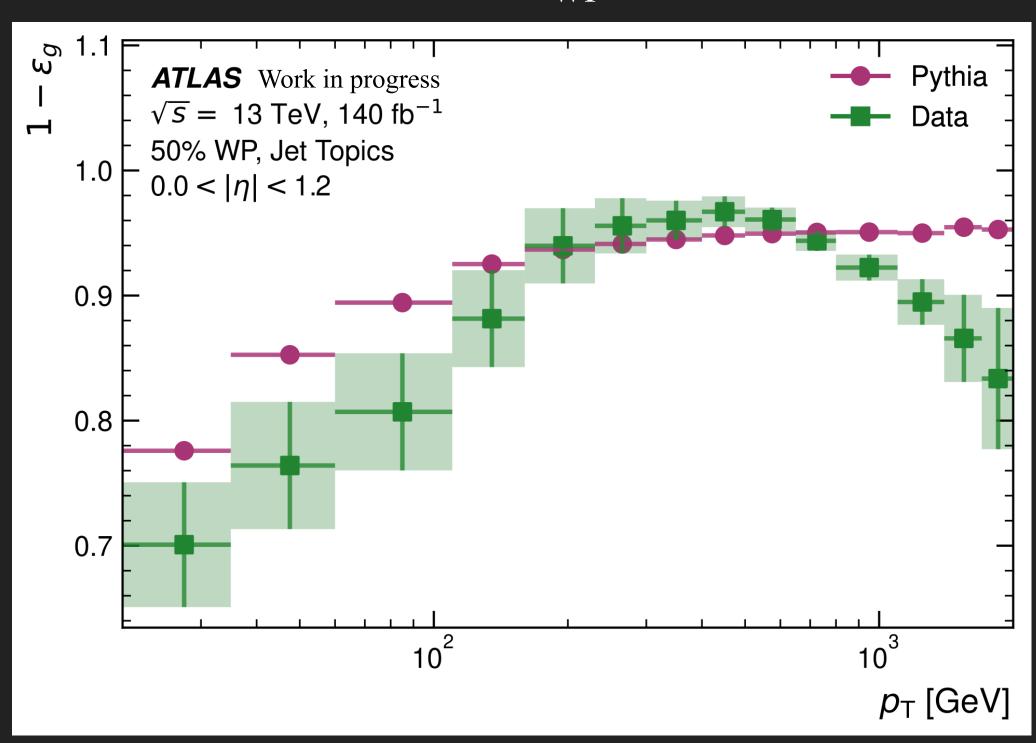


# EFFICIENCY MEASUREMENT

$$\varepsilon_q(x_{\text{WP}}) = \int_{x_{\text{WP}}}^1 p_q(x) \, dx$$







Quark

Gluon

# UNCERTAINITIES

Exp.

# Matrix Method

- 1. statistical
- 2. JES/JER, JVT, PU
- 3. sample independence
- 4. MC non-closure
- 5. theoretical = MC modeling

# Jet Topics

1. statistical

2. JES/JER, JVT, PU

Meth.

3. sample independence

4. MC non-closure

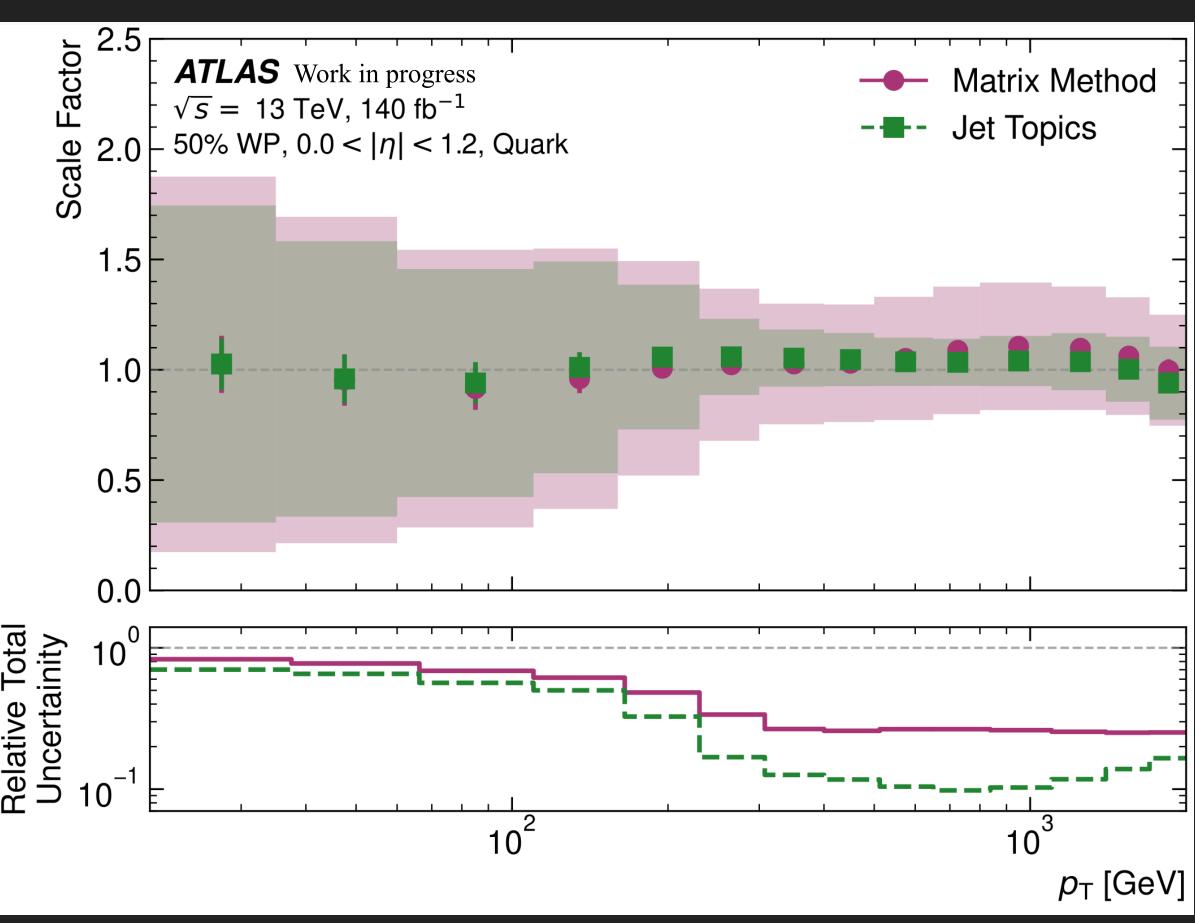
5.  $\kappa$  extraction

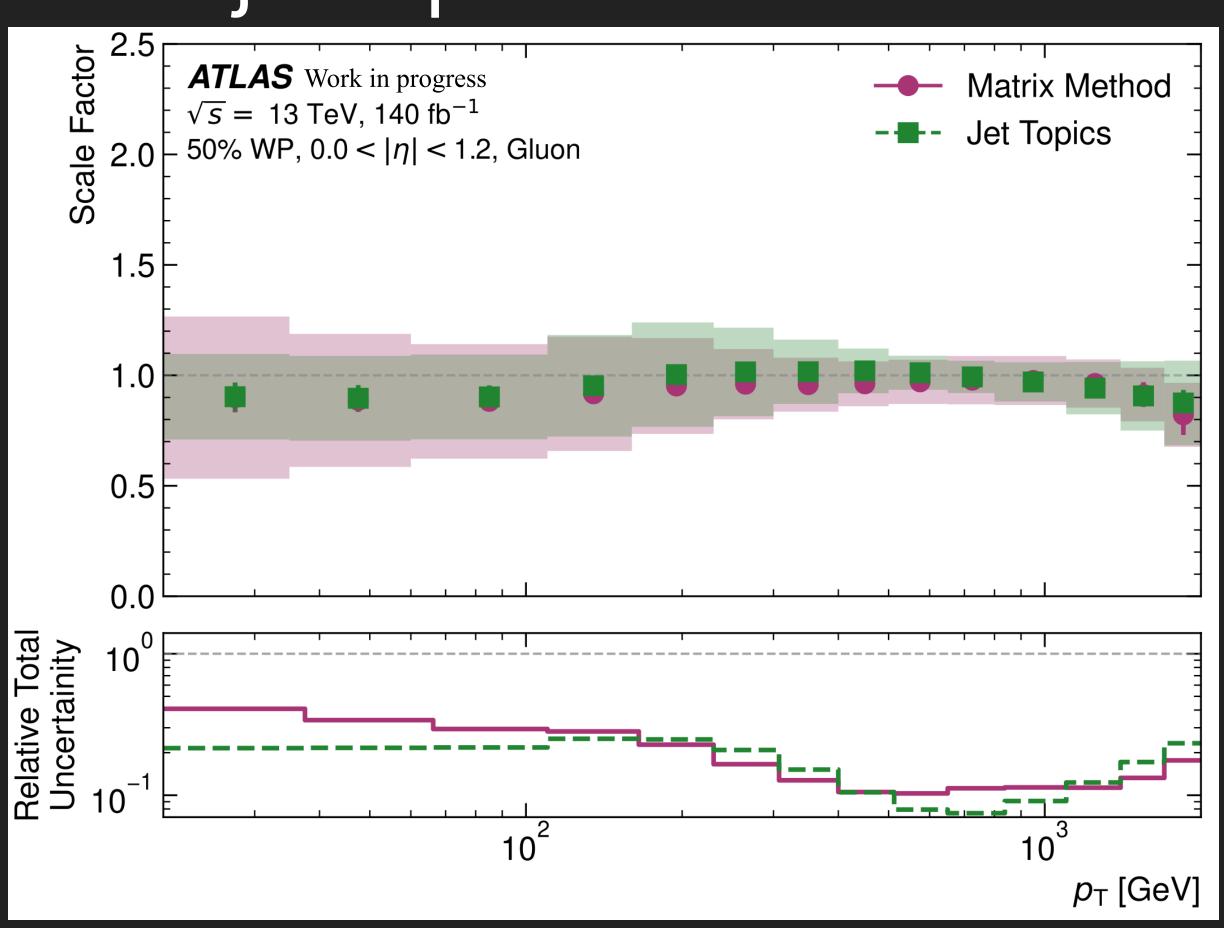
Theo.

6.  $\kappa(q,g)$ ,  $\kappa(g,q)$  modelling

# JET TOPICS VS MATRIX METHOD

smaller uncertainities of jet topics

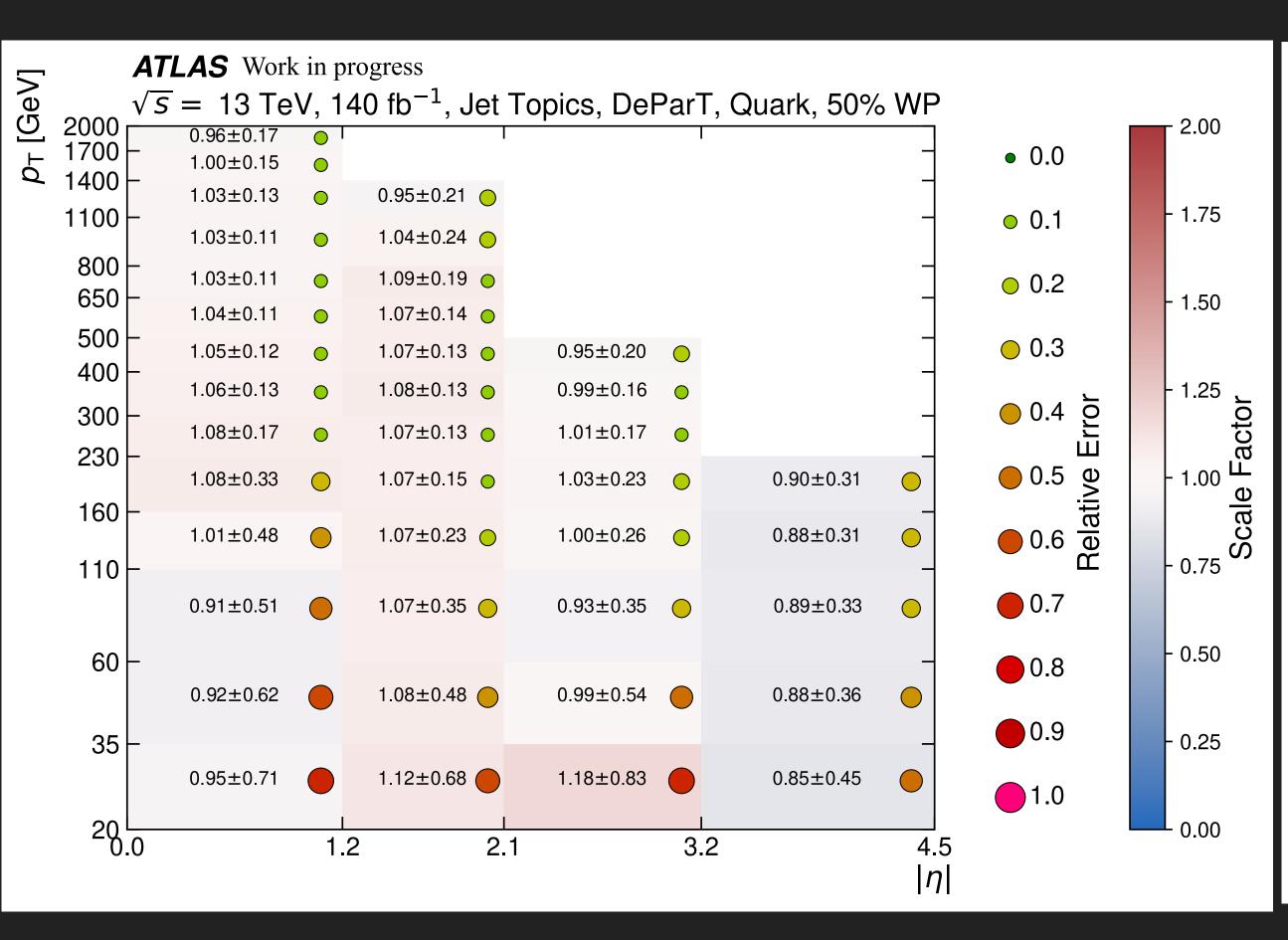


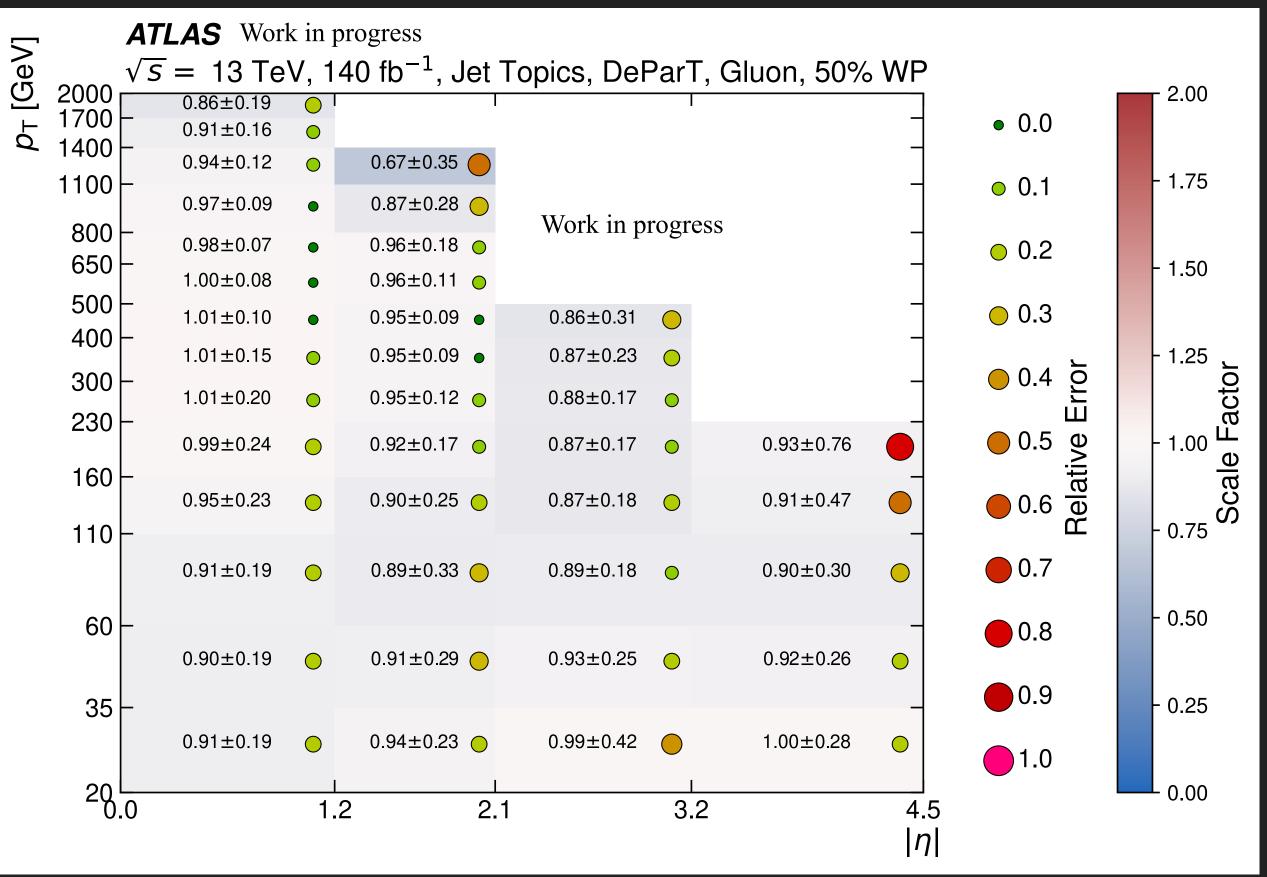


Quark 
$$SF_g = \frac{1 - \varepsilon_g^{Data}}{1 - \varepsilon_g^{MC}}$$

Gluon 
$$SF_q = \frac{\varepsilon_q^{\text{Data}}}{\varepsilon_q^{\text{MC}}}$$

# EFFICIENCY CORRECTION FACTORS





Quark 
$$SF_q = \frac{\varepsilon_q^{\text{Data}}}{\varepsilon_q^{\text{MC}}}$$

Gluon 
$$SF_g = \frac{1 - \varepsilon_g^{\text{Data}}}{1 - \varepsilon_g^{\text{MC}}}$$

### CONCLUSION

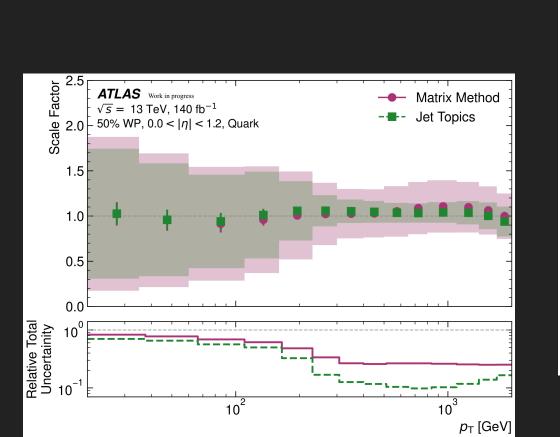
Developed transformer-based q/g tagger

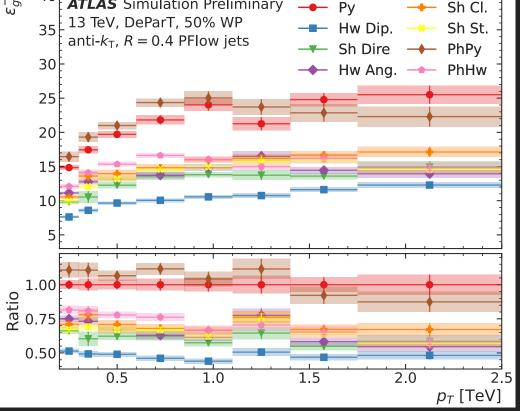
MC dependence

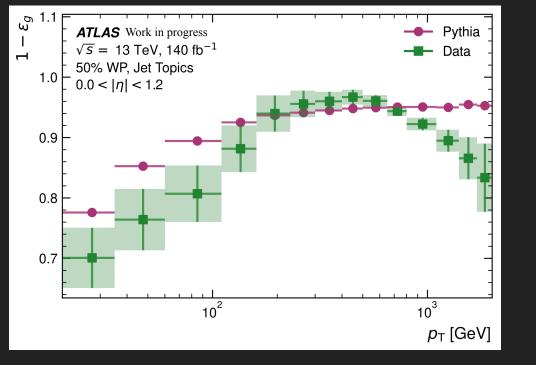
Jet Topics calibration - reduces uncertainties

Performance measurement in data

Scale factors for physics analysis applications





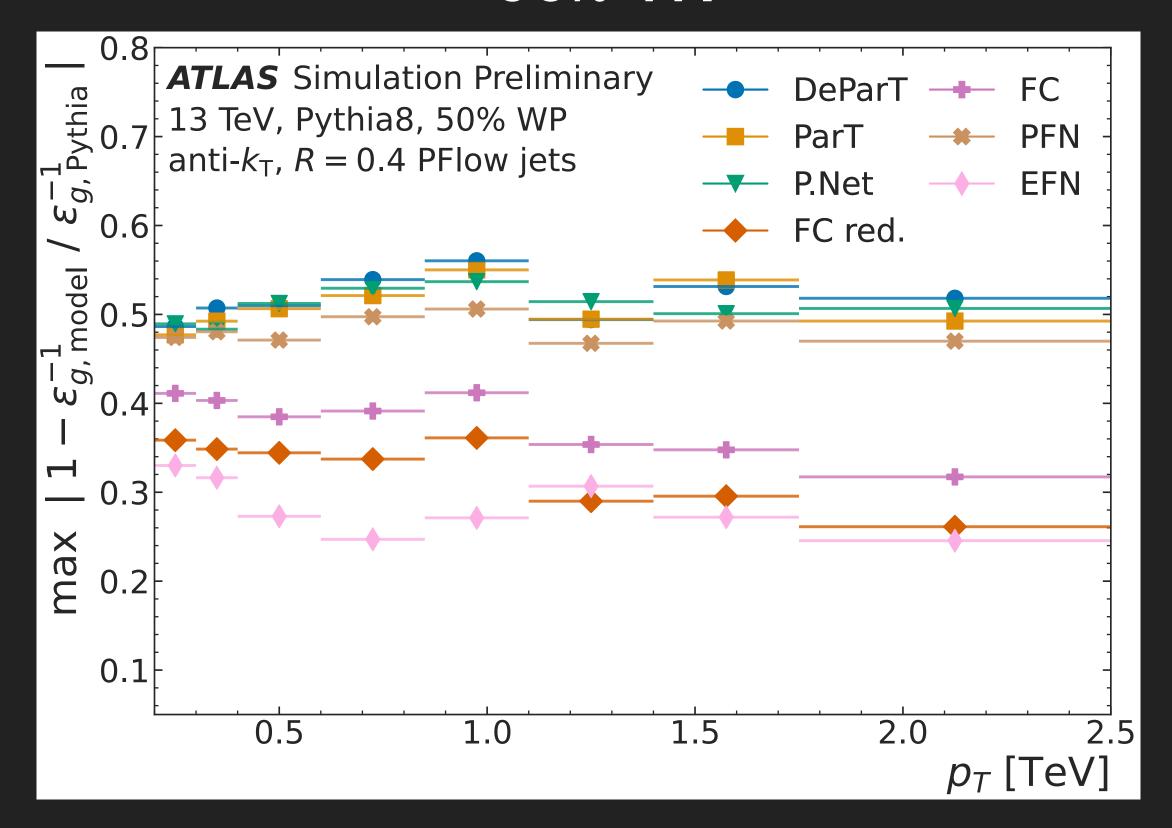


# THANK YOU! QUESTIONS?

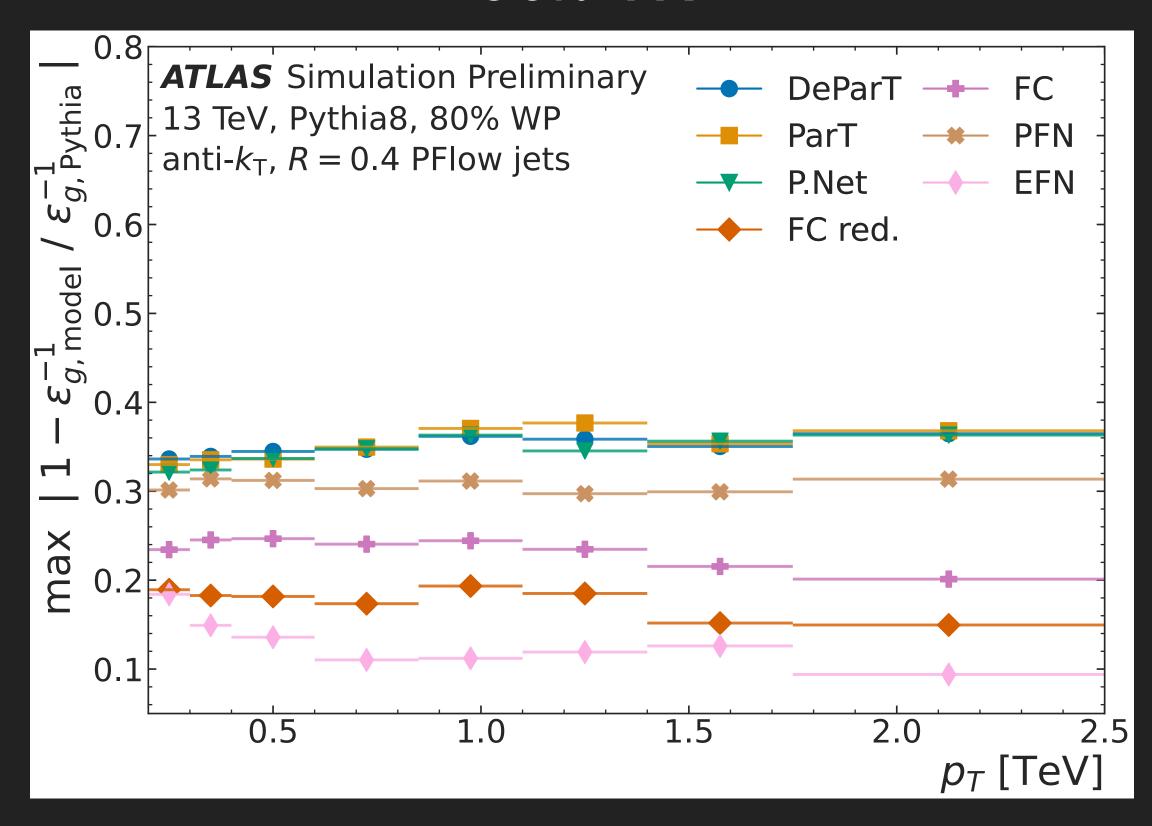
# BONUS

## MONTE CARLO DEPENDENCE

50% WP



80% WP



- higher = bigger MC dep.
- ▶ EFN lowest MC dep.
- const. based significantly bigger

$$p_{C}(x) = f_{C}^{q} p_{q}(x) + (1 - f_{C}^{q}) p_{g}(x)$$

$$p_{F}(x) = f_{F}^{q} p_{q}(x) + (1 - f_{F}^{q}) p_{g}(x)$$

# Matrix Method

$$\begin{pmatrix} p_F(x) \\ p_C(x) \end{pmatrix} = \begin{pmatrix} f_F^q & 1 - f_F^q \\ f_C^q & 1 - f_C^q \end{pmatrix} \begin{pmatrix} p_q(x) \\ p_g(x) \end{pmatrix}$$

$$\stackrel{\equiv F}{=} F$$

$$\begin{pmatrix} p_q(x) \\ p_o(x) \end{pmatrix} = F^{-1} \begin{pmatrix} p_F(x) \\ p_C(x) \end{pmatrix}$$

# Jet Topics

$$p_{q}(x) = \frac{p_{F}(x) - \kappa(F, C)p_{C}(x)}{1 - \kappa(F, C)}$$

$$p_g(x) = \frac{p_C(x) - \kappa(C, F)p_F(x)}{1 - \kappa(C, F)}$$

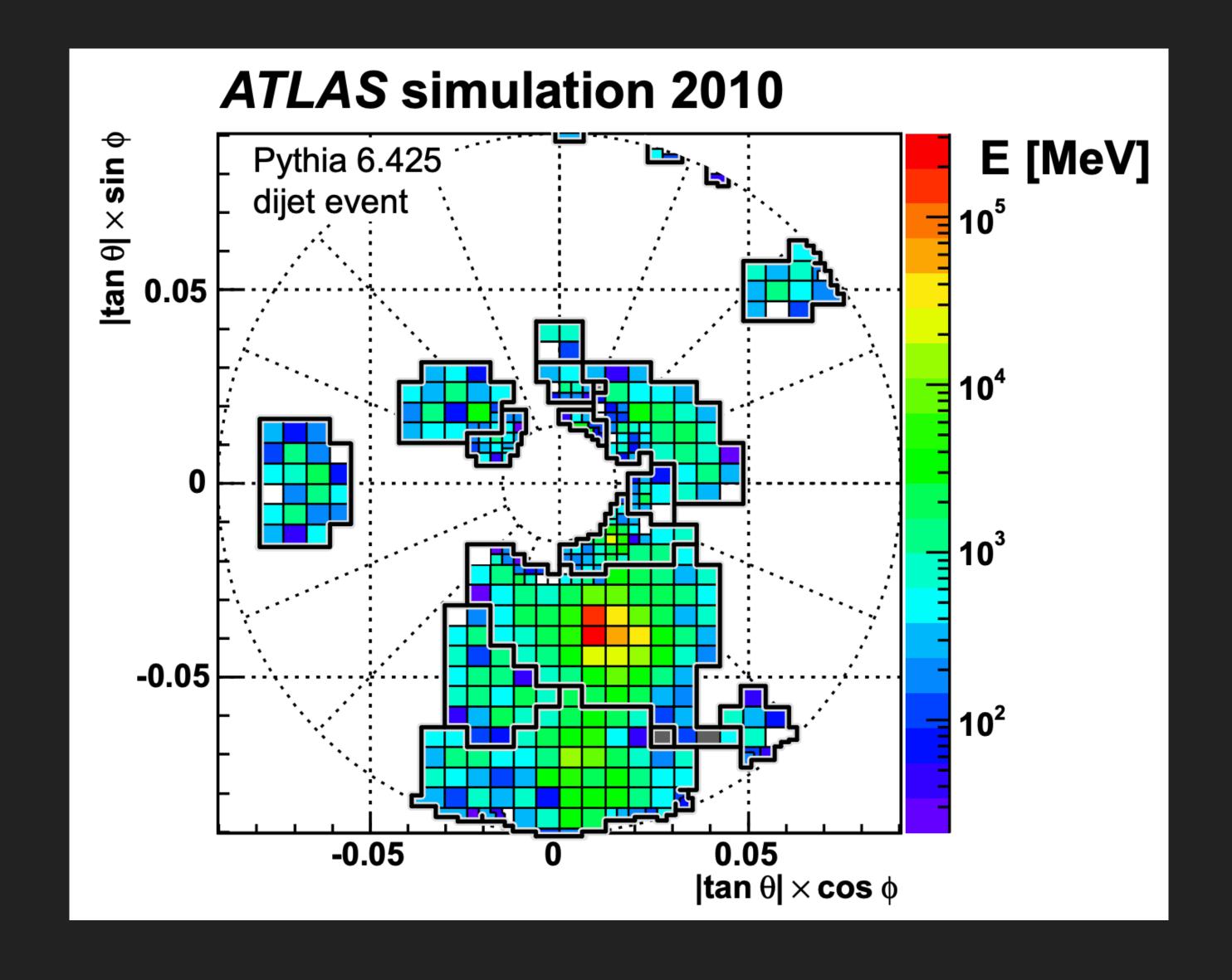
$$\kappa(F,C) = \min_{x} \frac{p_F(x)}{p_C(x)} \quad \kappa(C,F) = \min_{x} \frac{p_C(x)}{p_F(x)}$$

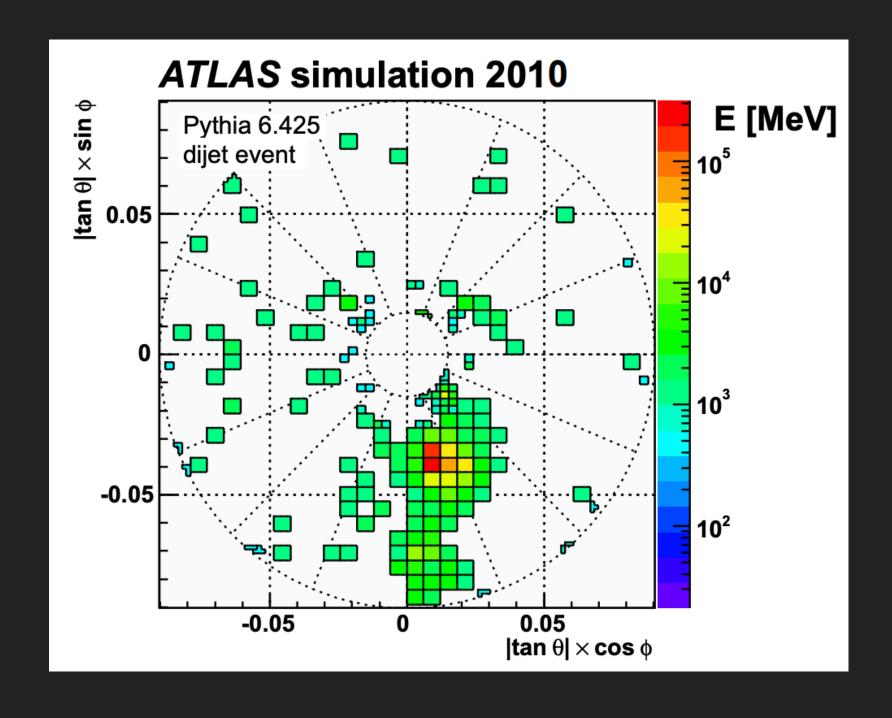
### EXTRACTION OF PURE DISTRIBUTIONS

mutual irreducibility not satisfied  $\kappa(q,g) \neq 0$ ,  $\kappa(g,q) \neq 0 -> MC$  correction

$$p_{q}(x) = \frac{p_{q|g}(x)(1 - \kappa(q, g)) + (1 - \kappa(g, q))\kappa(q, g)p_{g|q}(x)}{1 - \kappa(g, q)\kappa(q, g)}$$

$$p_{g}(x) = \frac{p_{g|q}(x)(1 - \kappa(g, q)) + (1 - \kappa(q, g))\kappa(g, q)p_{q|g}(x)}{1 - \kappa(q, g)\kappa(g, q)}$$





### TRAINING REQUIREMENTS

- 1.  $p_{\rm T}$  independence
- 2.  $\eta$  independence

training MC amount limitation

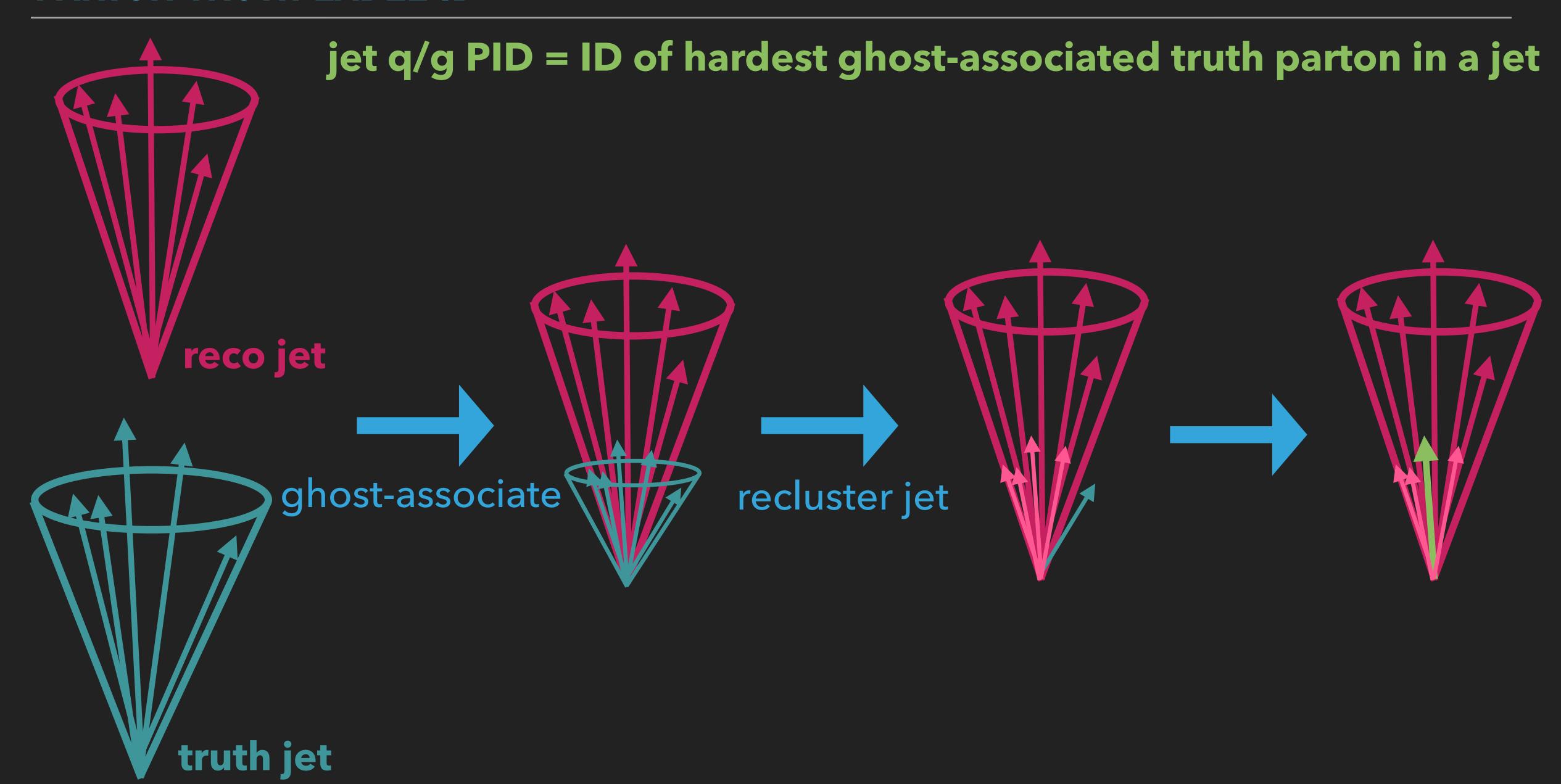


train on 2D flat distribution



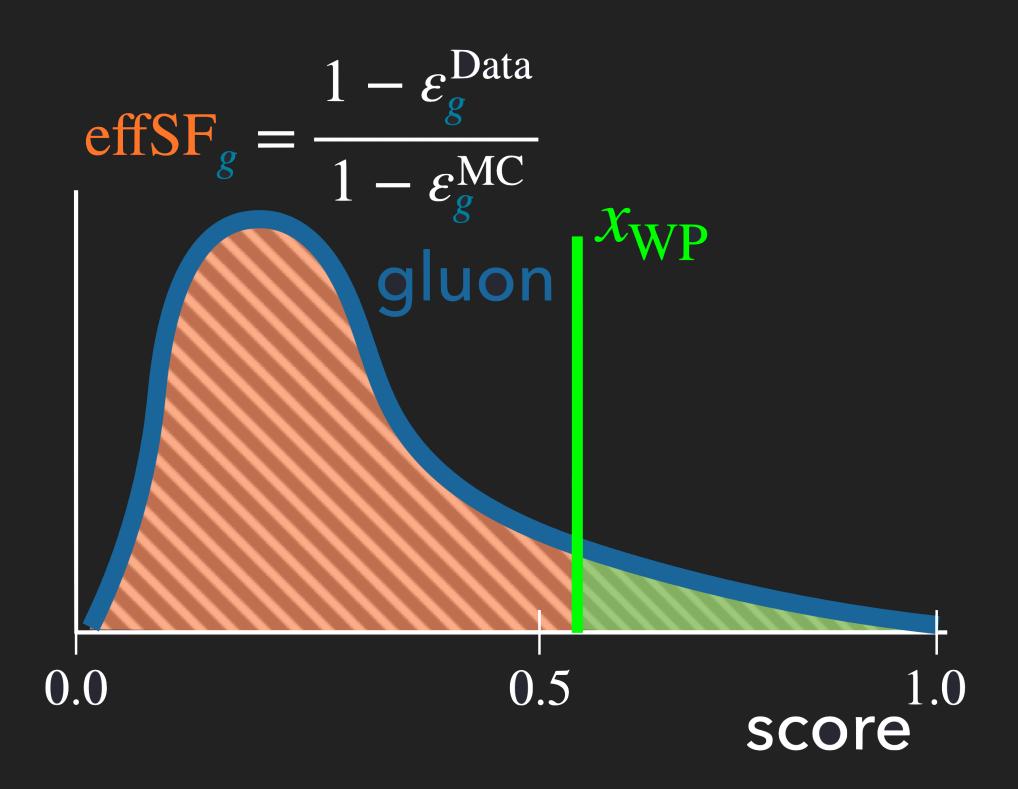


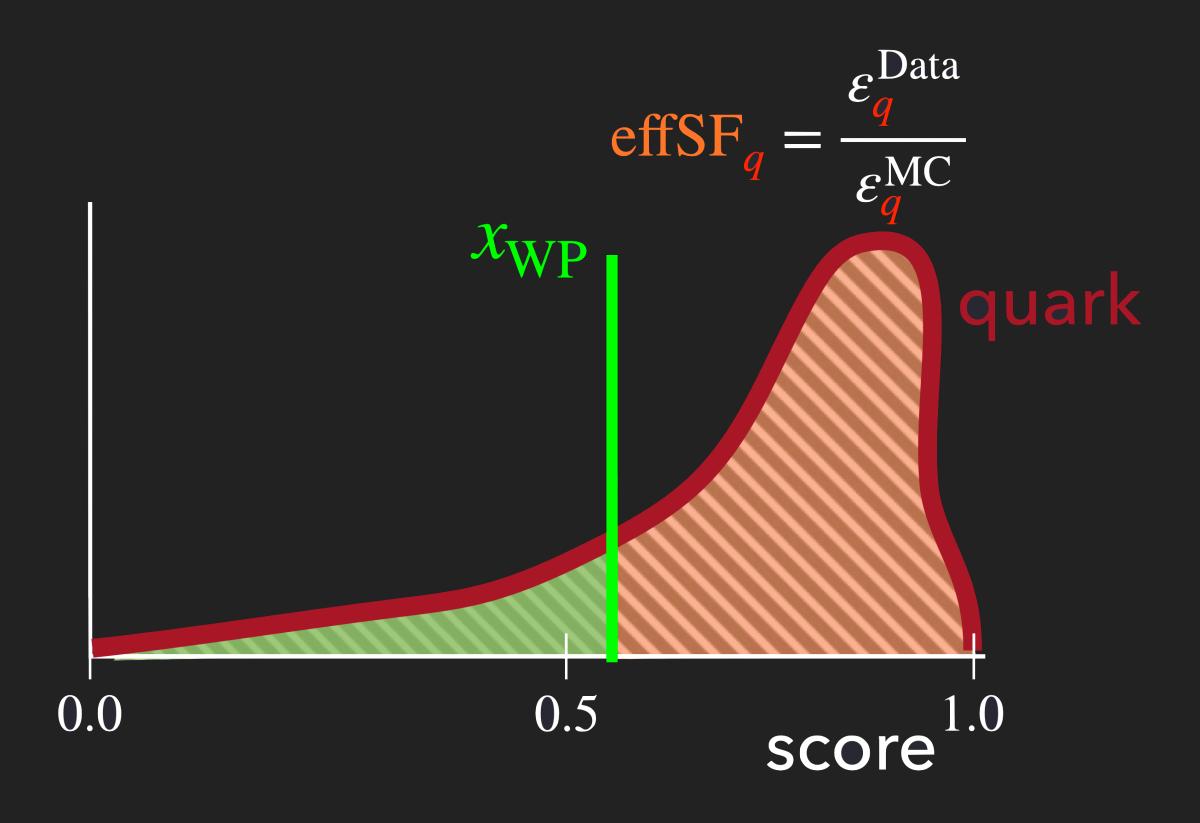
| Index | $p_{\rm T}$ range                    | $\eta$ range   | Total size | Relative size | Num. of $\eta$ bins | Num. of $p_{\rm T}$ bins |
|-------|--------------------------------------|----------------|------------|---------------|---------------------|--------------------------|
| 1.    | $20 < p_{\rm T} < 160  {\rm GeV}$    | $ \eta  < 4.5$ | 50M        | 49 %          | 10                  | 10                       |
| 2.    | $160 < p_{\rm T} < 1300  {\rm GeV}$  | $ \eta  < 2.1$ | 50M        | 49 %          | 6                   | 10                       |
| 3.    | $1300 < p_{\rm T} < 2000  {\rm GeV}$ | $ \eta  < 1.2$ | 2.1M       | 2 %           | 4                   | 10                       |



$$\varepsilon_q(x_{\text{WP}}) = \int_{x_{\text{WP}}}^1 p_q(x) dx$$
 $\varepsilon_g(x_{\text{WP}}) = \int_{x_{\text{WP}}}^1 p_g(x) dx$ 

$$\varepsilon_g(x_{\text{WP}}) = \int_{x_{\text{WP}}}^1 p_g(x) \, dx$$





$$p_F(x) = f_F^q p_q(x) + (1 - f_F^q) p_g(x) \qquad p_C(x) = f_C^q p_q(x) + (1 - f_C^q) p_g(x)$$

differences fwd/cntrl for quark and gluons due to detector -> reweight 0th order unfolding

$$p_C(x) \to w^q(x) \cdot p_C(x) = \frac{p_F^q(x)}{p_C^q(x)} \cdot p_C(x)$$

 $\triangleright p_q(x) / p_g(x)$  can be mathematically extracted from  $p_C(x)$  &  $p_F(x)$ :

$$p_{q}(x) = \frac{p_{F}(x) - \kappa(F, C)p_{C}(x)}{1 - \kappa(F, C)} \qquad p_{g}(x) = \frac{p_{C}(x) - \kappa(C, F)p_{F}(x)}{1 - \kappa(C, F)}$$

• reducibility factor  $\kappa$  = largest substracted amount possible

$$p_F(x) - \kappa(F, C)p_C(x) \ge 0 \qquad \kappa(F, C) = \min_{x} \frac{p_F(x)}{p_C(x)}$$

### QUANTILE REBINNING, ANCHOR BIN QUANTILED

combine bins to reduce statistical uncertainty

try to obtain an equal amount of counts in each bin

vary the bin size

each bin is characterized with cumulative sum fraction

# use the formula for $\kappa$ directly on rebinned ditributions

hyperparam. - num of quantile bins, utilize multiple bins

$$\kappa(F,C) = \exp\left(-\max_{q} \ln \frac{p_F(q)}{p_C(q)}\right) \quad q = \frac{\int_0^{x_q} p_F(x) + p_C(x) \, dx}{\int_0^1 p_F(x) + p_C(x) \, dx}$$

- 1. sample independence  $p_q(x)$  and  $p_g(x)$  are same in all mixtures
- 2. different purities  $-f_C^q \neq f_F^q$

same with Matrix Method

3. mutual irreducibility – existence of pure quark and pure gluon phase space regions.

This implies:

$$\kappa(q,g) = \min_{x} \frac{p_q(x)}{p_g(x)} = \kappa(g,q) = \min_{x} \frac{p_g(x)}{p_q(x)} = 0$$

- mutual irreducibility not satisfied in MC
- if we know  $\kappa(q,g)$  and  $\kappa(g,q)$  than pure quark and gluon distributions are

$$p_{q}(x) = \frac{p_{q|g}(x)(1 - \kappa(q, g)) + (1 - \kappa(g, q))\kappa(q, g)p_{g|q}(x)}{1 - \kappa(g, q)\kappa(q, g)}$$

$$p_{g}(x) = \frac{p_{g|q}(x)(1 - \kappa(g, q)) + (1 - \kappa(q, g))\kappa(g, q)p_{q|g}(x)}{1 - \kappa(q, g)\kappa(g, q)}$$

• the  $\kappa(q,g)$  and  $\kappa(g,q)$  are given from MC and:

$$\kappa(q,g) = 0 \qquad p_{q}(x) = \frac{p_{F}(x) - \kappa(F,C)p_{C}(x)}{1 - \kappa(F,C)}$$

$$\kappa(q,g) \neq 0 \qquad p_{q|g}(x) = \frac{p_{F}(x) - \kappa(F,C)p_{C}(x)}{1 - \kappa(F,C)}$$

# TRAINING HYPERPARAMETERS

| Index | p <sub>T</sub> range                 | $\eta$ range   | Total size | Relative size | Num. of $\eta$ bins | Num. of $p_{\rm T}$ bins |
|-------|--------------------------------------|----------------|------------|---------------|---------------------|--------------------------|
| 1.    | $20 < p_{\rm T} < 160  {\rm GeV}$    | $ \eta  < 4.5$ | 50M        | 49 %          | 10                  | 10                       |
| 2.    | $160 < p_{\rm T} < 1300  {\rm GeV}$  | $ \eta  < 2.1$ | 50M        | 49 %          | 6                   | 10                       |
| 3.    | $1300 < p_{\rm T} < 2000  {\rm GeV}$ | $ \eta  < 1.2$ | 2.1M       | 2 %           | 4                   | 10                       |

### 2.62M parameters

| Parameter                              | DeParT            |
|----------------------------------------|-------------------|
| Embedding Dimension                    | 128               |
| Self-Attention Block Layers            | 11                |
| Class Attention Block Layers           | 2                 |
| Heads                                  | 8                 |
| Expansion                              | 4                 |
| Dropout                                | 0.1               |
| Stochastic Depth Drop Rate             | 0.2               |
| Layer Scale Initialization             | $5 \cdot 10^{-3}$ |
| Number of Embedding Layers             | 3                 |
| Size of Embedding Layers               | 128               |
| Number of Interaction Embedding Layers | 3                 |
| Size of Interaction Embedding Layers   | 64                |
| Activation                             | GELU              |

| Data                     |                           |  |  |  |  |
|--------------------------|---------------------------|--|--|--|--|
| Training Dataset         | 102M jets                 |  |  |  |  |
| Validation Dataset       | 3M jets                   |  |  |  |  |
| Number of Epochs (*)     | 10                        |  |  |  |  |
| Batch Size (*)           | 1024                      |  |  |  |  |
| Normalization Layer      | adaptation on 150 batches |  |  |  |  |
| Optimizer                |                           |  |  |  |  |
| Optimizer                | Adam                      |  |  |  |  |
| Learning Rate (*)        | 0.0001                    |  |  |  |  |
| $oldsymbol{eta}_1$       | 0.9                       |  |  |  |  |
| $eta_2$                  | 0.999                     |  |  |  |  |
| $\epsilon$               | $10^{-6}$                 |  |  |  |  |
| Learning Rate Scheduling | Cosine Decay              |  |  |  |  |
| Minimum Learning Rate    | $10^{-6}$                 |  |  |  |  |
| Warmup (*)               | Linear (20k steps)        |  |  |  |  |
| Clip Norm                | 0.8                       |  |  |  |  |
| Loss                     |                           |  |  |  |  |
| Loss                     | Binary Cross Entropy      |  |  |  |  |
| Label Smoothing          | None                      |  |  |  |  |
| Weight Decay             | None                      |  |  |  |  |