

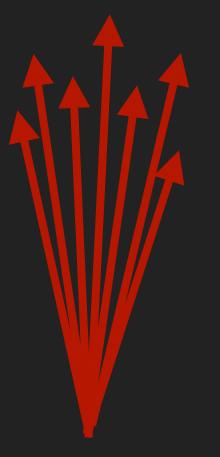
SAMUEL JANKOVYCH

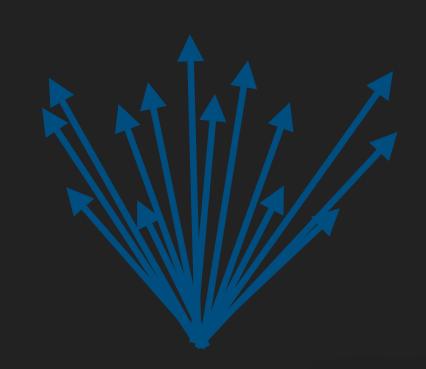
PERFORMANCE AND EFFICIENCY MEASUREMENT OF A TRANSFORMER-BASED QUARK GLUON JET TAGGER

NATLAS

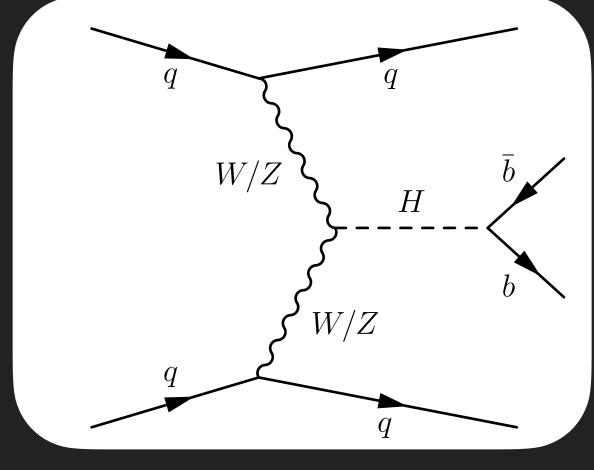
What?

Quarks vs. Gluons

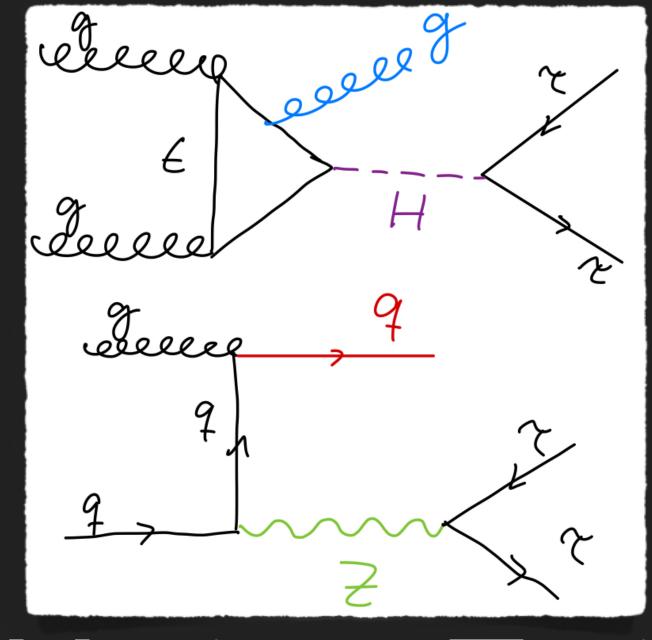




Why?



VBF VBS



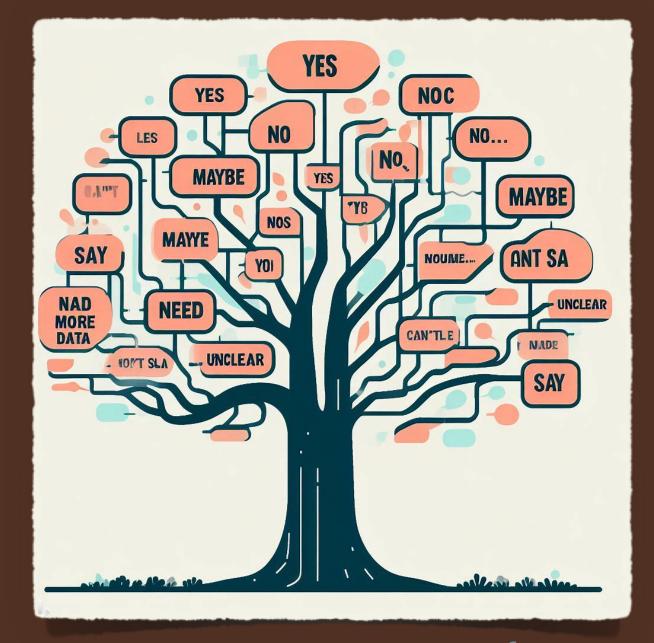
H+j vs Z+j

OLD

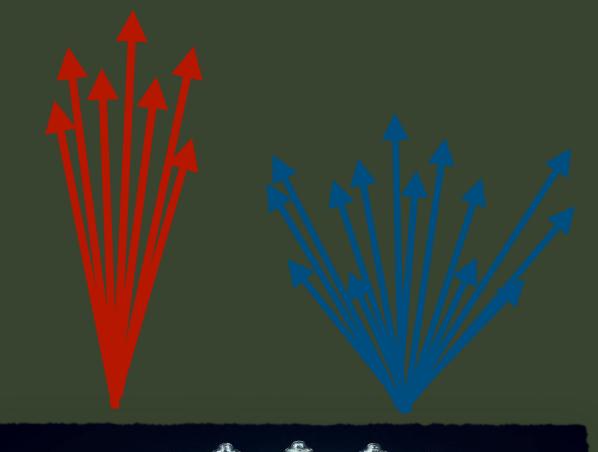
NEW

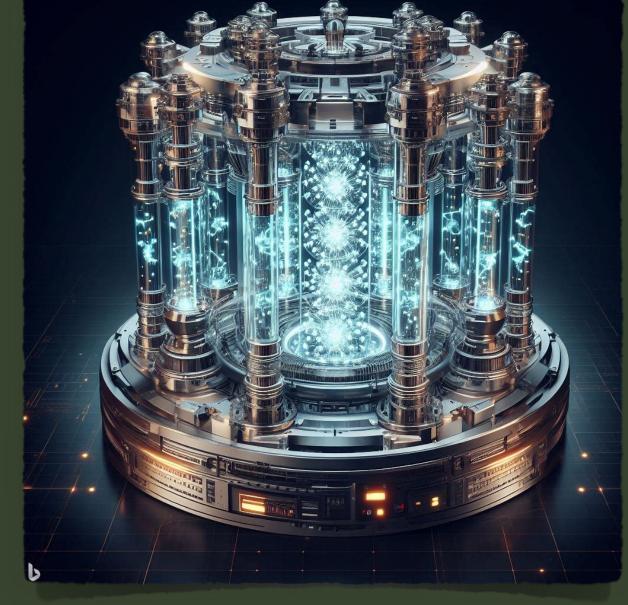
arxiv:1405.6583

DALL-E's impression of cut-based tagger



DALL-E's impression of BDT





DALL-E's impression of Transformer

INPUT VARIALBES

Constituent Variables

$$\log \frac{p_{\mathrm{T}}}{p_{\mathrm{T}}^{\mathrm{jet}}}$$
 $\log \frac{E}{p_{\mathrm{T}}^{\mathrm{jet}}}$
 $\Delta \eta = \eta - \eta^{\mathrm{jet}}$
 $\Delta \phi = \phi - \phi^{\mathrm{jet}}$
 $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$
is Charged
is Topo



C =# of constituent variables = 7

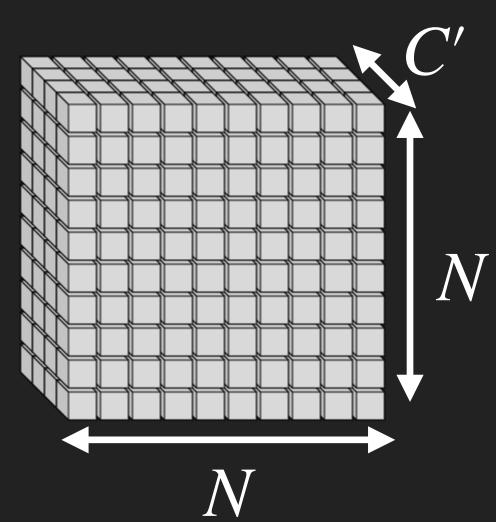
Constituent Interaction Variables

$$\log \Delta^{ab} = \log \sqrt{(\eta^{a} - \eta^{b})^{2} + (\phi^{a} - \phi^{b})^{2}}$$

$$\log m^{2,ab} = \log ((p^{a} + p^{b})^{2} / (p_{T}^{jet})^{2})$$

$$\log k_{T}^{ab} = \log (\min \left(\frac{p_{T}^{a}}{p_{T}^{jet}}, \frac{p_{T}^{b}}{p_{T}^{jet}}\right) \Delta^{ab})$$

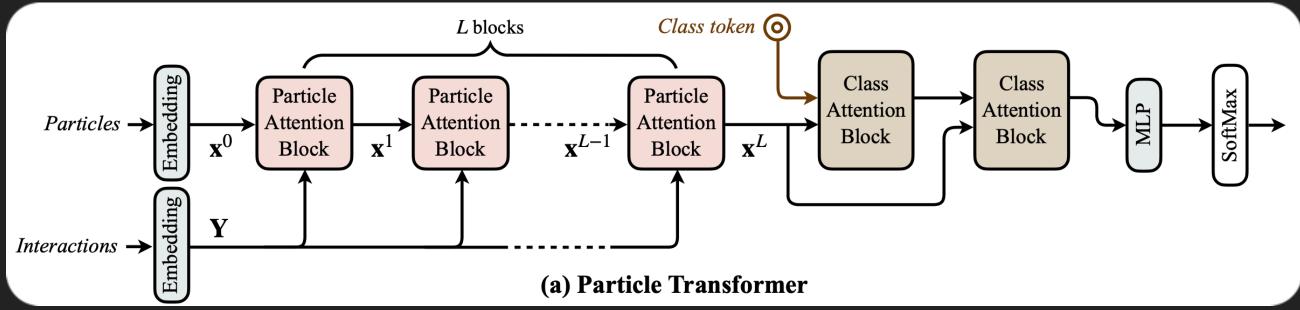
$$z^{ab} = \min (p_{T}^{a}, p_{T}^{b}) / (p_{T}^{a} + p_{T}^{b})$$

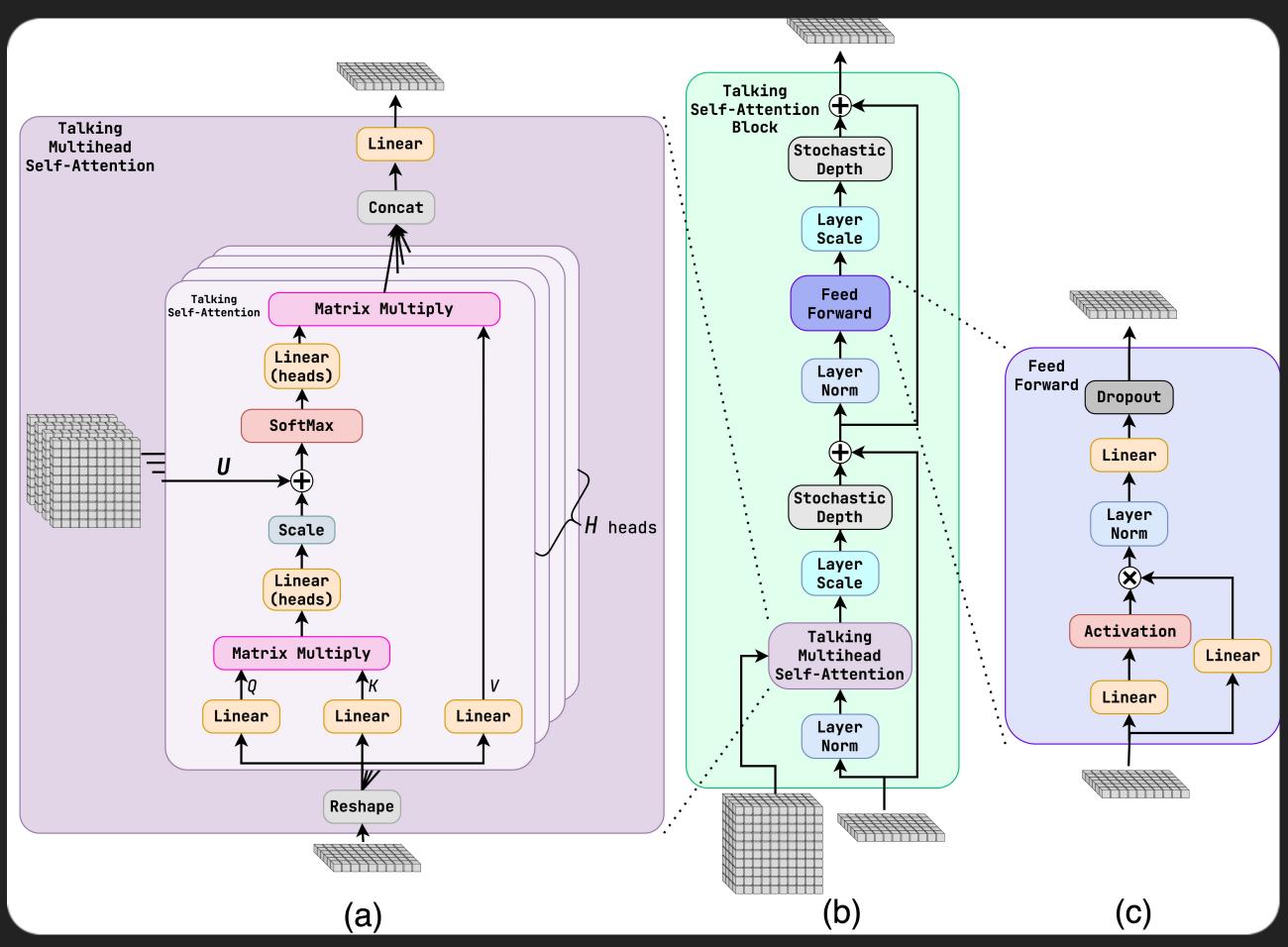


C=# of constituent interaction variables = 4

N =# of constituents (max 60)

DYNAMICALLY ENHANCED PARTICLE TRANSFORMER



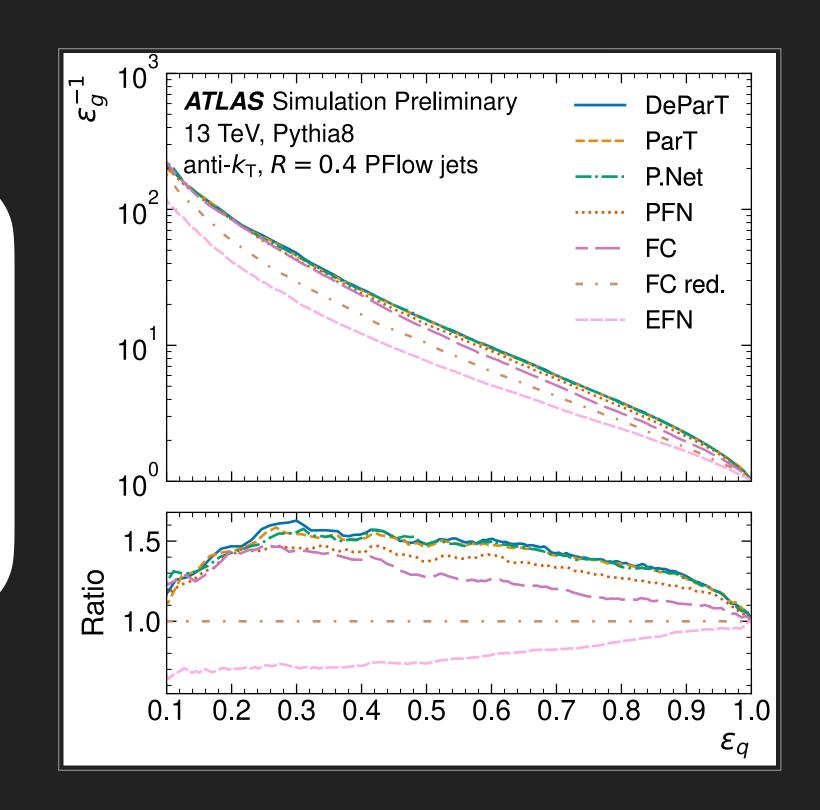


- enhancement of ParT
- DeiT III deeper models
 - stochastic depth
 - layer scale
- gated FFN
- Talking Heads arxiv:2003.02436
 - more communication

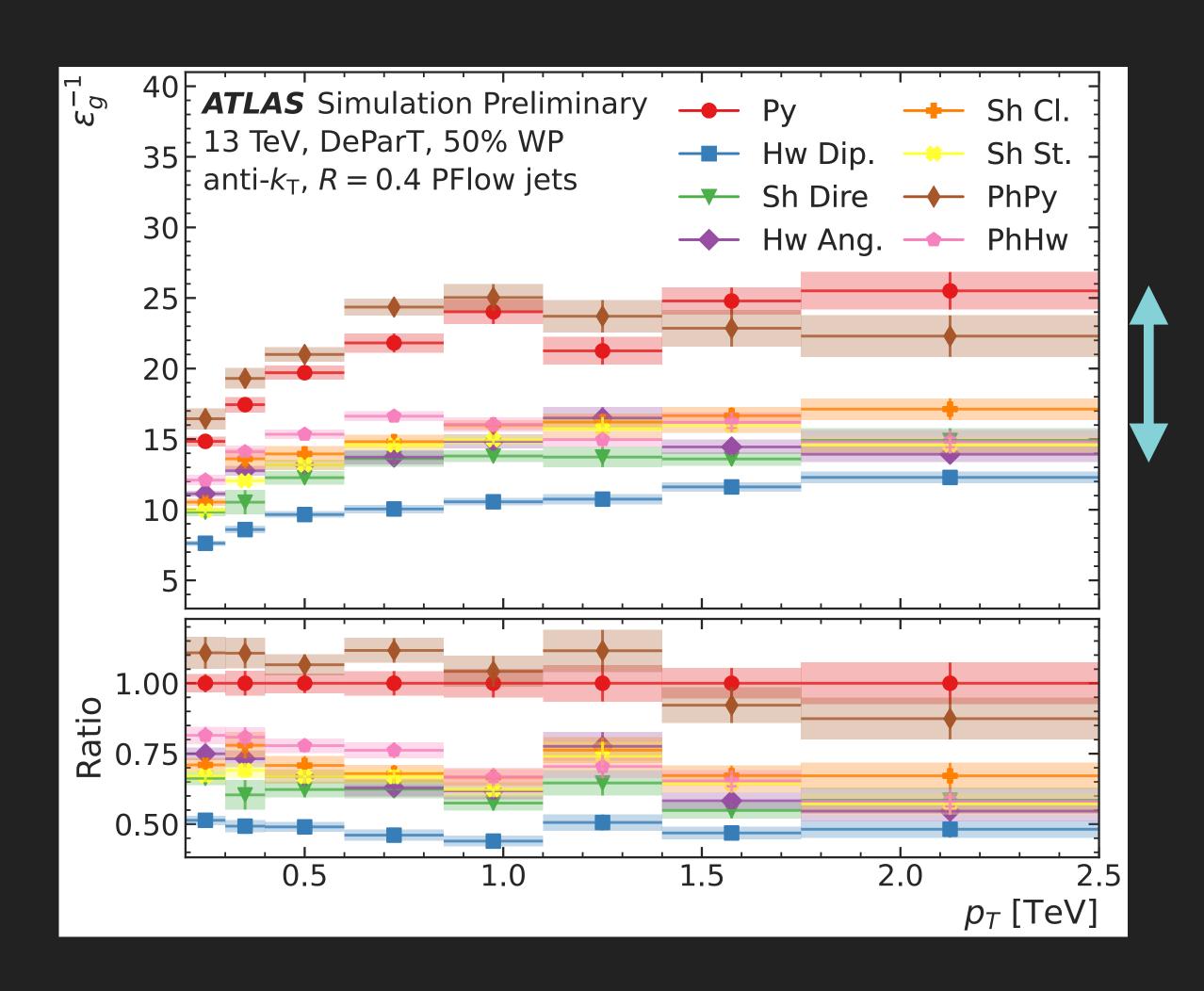
TAGGER PERFORMANCE

Model	AUC	$\varepsilon_g^{-1}@\varepsilon_q = 0.5$	# Params [10 ⁶]	Inference Time [ms]	GPU Memory [MB]
DeParT	0.8489	15.4242	2.62	266.51	1684
ParT	0.8479	15.2457	2.62	233.84	1730
ParticleNet	0.8476	15.4402	2.59	768.74	5410
PFN	0.8406	14.2387	2.64	136.93	393
FC	0.8280	13.5199	2.63	65.53	76
FC reduced	0.8038	10.3639	2.63	84.84	47
EFN	0.7761	7.7222	2.60	101.53	337

- DeParT outperforms ParT
- ParticleNet expensive at 2.6M params

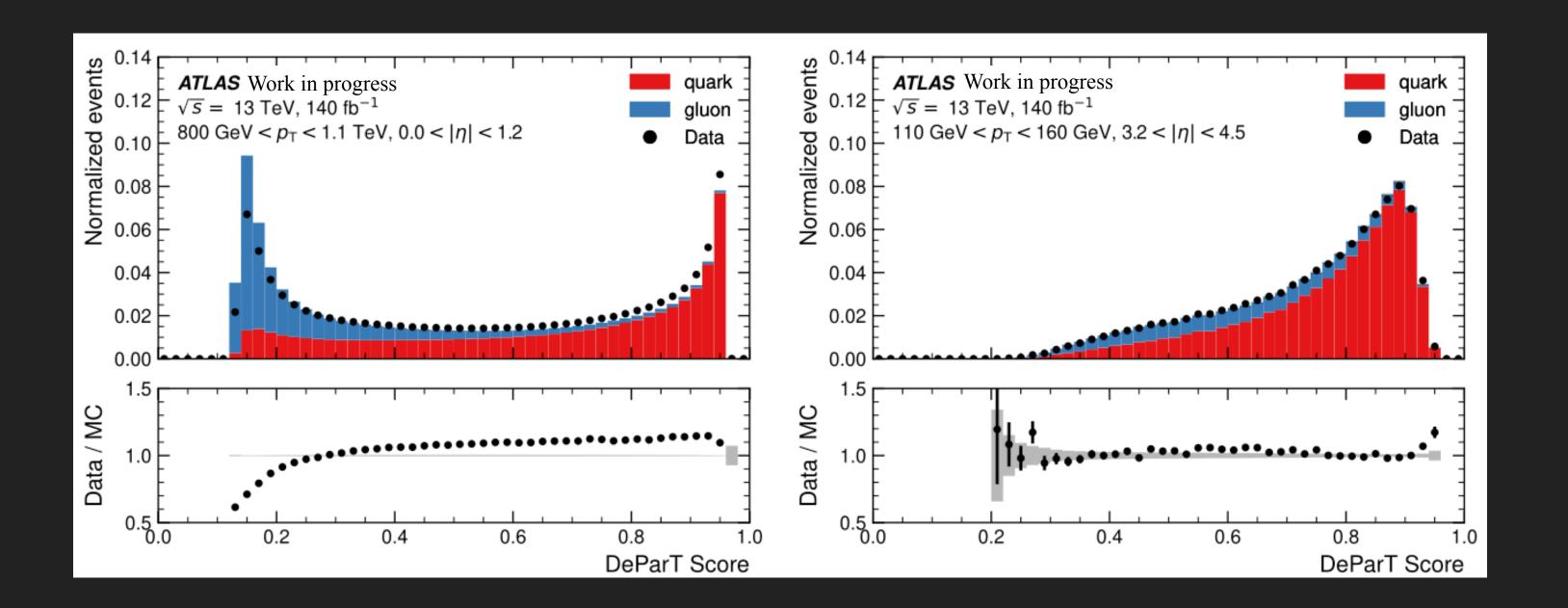


MONTE CARLO DEPENDENCE



- big difference from nominal
- only PhPy is similar
 - the same PS and Had.
- ▶ PS and Had. -> big effect

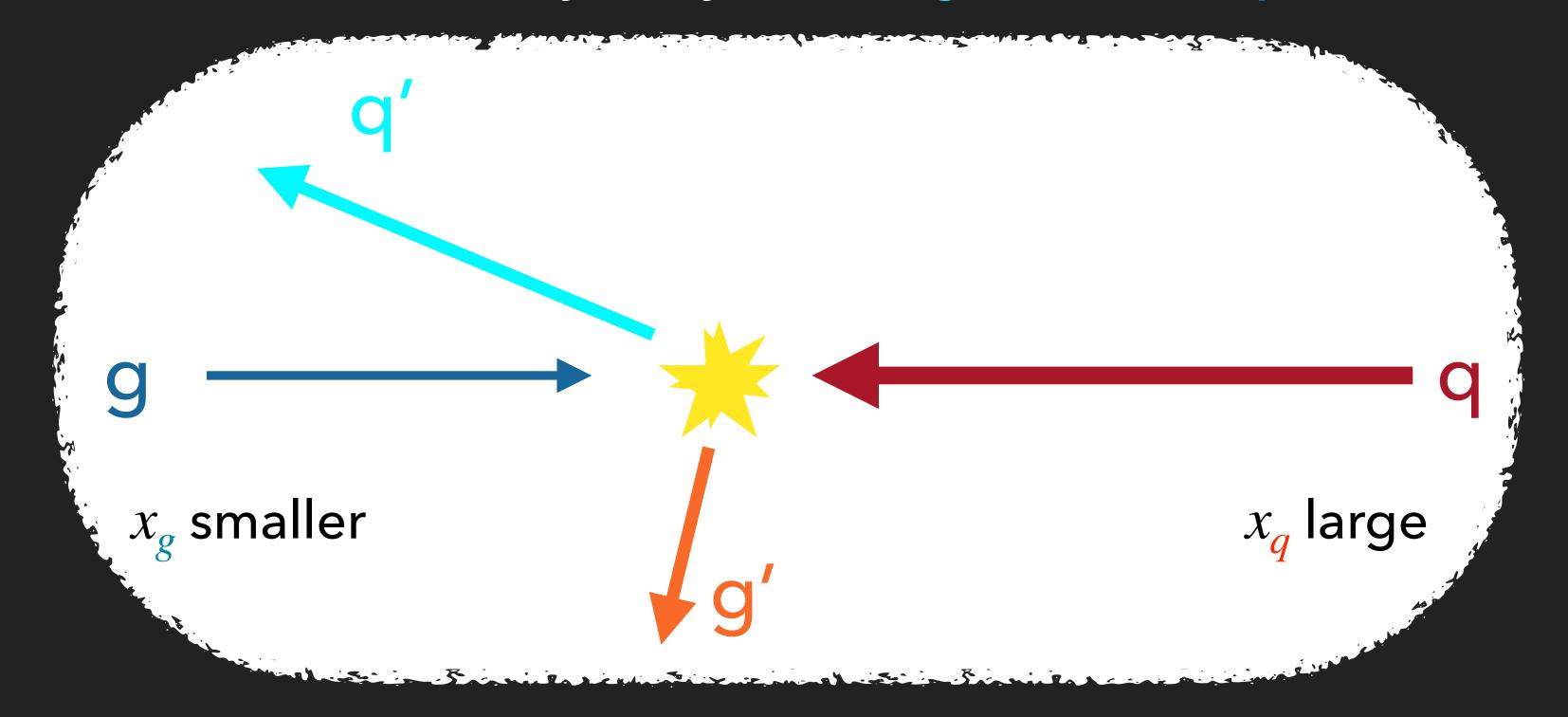
EFFICIENCY MEASUREMENT



- measure efficiency on data
- calibration = correct differences between MC and data

Need pure quark and gluon samples in data

dijet event central jet = jet w/ lower eta = gluon enriched forward jet = jet w/ higher eta = quark enriched



$$p_F(x) = f_F^q p_q(x) + (1 - f_F^q) p_g(x)$$

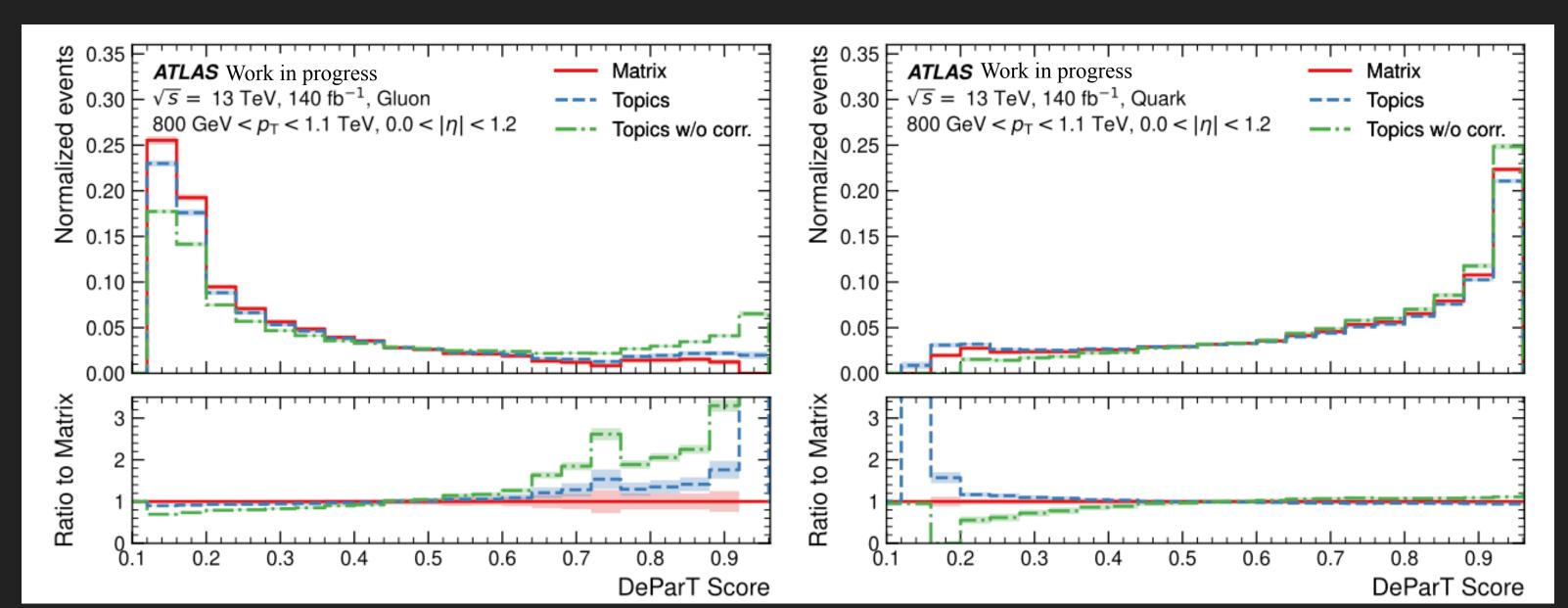
$$p_{C}(x) = f_{C}^{q} p_{q}(x) + (1 - f_{C}^{q}) p_{g}(x)$$

Matrix Method

- estimate mixing fractions f_F^q, f_C^q from MC
- > solve equations for $p_g(x)$, $p_g(x)$
- MC based

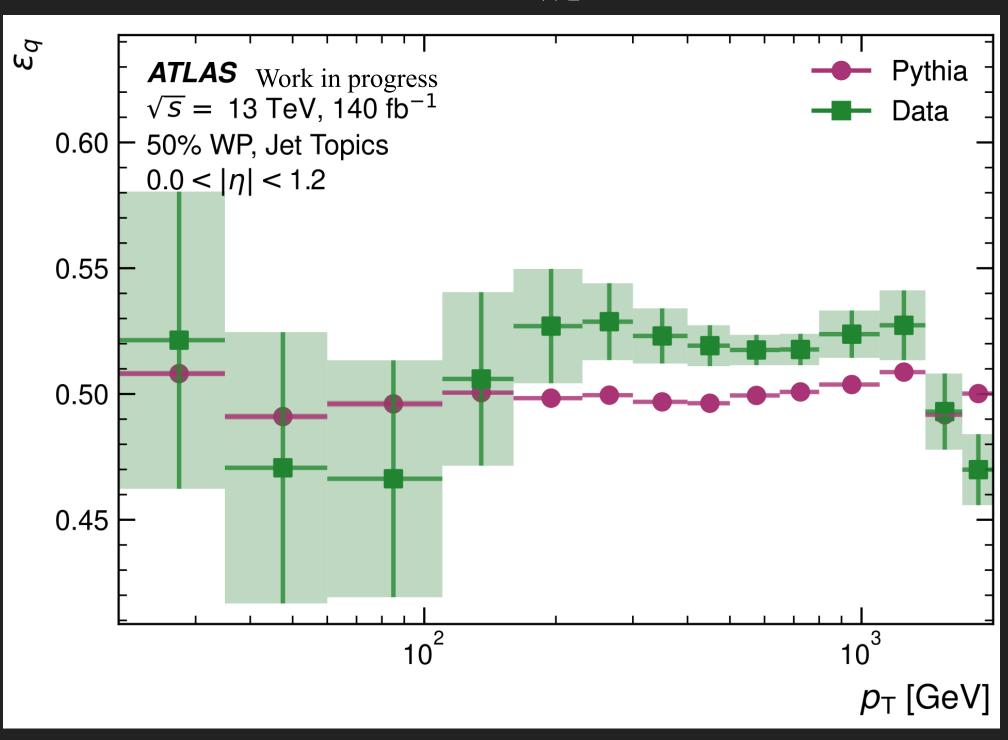
Jet Topics

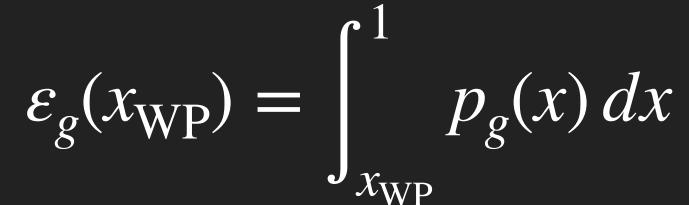
- assume additional condition (mutual irreducibility) on $p_g(x)$, $p_q(x)$
- get $p_g(x)$, $p_q(x)$ directly from $p_F(x)$, $p_C(x)$
- use MC only as a correction
- reduced MC dependance

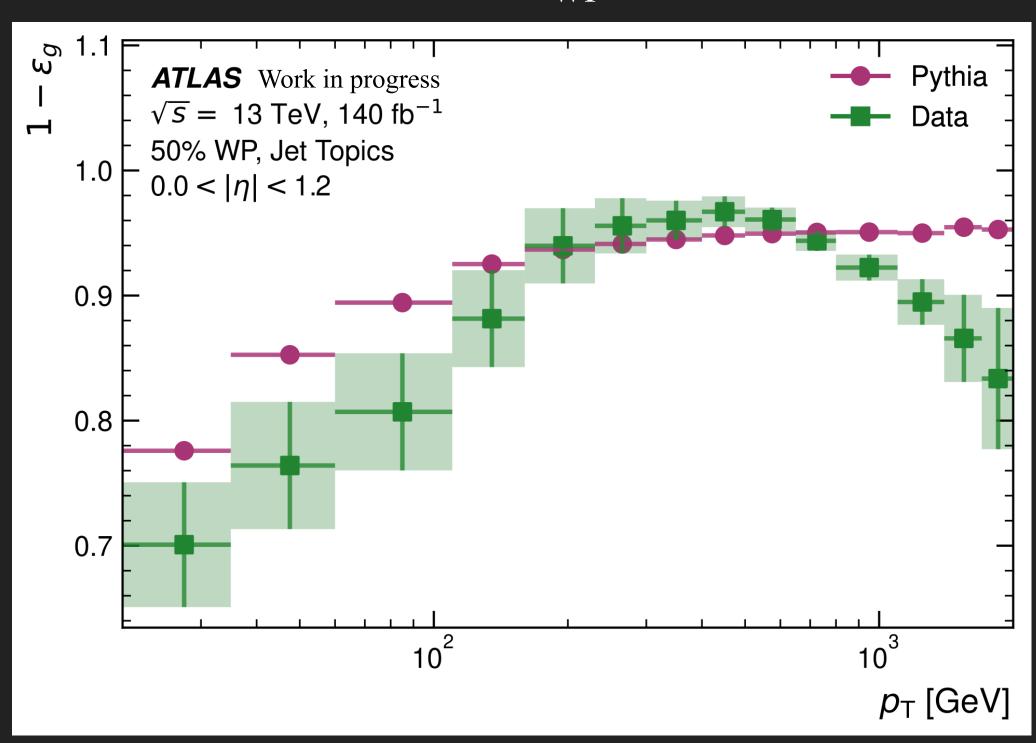


EFFICIENCY MEASUREMENT

$$\varepsilon_q(x_{\text{WP}}) = \int_{x_{\text{WP}}}^1 p_q(x) \, dx$$







Quark

Gluon

UNCERTAINITIES

Exp.

Matrix Method

- 1. statistical
- 2. JES/JER, JVT, PU
- 3. sample independence
- 4. MC non-closure
- 5. theoretical = MC modeling

Jet Topics

1. statistical

2. JES/JER, JVT, PU

Meth.

3. sample independence

4. MC non-closure

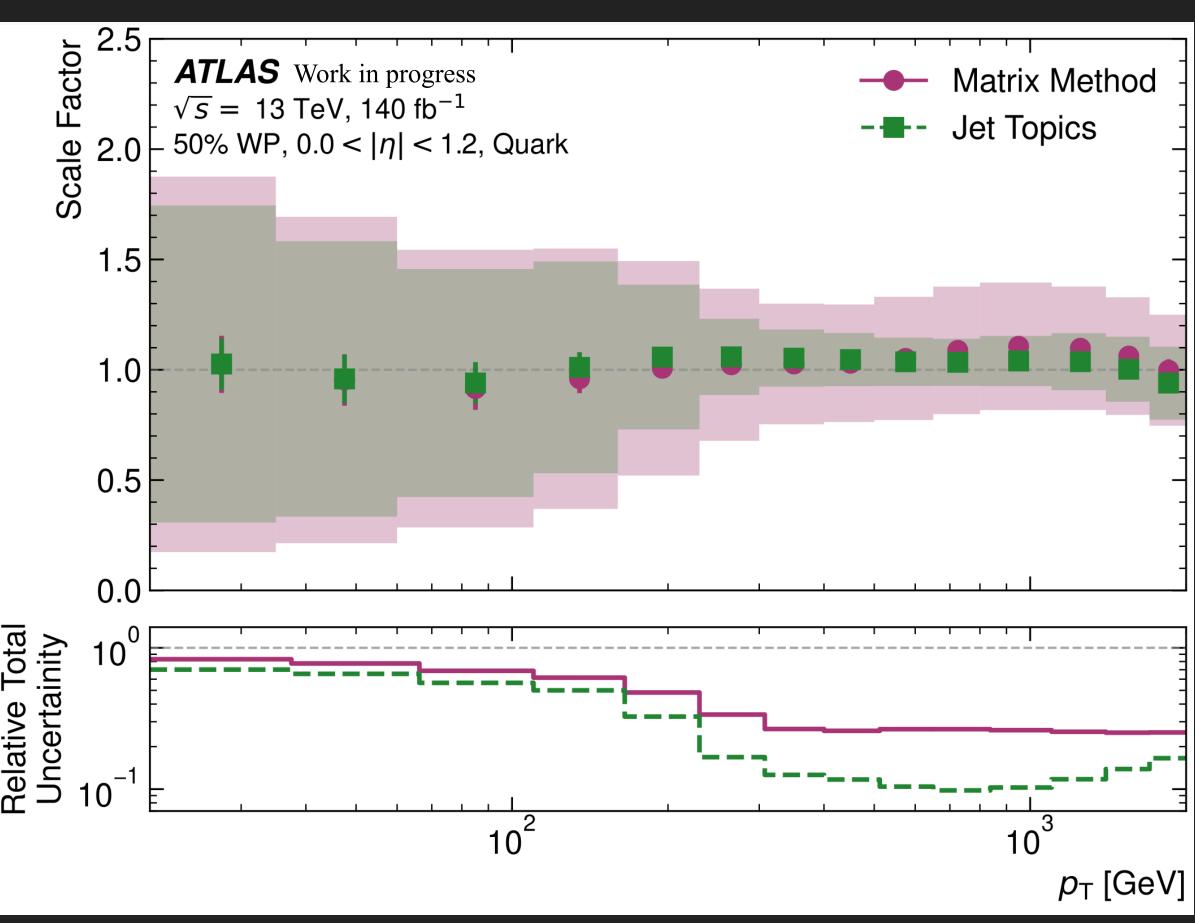
5. κ extraction

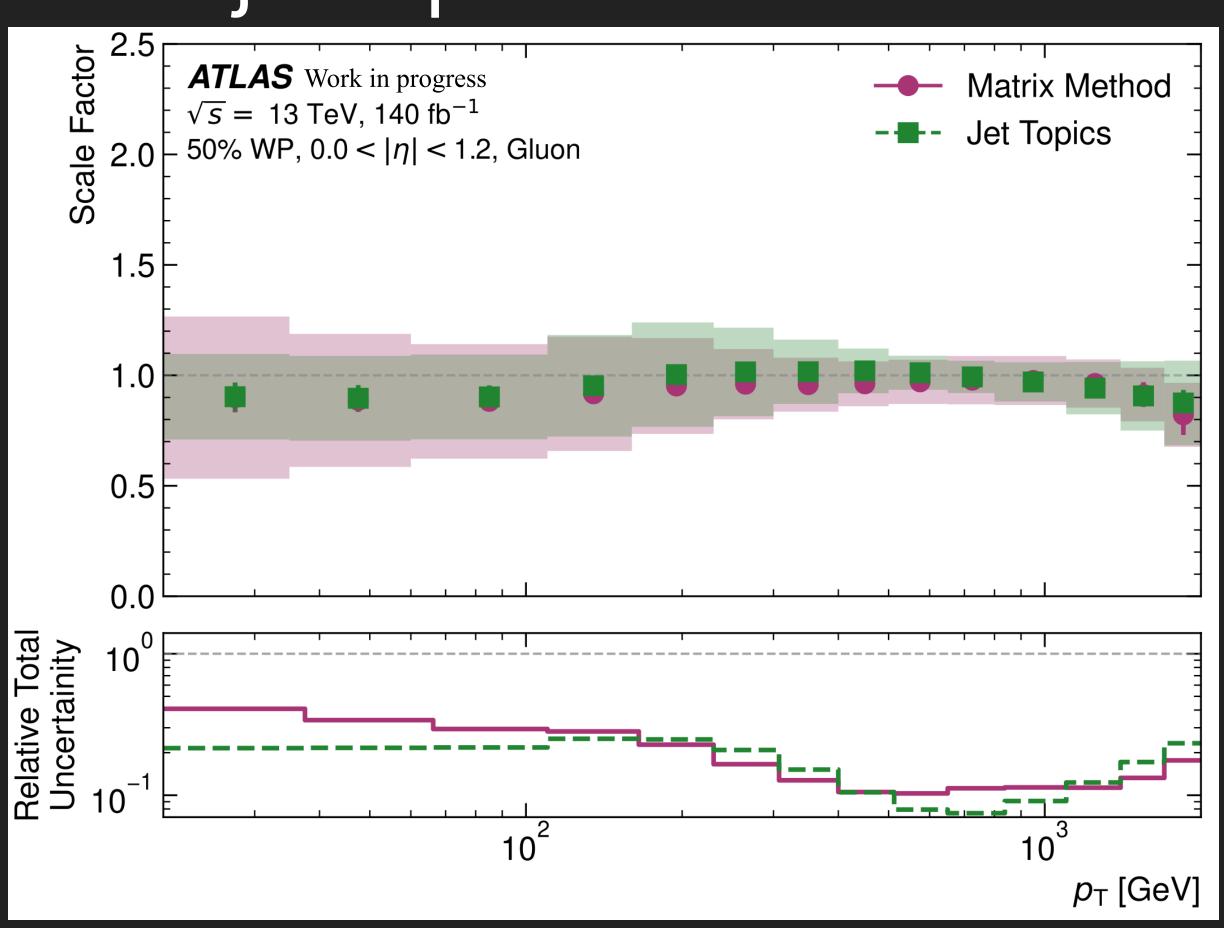
Theo.

6. $\kappa(q,g)$, $\kappa(g,q)$ modelling

JET TOPICS VS MATRIX METHOD

smaller uncertainities of jet topics

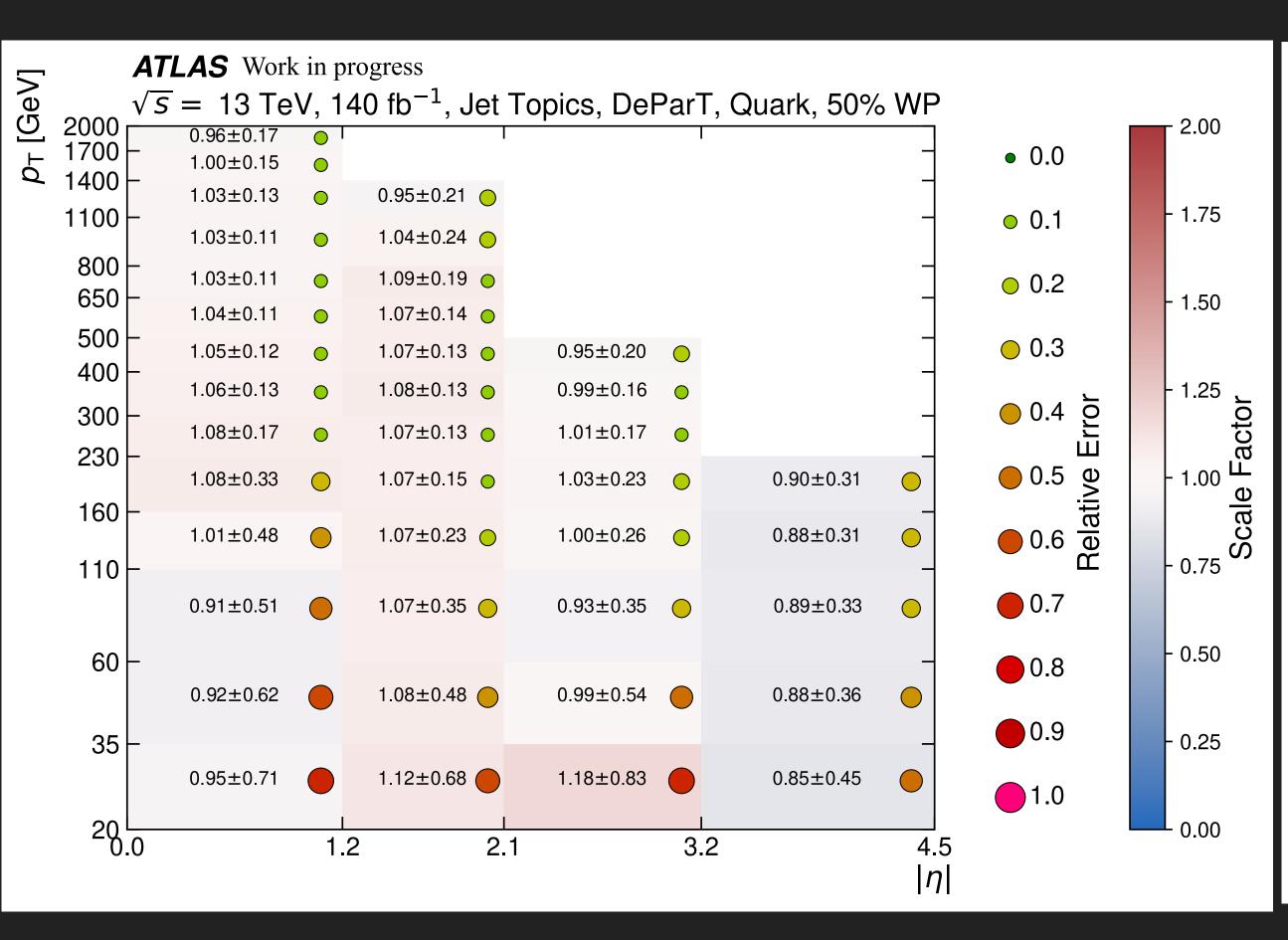


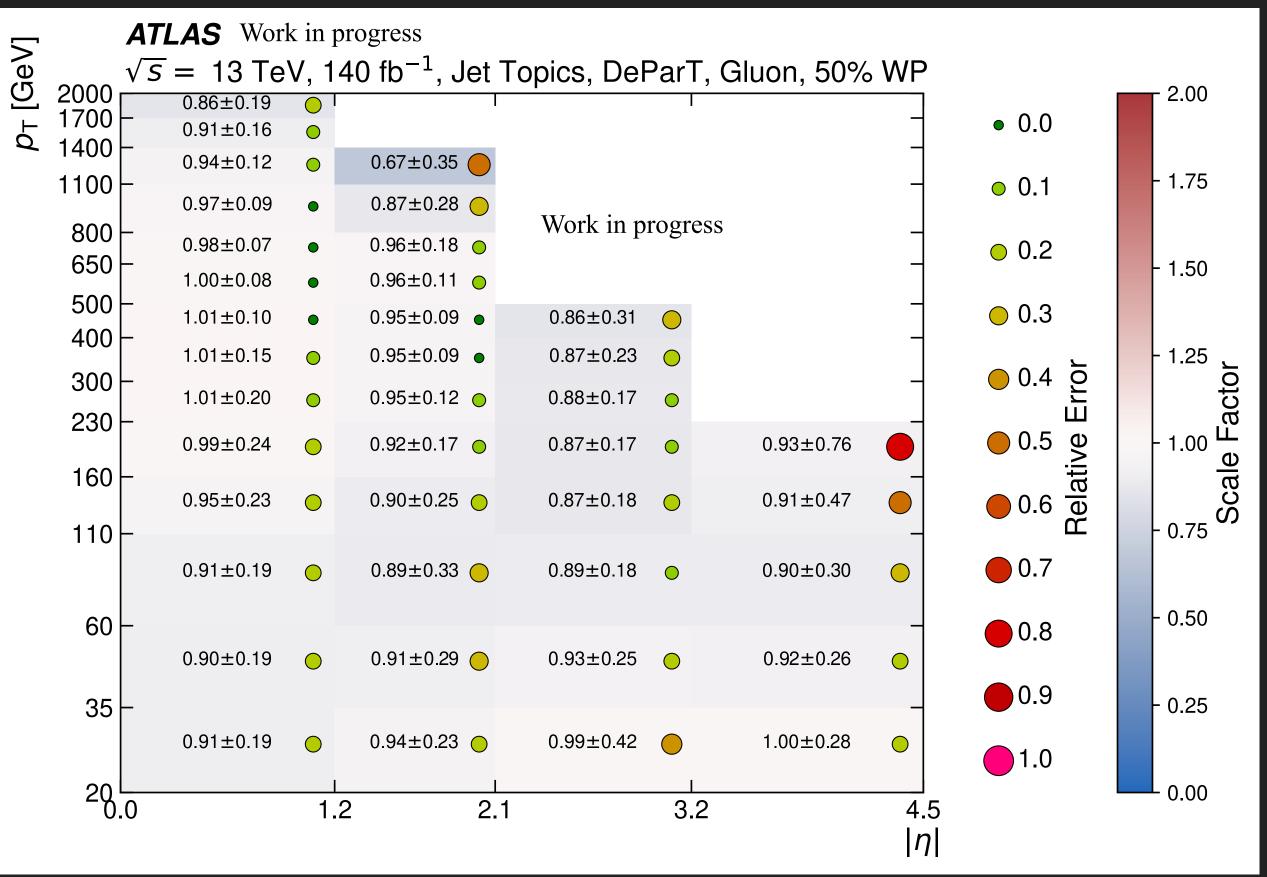


Quark
$$SF_g = \frac{1 - \varepsilon_g^{Data}}{1 - \varepsilon_g^{MC}}$$

Gluon
$$SF_q = \frac{\varepsilon_q^{\text{Data}}}{\varepsilon_q^{\text{MC}}}$$

EFFICIENCY CORRECTION FACTORS





Quark
$$SF_q = \frac{\varepsilon_q^{\text{Data}}}{\varepsilon_q^{\text{MC}}}$$

Gluon
$$SF_g = \frac{1 - \varepsilon_g^{\text{Data}}}{1 - \varepsilon_g^{\text{MC}}}$$

CONCLUSION

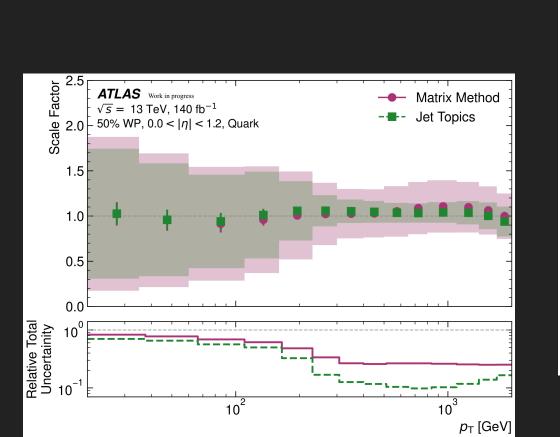
Developed transformer-based q/g tagger

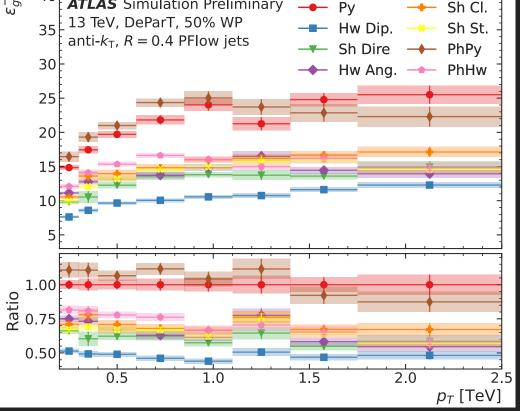
MC dependence

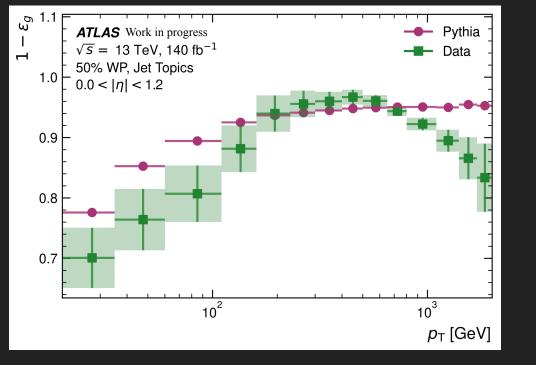
Jet Topics calibration - reduces uncertainties

Performance measurement in data

Scale factors for physics analysis applications





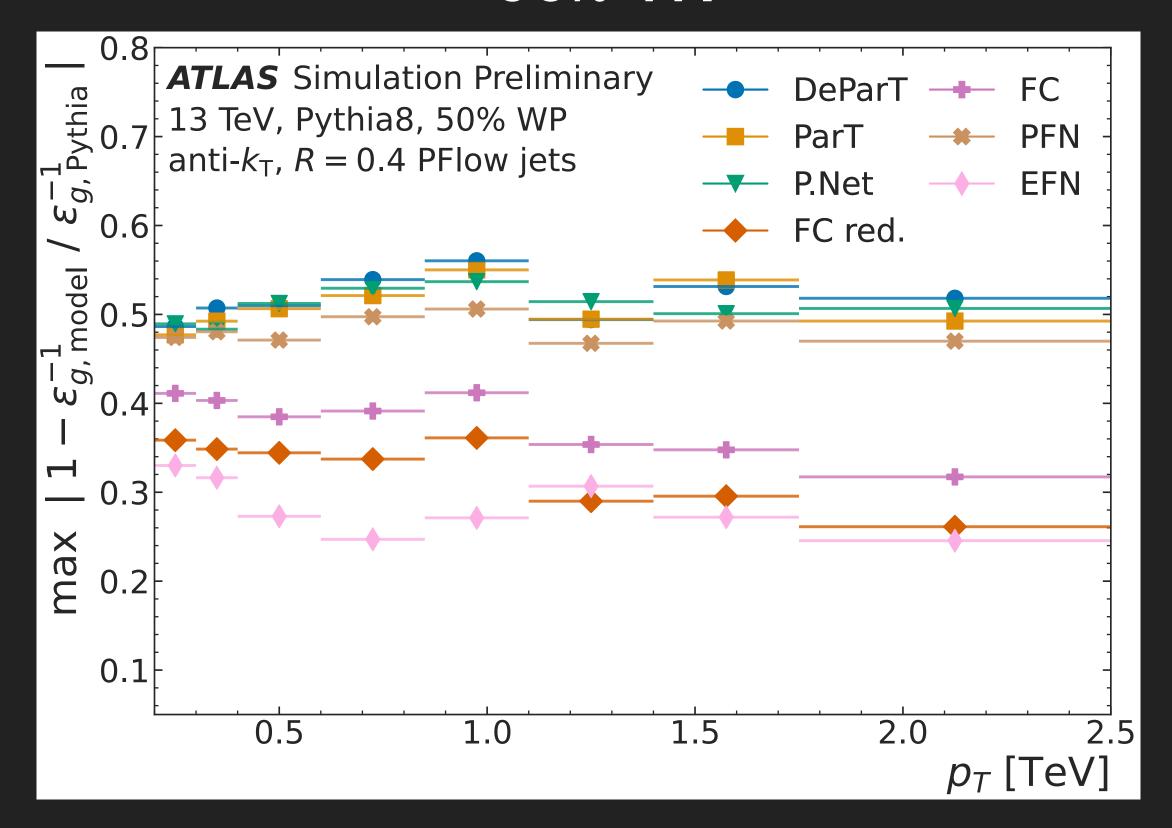


THANK YOU! QUESTIONS?

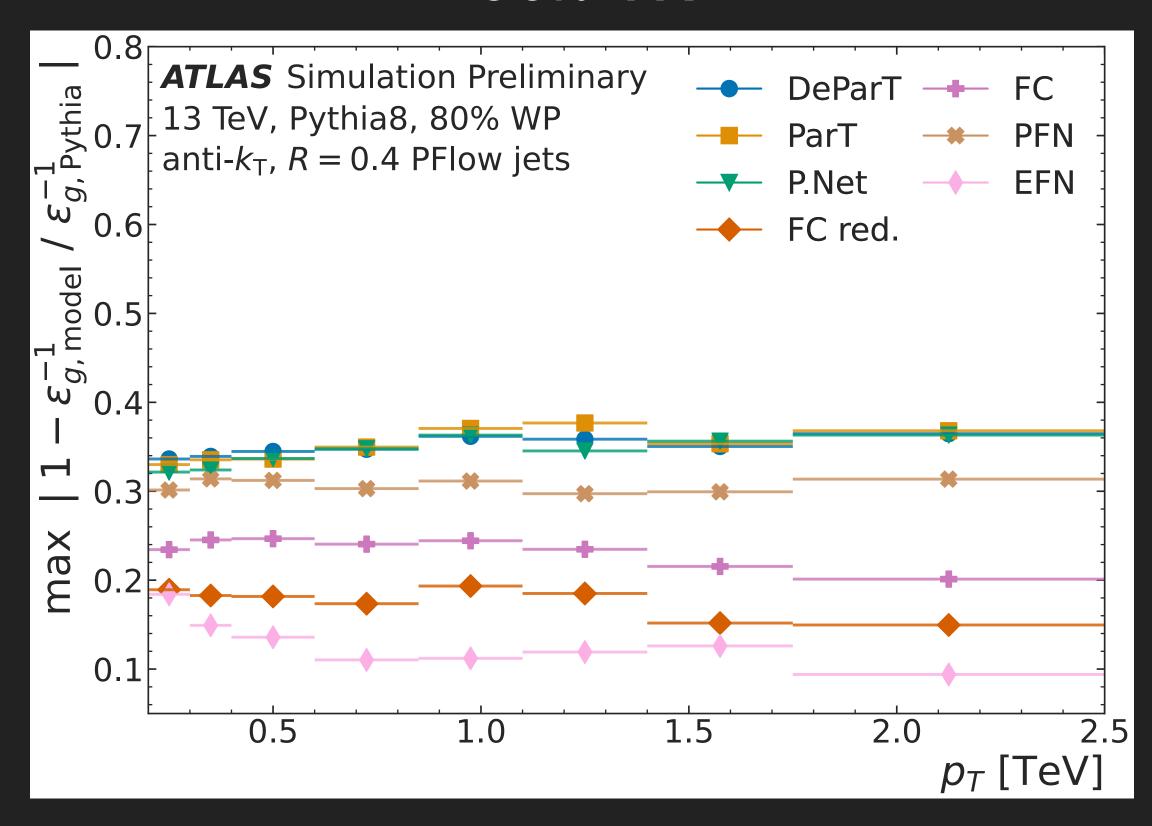
BONUS

MONTE CARLO DEPENDENCE

50% WP



80% WP



- higher = bigger MC dep.
- ▶ EFN lowest MC dep.
- const. based significantly bigger

$$p_{C}(x) = f_{C}^{q} p_{q}(x) + (1 - f_{C}^{q}) p_{g}(x)$$

$$p_{F}(x) = f_{F}^{q} p_{q}(x) + (1 - f_{F}^{q}) p_{g}(x)$$

Matrix Method

$$\begin{pmatrix} p_F(x) \\ p_C(x) \end{pmatrix} = \begin{pmatrix} f_F^q & 1 - f_F^q \\ f_C^q & 1 - f_C^q \end{pmatrix} \begin{pmatrix} p_q(x) \\ p_g(x) \end{pmatrix}$$

$$\stackrel{\equiv F}{=} F$$

$$\begin{pmatrix} p_q(x) \\ p_o(x) \end{pmatrix} = F^{-1} \begin{pmatrix} p_F(x) \\ p_C(x) \end{pmatrix}$$

Jet Topics

$$p_{q}(x) = \frac{p_{F}(x) - \kappa(F, C)p_{C}(x)}{1 - \kappa(F, C)}$$

$$p_g(x) = \frac{p_C(x) - \kappa(C, F)p_F(x)}{1 - \kappa(C, F)}$$

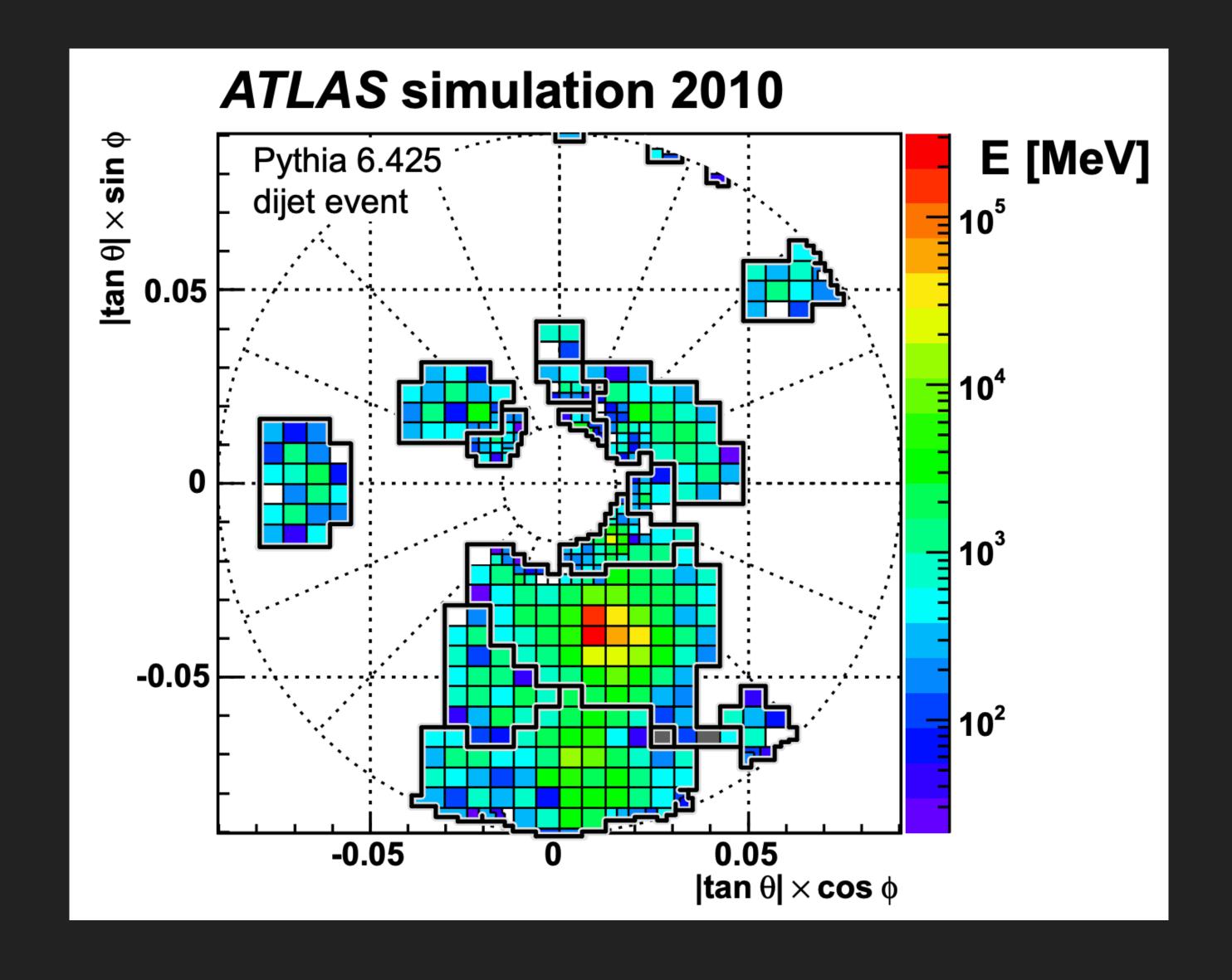
$$\kappa(F,C) = \min_{x} \frac{p_F(x)}{p_C(x)} \quad \kappa(C,F) = \min_{x} \frac{p_C(x)}{p_F(x)}$$

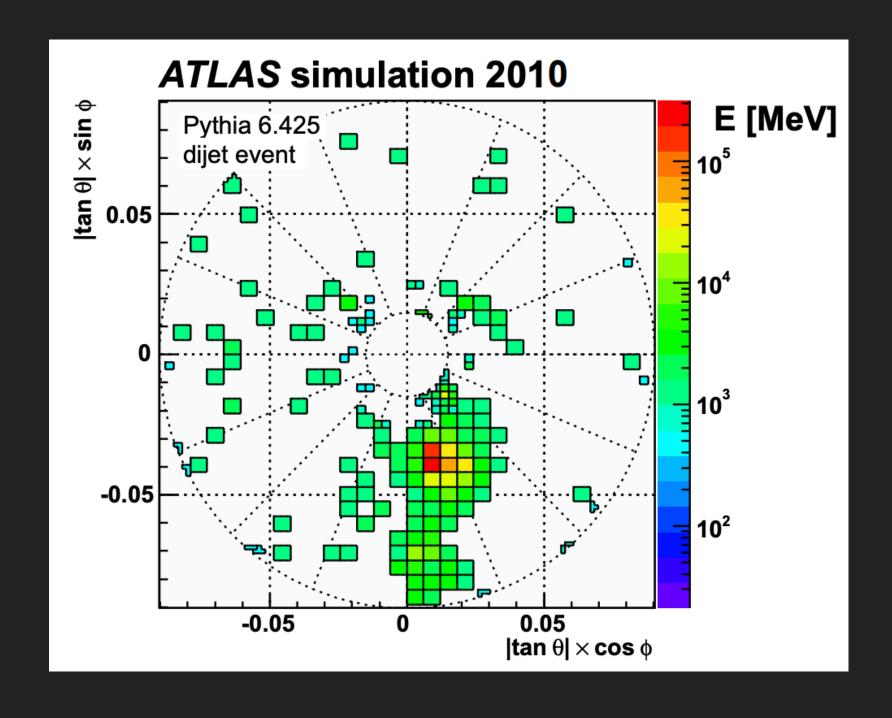
EXTRACTION OF PURE DISTRIBUTIONS

mutual irreducibility not satisfied $\kappa(q,g) \neq 0$, $\kappa(g,q) \neq 0 -> MC$ correction

$$p_{q}(x) = \frac{p_{q|g}(x)(1 - \kappa(q, g)) + (1 - \kappa(g, q))\kappa(q, g)p_{g|q}(x)}{1 - \kappa(g, q)\kappa(q, g)}$$

$$p_{g}(x) = \frac{p_{g|q}(x)(1 - \kappa(g, q)) + (1 - \kappa(q, g))\kappa(g, q)p_{q|g}(x)}{1 - \kappa(q, g)\kappa(g, q)}$$





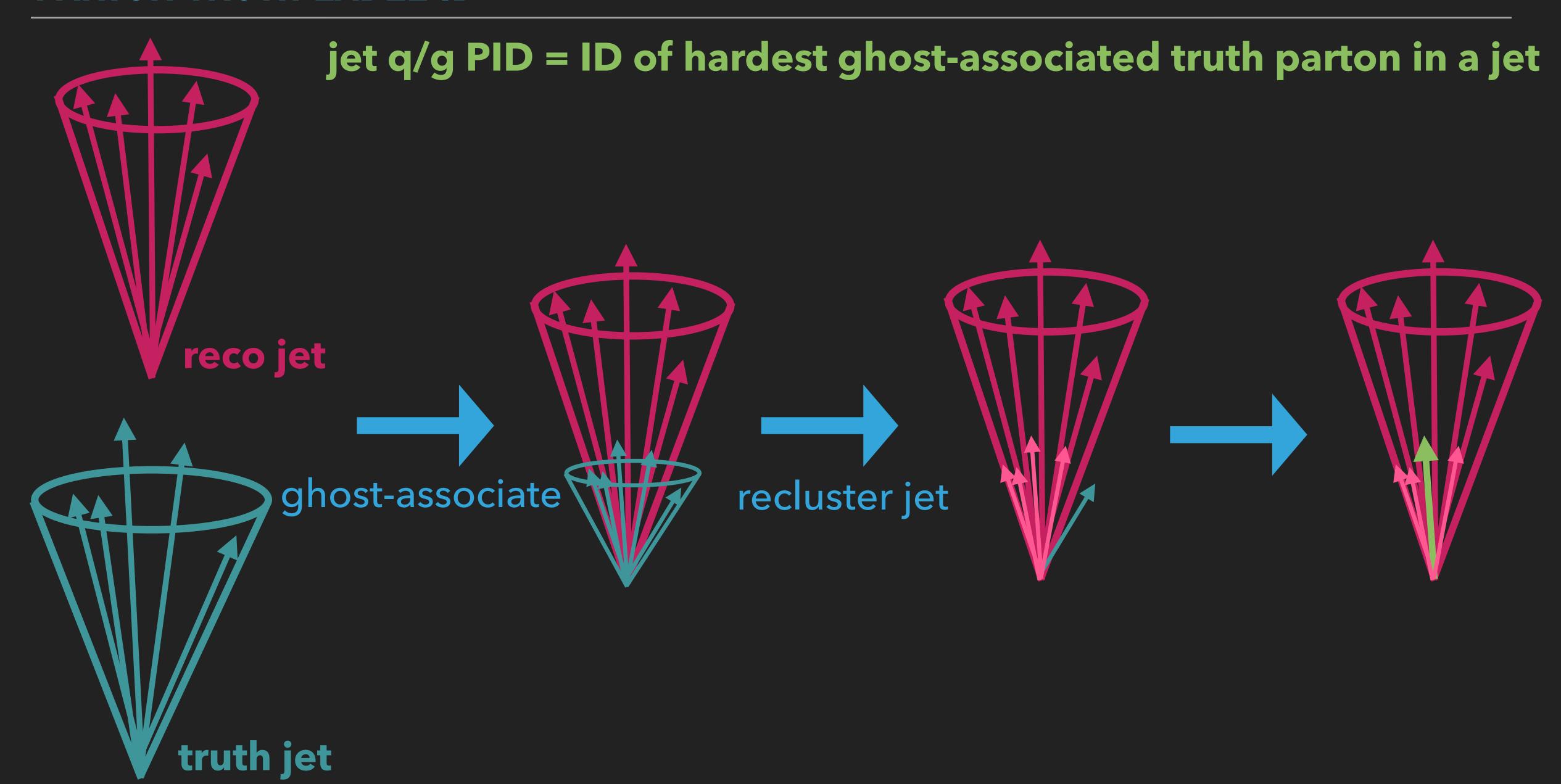
TRAINING REQUIREMENTS

- 1. $p_{\rm T}$ independence
- 2. η independence

training MC amount limitation

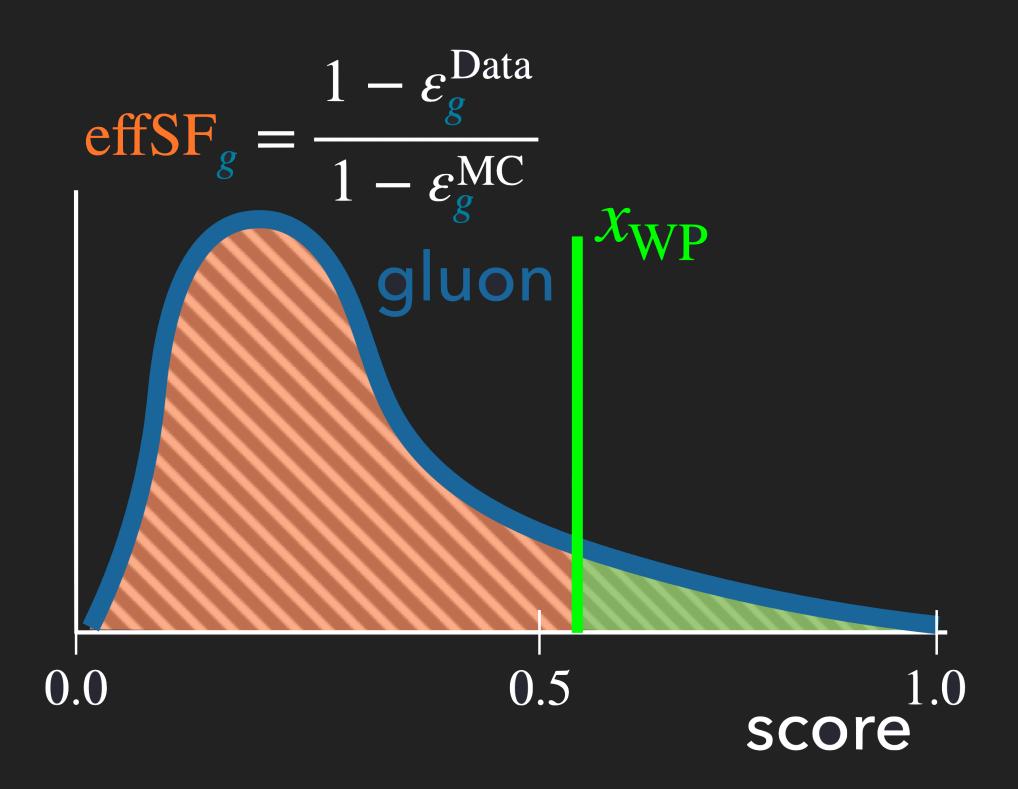
train on 2D flat distribution

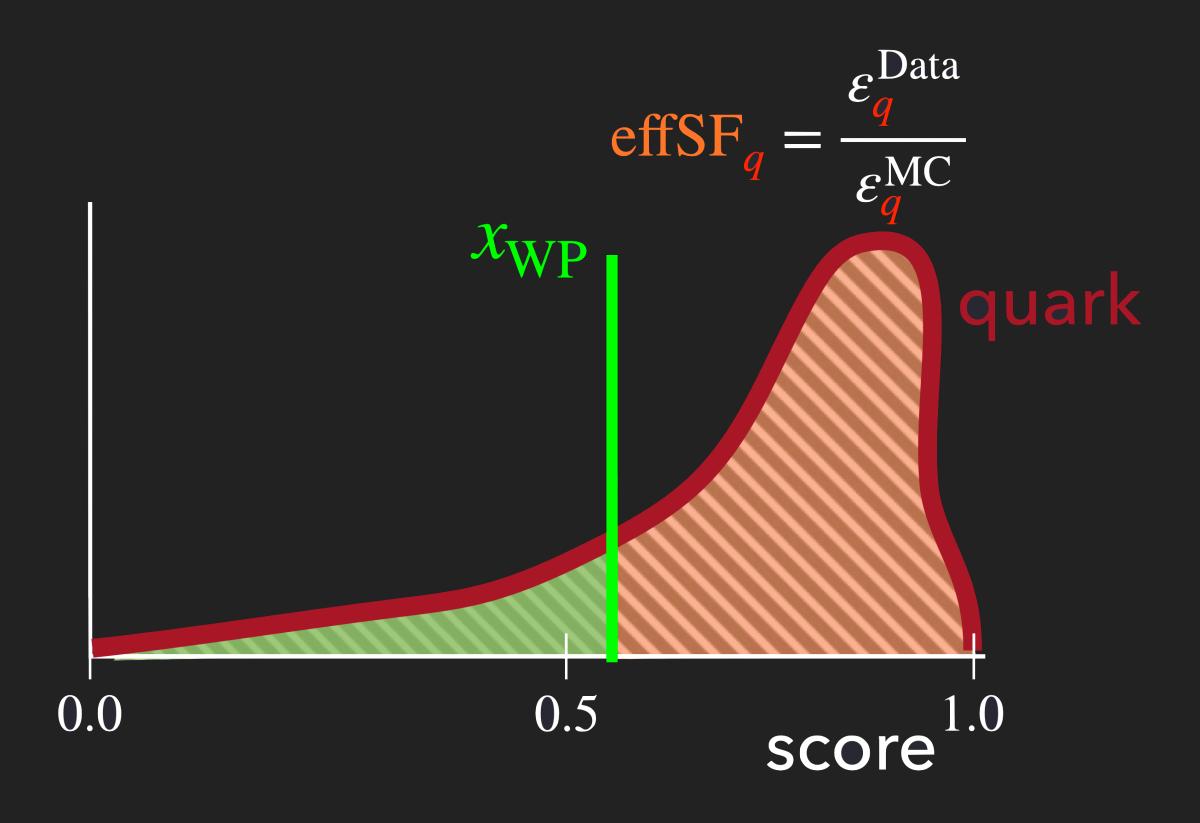
Index	$p_{\rm T}$ range	η range	Total size	Relative size	Num. of η bins	Num. of $p_{\rm T}$ bins
1.	$20 < p_{\rm T} < 160 {\rm GeV}$	$ \eta < 4.5$	50M	49 %	10	10
2.	$160 < p_{\rm T} < 1300 {\rm GeV}$	$ \eta < 2.1$	50M	49 %	6	10
3.	$1300 < p_{\rm T} < 2000 {\rm GeV}$	$ \eta < 1.2$	2.1M	2 %	4	10



$$\varepsilon_q(x_{\text{WP}}) = \int_{x_{\text{WP}}}^1 p_q(x) dx$$
 $\varepsilon_g(x_{\text{WP}}) = \int_{x_{\text{WP}}}^1 p_g(x) dx$

$$\varepsilon_g(x_{\text{WP}}) = \int_{x_{\text{WP}}}^1 p_g(x) \, dx$$





$$p_F(x) = f_F^q p_q(x) + (1 - f_F^q) p_g(x) \qquad p_C(x) = f_C^q p_q(x) + (1 - f_C^q) p_g(x)$$

differences fwd/cntrl for quark and gluons due to detector -> reweight 0th order unfolding

$$p_C(x) \to w^q(x) \cdot p_C(x) = \frac{p_F^q(x)}{p_C^q(x)} \cdot p_C(x)$$

 $\triangleright p_q(x) / p_g(x)$ can be mathematically extracted from $p_C(x)$ & $p_F(x)$:

$$p_{q}(x) = \frac{p_{F}(x) - \kappa(F, C)p_{C}(x)}{1 - \kappa(F, C)} \qquad p_{g}(x) = \frac{p_{C}(x) - \kappa(C, F)p_{F}(x)}{1 - \kappa(C, F)}$$

• reducibility factor κ = largest substracted amount possible

$$p_F(x) - \kappa(F, C)p_C(x) \ge 0 \qquad \kappa(F, C) = \min_{x} \frac{p_F(x)}{p_C(x)}$$

QUANTILE REBINNING, ANCHOR BIN QUANTILED

combine bins to reduce statistical uncertainty

try to obtain an equal amount of counts in each bin

vary the bin size

each bin is characterized with cumulative sum fraction

use the formula for κ directly on rebinned ditributions

hyperparam. - num of quantile bins, utilize multiple bins

$$\kappa(F,C) = \exp\left(-\max_{q} \ln \frac{p_F(q)}{p_C(q)}\right) \quad q = \frac{\int_0^{x_q} p_F(x) + p_C(x) \, dx}{\int_0^1 p_F(x) + p_C(x) \, dx}$$

- 1. sample independence $p_q(x)$ and $p_g(x)$ are same in all mixtures
- 2. different purities $-f_C^q \neq f_F^q$

same with Matrix Method

3. mutual irreducibility – existence of pure quark and pure gluon phase space regions.

This implies:

$$\kappa(q,g) = \min_{x} \frac{p_q(x)}{p_g(x)} = \kappa(g,q) = \min_{x} \frac{p_g(x)}{p_q(x)} = 0$$

- mutual irreducibility not satisfied in MC
- if we know $\kappa(q,g)$ and $\kappa(g,q)$ than pure quark and gluon distributions are

$$p_{q}(x) = \frac{p_{q|g}(x)(1 - \kappa(q, g)) + (1 - \kappa(g, q))\kappa(q, g)p_{g|q}(x)}{1 - \kappa(g, q)\kappa(q, g)}$$

$$p_{g}(x) = \frac{p_{g|q}(x)(1 - \kappa(g, q)) + (1 - \kappa(q, g))\kappa(g, q)p_{q|g}(x)}{1 - \kappa(q, g)\kappa(g, q)}$$

• the $\kappa(q,g)$ and $\kappa(g,q)$ are given from MC and:

$$\kappa(q,g) = 0 \qquad p_{q}(x) = \frac{p_{F}(x) - \kappa(F,C)p_{C}(x)}{1 - \kappa(F,C)}$$

$$\kappa(q,g) \neq 0 \qquad p_{q|g}(x) = \frac{p_{F}(x) - \kappa(F,C)p_{C}(x)}{1 - \kappa(F,C)}$$

TRAINING HYPERPARAMETERS

Index	p _T range	η range	Total size	Relative size	Num. of η bins	Num. of $p_{\rm T}$ bins
1.	$20 < p_{\rm T} < 160 {\rm GeV}$	$ \eta < 4.5$	50M	49 %	10	10
2.	$160 < p_{\rm T} < 1300 {\rm GeV}$	$ \eta < 2.1$	50M	49 %	6	10
3.	$1300 < p_{\rm T} < 2000 {\rm GeV}$	$ \eta < 1.2$	2.1M	2 %	4	10

2.62M parameters

Parameter	DeParT
Embedding Dimension	128
Self-Attention Block Layers	11
Class Attention Block Layers	2
Heads	8
Expansion	4
Dropout	0.1
Stochastic Depth Drop Rate	0.2
Layer Scale Initialization	$5 \cdot 10^{-3}$
Number of Embedding Layers	3
Size of Embedding Layers	128
Number of Interaction Embedding Layers	3
Size of Interaction Embedding Layers	64
Activation	GELU

Data					
Training Dataset	102M jets				
Validation Dataset	3M jets				
Number of Epochs (*)	10				
Batch Size (*)	1024				
Normalization Layer	adaptation on 150 batches				
Optimizer					
Optimizer	Adam				
Learning Rate (*)	0.0001				
$oldsymbol{eta}_1$	0.9				
eta_2	0.999				
ϵ	10^{-6}				
Learning Rate Scheduling	Cosine Decay				
Minimum Learning Rate	10^{-6}				
Warmup (*)	Linear (20k steps)				
Clip Norm	0.8				
Loss					
Loss	Binary Cross Entropy				
Label Smoothing	None				
Weight Decay	None				