

AI/ML in gravitational wave data analysis

Chris Van Den Broeck

Current situation

- LIGO-Virgo-KAGRA (LVK) Collaboration has monthly AI meetings led by postdoc Melissa Lopez
 - These are meetings of interested individuals, no major formal/structural effort
 - Internally reviewed software used in ongoing observing run is almost all "classical"
- No formal effort within the Einstein Telescope Collaboration
- However, considerable R&D effort at Nikhef/UU
 - In-house experts:
 - Anuradha Samajdar (staff)
 - Melissa Lopez (postdoc)
 - Peter Tsun Ho Pang (postdoc)
 - Tom Dooney (PhD student, computer science, Open University, works at UU)
 - Luca Negri (PhD student, UU)
 - Thibeau Wouters (PhD student, UU)
 - Collaboration with computer scientists at RU, Open University
- ➤ 4 recent PhD theses (2 already defended, 2 to be defended in 2025), ~10 BSc/MSc theses
- > Tools under development and methodologies used:
 - FlowMC, JIM, Jester for parameter estimation: based on Google's JAX
 - FLEX for parameter estimation: based on DNNs
 - DeepExtractor for instrumental glitch characterization: U-nets

Mid-term

- Possible developments in LVK in the next 2-4 years:
 - Replacement of parameter estimation software by AI-based tools
 - Replacement of classical glitch characterization tools
- Nikhef involvement and impact:
 - Reasonable to say that we are among the leading institutes
 - Complementary efforts: Cambridge, Glasgow, Johns Hopkins
 - Collaborating with us: UC Louvain, Potsdam
 - Research output in the form of methodology papers, publicly available code
 - However, conservative attitude within LVK may slow down adoption of AI/ML tools
 - "Black box" concerns
 - Labor-intensive overhaul of parameter estimation infrastructure took place over the past few years
 - Collaboration members being protective of classical tools they put effort in
- Hardware needs:
 - GPUs were just acquired as part of a NWO Large grant for GW
 - Resources at Snellius (SURFsara) have been easy to acquire
- Missing expertise: currently we are users of techniques that were developed and made public by computer scientists elsewhere
 - Would clearly be beneficial to have in-house AI experts

Long-term future

- Next 5-10 years: need to develop data analysis tools for Einstein Telescope
 - From scratch! Methods currently used by LVK would not work
 - Loud signals, long signals, overlapping signals
 - Characterization of underlying noise will be essential for precision science
 - How to do this if every stretch of data contains signal?
 - Will in part be done in the context of a recently acquired ENW-XL