Identifying cosmic rays through particle detection at the Earth's surface

Alexander Aab and Giuseppe De Mauro for the Pierre Auger Collaboration
cosmic ray

1. Motivation

Cosmic rays are particles that, travelling throughout the universe, can reach the Earth's atmosphere with energies up to $10^{20} \mathrm{eV}$.
The nature and the origin of these particles is unknown.

Charged cosmic rays are deflected by the (extra)galactic magnetic fields. Particles with lower charge (or lighter mass) are weakly bent and can be used to identify the origin. Neutral particles are not deflected and point directly to the source.
We present two methods to discriminate between light and heavy nuclei and to search for neutral cosmic rays (photons).

2. Pierre Auger Observatory

The Pierre Auger Observatory covers an area of $3000 \mathrm{~km}^{2}$ (bigger than the province of South Holland) and is fully efficient for cosmic rays above $3 \cdot 10^{17} \mathrm{eV}$.

27 fluorescence telescopes on 4 sites, collect the light produced by the air molecules when excited by the cosmic shower during clear, dark nights. Uptime: ~13\%.

1660 water-Cherenkov particle detectors sample the shower footprint at ground. Uptime: 100\%.

4a. Curvature Analysis

Different cosmic nuclei induce air showers with different arrival times for the shower particles at ground.
Method:
With fully simulated showers it is possible to properly estimate the arrival time uncertainties, fit the curvature and find a value for $X_{\text {max }}$.
Results:
The average $X_{\text {max }}$ is determined from the surface detector data (red points) and compared with the predicted composition for pure proton and iron. The average mass composition is found to become heavier at the highest energies.

4b. Shower Front Shape Analysis

dea

Distinction of cosmic ray type (primary particle of an air shower) by analysing the shower front characteristics using the signal time information.
Method:
We have made full air shower simulations with detector reconstuction and analyzed PMT responses for different primaries.

Results:
We found a formula with 4 free parameters, which discribes the PMT trace. 2 of these parameters show a good separation between the different primaries and can be used for further mass composition studies.

