The Case for the Axion.

Andreas Ringwald (DESY)

Colloquium NIKHEF Amsterdam The Netherlands 27 January 2017

Strong Case for Particles Beyond the Standard Model

Discovery of Higgs boson marks completion of SM particle content

[wikipedia]

Strong Case for Particles Beyond the Standard Model

- Discovery of Higgs boson marks completion of SM particle content
- Observations in particle physics, astrophysics and cosmology point to existence of BSM particles
 - Dark matter (DM)
 - Neutrino flavour oscillations
 - Non-observation of strong CP violation

[wikipedia]

Strong Case for Particles Beyond the Standard Model

- Discovery of Higgs boson marks completion of SM particle content
- Observations in particle physics, astrophysics and cosmology point to existence of BSM particles
 - Dark matter (DM)
 - Neutrino flavour oscillations
 - Non-observation of strong CP violation
- > Plenitude of DM candidates, e.g.:
 - Weakly Interacting Massive Particles (WIMPs), such as neutralinos
 - Very Weakly Interacting Slim (=ultralight) Particles (WISPs), such as axions

[Kim,Carosi 10]

Topological Theta Term and Strong CP Problem

Most general gauge invariant Lagrangian of QCD:

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G^a_{\mu\nu} G^{a,\mu\nu} + \overline{q} \left(i\gamma_\mu D^\mu - \mathcal{M}_q \right) q - \frac{\alpha_s}{8\pi} \,\theta \,G^a_{\mu\nu} \tilde{G}^{a,\mu\nu}$$

- Parameters: strong coupling α_s , quark masses $\mathcal{M}_q = \operatorname{diag}(m_u, m_d, \ldots)$ and theta angle θ [Belavin et al. `75; 't Hooft 76; Callan et al. `76; Jackiw, Rebbi `76]
- > Topological theta term $\propto G^a_{\mu\nu}\tilde{G}^{a,\mu\nu} \propto \mathbf{E}^a \cdot \mathbf{B}^a$ violates P and T, and thus CP
- Most sensitive probe of P and T violation in flavor conserving interactions: electric dipole moment of neutron; experimentally

 $|d_n| < 2.9 \times 10^{-26} \ e \,\mathrm{cm}$

Strong CP problem:

 $d_n(\theta) \sim e \,\theta \frac{m_u m_d}{(m_u + m_d) m_n^2} \sim 6 \times 10^{-17} \,\theta \,e\,\mathrm{cm} \Rightarrow |\theta| < 10^{-9}$

Topological Theta Term and Strong CP Problem

Theta dependence of vacuum energy density in QCD,

$$\epsilon_0(\theta) \equiv -\frac{1}{\mathcal{V}} \ln\left[\frac{Z(\theta)}{Z(0)}\right], \qquad -\pi \le \theta \le \pi$$

Partition function in terms of Fourier series of Euclidean path integrals over gauge fields with fixed topological charge

$$Z(\theta) = \sum_{Q=-\infty}^{+\infty} \exp[i\theta Q] Z_Q, \qquad Q = \int d^4x \, \frac{\alpha_s}{8\pi} G^b_{\mu\nu} \tilde{G}^{b,\mu\nu} \equiv \int d^4x \, q(x)$$

$$Z_Q = \int_Q [dG][dq][d\bar{q}] \exp\left[-\int d^4x \left\{\frac{1}{4}G^a_{\mu\nu}G^a_{\mu\nu} + i\bar{q}\gamma_\mu D_\mu q - \bar{q}_R \mathcal{M}q_L - \bar{q}_L \mathcal{M}^{\dagger}q_R\right\}\right]$$

- > Since Z_Q positive, the vacuum energy density has absolute minimum at $\theta = 0$ [Vafa,Witten '84]
- If theta were a dynamical field, its vacuum expectation value would be zero: strong CP problem solved

Axionic Solution of Strong CP Problem

A singlet complex scalar field σ featuring a global U(1)_{PQ} symmetry is added to SM

> Symmetry is broken by vev $\langle \sigma \rangle = v_{\rm PQ}/\sqrt{2}$

$$\sigma(x) = \frac{1}{2} \left(v_{\rm PQ} + \rho(x) \right) e^{iA(x)/v_{\rm PQ}}$$

- Excitation of modulus: $m_
 ho \sim v_{
 m PQ}$
- Excitation of angle: NGB $m_A \ll v_{\rm PQ}$

[Raffelt]

Axionic Solution of Strong CP Problem

A singlet complex scalar field σ featuring a global U(1)_{PQ} symmetry is added to SM

> Symmetry is broken by vev $\langle \sigma \rangle = v_{PQ}/\sqrt{2}$ $\sigma(x) = \frac{1}{2} \left(v_{PQ} + \rho(x) \right) e^{iA(x)/v_{PQ}}$

- Excitation of modulus: $m_
 ho \sim v_{
 m PQ}$
- Excitation of angle: NGB $m_A \ll v_{PQ}$
- > $U(1)_{PQ}$ charges of quarks (SM or extra) are such that $U(1)_{PQ} \times SU(3)_C \times SU(3)_C$ has chiral anomaly: NGB is called axion

[Peccei,Quinn 77; Weinberg 78; Wilczek 78]

Axionic Solution of Strong CP Problem

> A singlet complex scalar field σ featuring a global $U(1)_{PQ}$ symmetry is added to SM

> Symmetry is broken by vev $\langle \sigma \rangle = v_{\rm PQ}/\sqrt{2}$ $\sigma(x) = \frac{1}{2} \left(v_{\mathrm{PQ}} + \rho(x) \right) \mathrm{e}^{\mathrm{i}A(x)/v_{\mathrm{PQ}}}$

- Excitation of modulus: $m_
 ho \sim v_{
 m PQ}$
- Excitation of angle: NGB $m_A \ll v_{\rm PQ}$
- $> U(1)_{PQ}$ charges of quarks (SM or extra) are such that $U(1)_{PQ} \times SU(3)_C \times SU(3)_C$ has chiral anomaly: NGB is called axion

[Peccei, Quinn 77; Weinberg 78; Wilczek 78]

No strong CP problem, since axion field acts as x-dependent theta parameter

 $\mathcal{L} \supset -\frac{\alpha_s}{8\pi} \frac{A(x)}{f_A} G^a_{\mu\nu} \tilde{G}^{a\,\mu\nu}; \quad f_A = v_{\rm PQ}/N_{\rm DW}; \quad N_{\rm DW} = \# \text{ quarks with PQ charge}$ **QCD dynamics:** $\langle A(x) \rangle = 0$

Axion Couplings to SM

Couplings of axion to SM suppressed by powers of

$$f_A = v_{\rm PQ}/N_{\rm DW} \gg v = 246 \,\,{\rm GeV}$$

rendering the axion "invisible"

[Kim 79;Shifman,Vainshtein,Zakharov 80;Zhitnitsky 80;Dine,Fischler,Srednicki 81;...]

Axion acquires a small mass from gluonic topological fluctuations: [Weinberg '78; Wilczek `78; ... Borsanyi et al. `16]

$$m_A = \frac{\sqrt{\int d^4x \langle q(x)q(0)\rangle}}{f_A} \equiv \frac{\sqrt{\chi_0}}{f_A} = 57.0(7) \left(\frac{10^{11} \text{GeV}}{f_A}\right) \mu \text{eV}$$

DM from vacuum realignment: >

[Preskill, Wise, Wilczek 83; Abbott, Sikivie 83; Dine, Fischler 83,....]

- In early universe, axion frozen at random initial value
- Later, field feels pull of mass towards zero and oscillates around it
- Spatially uniform oscillating classical field = coherent state of many, extremely non-relativistic particles = CDM

DM from vacuum realignment:

[Preskill, Wise, Wilczek 83; Abbott, Sikivie 83; Dine, Fischler 83,....]

- In early universe, axion frozen at random initial value
- Later, field feels pull of mass towards zero and oscillates around it
- Spatially uniform oscillating classical field = coherent state of many, extremely non-relativistic particles = CDM
- Crucial QCD input for prediction of axion DM abundance:
 - Equation of state at temperatures around 1 GeV: determines H(T)
 - Topological susceptibility:

 $\chi(T) \equiv \int d^4x \langle q(x)q(0)\rangle_T$ determines $m_A^2(T) = \chi(T)/f_A^2$

DM from vacuum realignment:

[Preskill,Wise,Wilczek 83; Abbott,Sikivie 83; Dine,Fischler 83,....]

- In early universe, axion frozen at random initial value
- Later, field feels pull of mass towards zero and oscillates around it
- Spatially uniform oscillating classical field = coherent state of many, extremely non-relativistic particles = CDM
- Crucial QCD input for prediction of axion DM abundance:
 - Equation of state at temperatures around 1 GeV: determines H(T)
 - Topological susceptibility:

 $\chi(T)\equiv \int d^4x \langle q(x)q(0)\rangle_T$ determines $m^2_A(T)=\chi(T)/f^2_A$

- If U(1) symmetry broken during inflation and not restored afterwards (pre-inflationary SB breaking scenario):
 - Axion CDM density depends on single initial angle during inflation and f_A

Pre-inflationary PQ symmetry breaking scenario

- If U(1) symmetry broken during inflation and not restored afterwards (pre-inflationary SB breaking scenario):
 - Axion CDM density depends on single initial angle during inflation and f_A

[Borsanyi et al. `16]

- If U(1) symmetry broken during inflation and not restored afterwards (pre-inflationary SB breaking scenario):
 - Axion CDM density depends on single initial angle during inflation and *f*_A
- If U(1) symmetry restored after inflation (post-inflationary SB breaking scenario):
 - Vacuum realignment contribution depends on spatially averaged initial misalignment angle and *f_A*

- If U(1) symmetry broken during inflation and not restored afterwards (pre-inflationary SB breaking scenario):
 - Axion CDM density depends on single initial angle during inflation and f_A
- If U(1) symmetry restored after inflation (post-inflationary SB breaking scenario):
 - Vacuum realignment contribution depends on spatially averaged initial misalignment angle and f_A
 - Upper limit on f_A from requirement that realignment contribution should not exceed DM abundance leads to:

[Borsanyi et al. `16]

- If U(1) symmetry broken during inflation and not restored afterwards (pre-inflationary SB breaking scenario):
 - Axion CDM density depends on single initial angle during inflation and *f*_A
- If U(1) symmetry restored after inflation (post-inflationary SB breaking scenario):
 - Vacuum realignment contribution depends on spatially averaged initial misalignment angle and f_A
 - Upper limit on f_A from requirement that realignment contribution should not exceed DM abundance leads to:

 $m_A > 28(2) \ \mu eV$

 Additional contributions arise from decay of topological defects

[Hiramatsu et al. 12]

 $\begin{array}{l} \triangleright \mid \sigma \mid = \rho/\sqrt{2} \quad \text{or mixture with} \\ \text{Higgs modulus may play role of} \\ \text{inflaton, if it has non-minimal} \\ \text{coupling to gravity,} \qquad \text{[Fairbairn et al. `14]} \\ S \supset -\int d^4x \sqrt{-g} \left[\frac{M^2}{2} + \xi_\sigma \, \sigma^* \sigma \right] R \end{array}$

- no strong CP problem
- dark matter
- inflation

[Ballesteros, Redondo, AR, Tamarit, 1610.01639]

 | σ |= ρ/√2 or mixture with Higgs modulus may play role of inflaton, if it has non-minimal coupling to gravity, [Fairbairn et al. `14]
 S ⊃ - ∫ d⁴x√-g [M²/2 + ξ_σ σ*σ] R
 Augmenting axion models with three RH singlet neutrinos, get-

ting their Majorana masses also through the vev v_{σ}

- no strong CP problem
- dark matter
- inflation
- neutrino masses and mixing
- baryogenesis via leptogenesis
- [Dias et al. `14; Ballesteros et al. `16]

[Tamarit `17]

 $> |\sigma| = \rho/\sqrt{2}$ or mixture with Higgs modulus may play role of inflaton, if it has non-minimal coupling to gravity, [Fairbairn et al. `14] ਸ਼ੂ $S \supset -\int d^4x \sqrt{-g} \left[\frac{M^2}{2} + \xi_\sigma \,\sigma^*\sigma\right] R$ > Augmenting axion models with three RH singlet neutrinos, getting their Majorana masses also through the vev v_{σ}

- no strong CP problem
- dark matter
- inflation
- neutrino masses and mixing
- baryogenesis via leptogenesis

[Dias et al. `14; Ballesteros et al. `16]

 | σ |= ρ/√2 or mixture with Higgs modulus may play role of inflaton, if it has non-minimal coupling to gravity, [Fairbairn et al. `14]
 S ⊃ - ∫ d⁴x√-g [M²/2 + ξ_σ σ*σ] R
 Augmenting axion models with three RH singlet neutrinos, getting their Majorana masses also

ting their Majorana masses also through the vev v_{σ}

- no strong CP problem
- dark matter
- inflation
- neutrino masses and mixing
- baryogenesis via leptogenesis

```
[Dias et al. `14; Ballesteros et al. `16]
```


[Ballesteros et al., 1608.05414; 1610.01639]

Axion Dark Matter Experiments

- Upcoming generation of axion dark matter experiments can probe sizeable portion of axion mass range relevant for DM:
 - $m_A \ll \mu eV$: searches for oscillating nuclear electric dipole moments exploiting nuclear magnetic resonance techniques (CASPEr); searches via LC circuit (ABRACADABRA)
 - $\mu eV \lesssim m_A \lesssim 0.1 \text{ meV}$: searches for excitations of electromagnetic resonances due to axion photon conversion in microwave cavities in superconducting solenoids (ADMX, X3, CULTASK,)
 - $30 \,\mu eV \lesssim m_A \lesssim 0.3 \,meV$: searches for electromagnetic excitation in open dielectric/ Fabry-Perot resonator in a strong magnetic field (MADMAX/ORPHEUS, ...)
 - $0.3 \,\mathrm{meV} \lesssim m_A \lesssim 10 \,\mathrm{meV}$: searches exploiting dish antenna or electron spin precession in galactic axion wind (QUAX)

RG cooling excess: Brightness of tip of RG branch in color-magnitude diagram of globular cluster [Viaux et al. 13]

[Viaux et al. 13]

- RG cooling excess: Brightness of tip of RG branch in color-magnitude diagram of globular cluster [Viaux et al. 13]
- HB cooling excess: Number of HB stars vs. number of RGs in colormagnitude diagram of globular cluster [Ayala et al. 14]

[Giannotti `16]

- RG cooling excess: Brightness of tip of RG branch in color-magnitude diagram of globular cluster [Viaux et al. 13]
- HB cooling excess: Number of HB stars vs. number of RGs in colormagnitude diagram of globular cluster [Ayala et al. 14]

[Giannotti 15]

- RG cooling excess: Brightness of tip of RG branch in color-magnitude diagram of globular cluster [Viaux et al. 13]
- HB cooling excess: Number of HB stars vs. number of RGs in colormagnitude diagram of globular cluster [Ayala et al. 14]
- > WD cooling excess:
 - Period decrease of variable
 WDs [Kepler et al. 91,...]

- RG cooling excess: Brightness of tip of RG branch in color-magnitude diagram of globular cluster [Viaux et al. 13]
- HB cooling excess: Number of HB stars vs. number of RGs in colormagnitude diagram of globular cluster [Ayala et al. 14]
- > WD cooling excess:
 - Period decrease of variable
 WDs [Kepler et al. 91,...]
 - White dwarf luminosity function (WDLF) [Isern et al. 08-12]

Practically every stellar systems seems to be cooling faster than predicted by models

[Giannotti, Irastorza, Redondo, AR (2015); Giannotti, Irastorza, Redondo, AR (in preparation)]

Excessive energy losses of HBs, RG, WDs can be explained at one stroke by production of axion/ALP with coupling to photons and electrons and probed by photon regeneration experiments (ALPS II,IAXO):

$$g_{a\gamma} = C_{a\gamma} \alpha / (2\pi f_a)$$

 $\gamma + Ze \rightarrow Ze + a$
 $g_{ai} = C_{ai} m_i / f_a$
 $e + Ze \rightarrow Ze + e + a$

$$\alpha_{26} = g_{ae}^2 / (4\pi) / 10^{-26}$$

Excessive energy losses of HBs, RG, WDs can be explained at one stroke by production of axion/ALP with coupling to photons and electrons and probed by photon regeneration experiments (ALPS II,IAXO):

[Giannotti,Irastorza,Redondo,AR, in preparation]

Conclusions

> Strong physics case for the axion:

- Solution of strong CP problem
- Candidate for dark matter
- Explanation of astrophysical hints on excessive energy losses of stars
- Strong motivation for experimental searches of the axion

