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Part 1
The strong CP problem and Axions
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We give an explanation of the CI'- conservation of strong interactions which includes the
effects of pseudoparticles. We find it is a natural result for any theory where at least
one flavor of fermion acquires its mass through a Yukawa coupling to a scalar field which
has nonvanishing vacuum expectation value.

It is experimentally obvious that we live in a
world where I' and CP are good symmetries at
the level of strong interactions. In the context of
quantum chromodynamics the strong interactions
are believed to be due to non-Abelian vector glu-
ons coupled to massive quarks. In such a theory,
when the effects of gluon configurations of non-
zero pseudoparticle number are included, CP in-
variance requires a very special choice of param-
eters. We will show, however, that CI' invari-
ance of the strong interactions is, in fact, a natu-
ral consequence, provided at least one flavor of
quark acquires its mass from a Yukawa coupling
to a scalar field which has a nonzero vacuum ex-
pectation value, and the Lagrangian originally
possesses a U(1) invariance involving all Yukawa
couplings.
The physical importance of gauge field configu-

rations with nontrivial topology has been stressed
by 't Hooft. ' He has reminded us that the physics
of such theories involves a parameter 0 which
does not appear in the original Lagrangian. ' This
parameter defines the choice of vacuum' among
an infinity of possible distinct and generally in-
equivalent vacua. Each 0 represents a possible
true vacuum and there are in general an infinity
of distinct theories arising from any given La-

q = (g2 j32n') fd4x p 'S't'"

The rotation of a fermion field by exp[iy, ri] in-
duces a change in the effective action given by

'58 f f —if (8"j„')ii = —2iqri
since

s Pj s —(g2/16&a)~ ~F P~~

Thus in such a theory the net effect of such a
rotation is

(2)

(4)

If, however, all fermions are massive such a
rotation will also change the fermion mass term

grangian.
If all fermions which couple to the non-Abelian

gauge fields are massless then the various 0
choices give equivalent theories. " This is most
clearly seen by remarking that a change in the
effective value of 0 can be induced by making an
exp[iy5ri] rotation of the fermion fields. We de-
fine the effective Euclidean action in the qth sec-
tor to be

&,i i' = fd'xZ + i8q,
where
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Symmetrie concepts involved: 

C, P and T 
Anomalies (QM breaking of classical symmetries) 
Peccei-Quinn Symmetry 
Axions: pseudo-Goldstone bosons of shift symmetries  



L = � 1
4Fµ⌫F

µ⌫ � 1
4G

I
µ⌫G

µ⌫,I

Lorentz invariant 
Gauge invariant 



But there is another kind of term that is  
Lorentz and gauge invariant:

L = � 1
4Fµ⌫ F̃

µ⌫ � 1
4G

I
µ⌫G̃

µ⌫,I

F̃µ⌫ = 1
2✏µ⌫⇢�F

⇢� G̃I
µ⌫ = 1

2✏µ⌫⇢�G
⇢�,I
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µ ⇤ ⌫0

⌫ ⇤ ⇢
⇢ ⇤ �0

� gµ0⌫0g⇢0�0 = gµ⌫g⇢�

Both are Lorentz invariant 

⇤ µ0

µ ⇤ ⌫0

⌫ ⇤ ⇢
⇢ ⇤ �0

� ✏µ0⌫0⇢0�0 = det(⇤)✏µ⌫⇢�

But the second is not invariant under P or T

⇤T =

0
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�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA⇤P =

0

BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1

CCA

In quantum field theory, CPT is always a symmetry,  
so we may use CP instead of T



1
4Fµ⌫F

µ⌫ ! H =

Z
d3x

h
~E2 + ~B2

i

1
4Fµ⌫ F̃

µ⌫ ! H =

Z
d3x

h
~E · ~B

i

P : ~E ! � ~E

~B ! ~B (like ~r ⇥ ~p)

T : ~E ! ~E

~B ! � ~B



P,T are not symmetries of nature

iP† ⇥ ̄L,R�
µ(@µ � ig3A

I
µT

I) L,R

⇤
P = i ̄R,L�

µ(@µ � ig3A
I
µT

I) R,L

iC† ⇥ ̄L,R�
µ(@µ � ig3A

I
µT

I) L,R

⇤
C = i ̄R,L�

µ(@µ � ig3A
I
µT

I) R,L

P
C

Parity operator
Charge conjugation operator

P and C are symmetries of the strong and 
electromagnetic interactions; 

P and C are not symmetries of the weak interactions, but  
the product CP is a symmetry of all gauge interactions

In quantum field theory, CPT is always a symmetry,  
so we may use CP instead of T



Yukawa interaction terms

LY = g ̄L�R�+ g⇤�̄R L�
⇤

LY = g ̄R�L�+ g⇤�̄L R�
⇤ LY = g�̄L R�

⇤ + g⇤ ̄R�L�

P C

PC

LY = g�̄R L�
⇤ + g⇤ ̄L�R�

CP invariant only if g=g*



In the Standard Model g and g* are  
3 × 3 matrices in family space that  
determine all quark masses and the CKM matrix.

Cronin, Fitch (1964): CP is violated in  K0 � K̄0

Kobayashi-Maskawa (1973): This can be  
accommodated by means of 3-family CKM matrix. 



✓3
g23

32⇡2

8X

I=1

GI
µ⌫G̃

µ⌫,I

+ ✓2
g2

32⇡2

3X

I=a

F a
µ⌫ F̃

µ⌫,a

+ ✓1
g1

32⇡2
Fµ⌫ F̃

µ⌫

Strong

Weak

Y-charge

Three new Standard Model parameters

We cannot use P, or T=CP to argue them away 



New Feynman rules? 
No! These terms are total derivatives

where G̃µ⌫ = 1

2

✏µ⌫⇢�G⇢� and Gµ⌫ ⌘ GI
µ⌫T

I . Here we used the relation

Tr T IT J = 1

2

�IJ

which als defines the normalization of the SU(3) generators T I . This is the standard
normalization, c.f. Eq. (2.42). This term is of the same order in fields and derivatives as
the gauge kinetic terms. Hence it has mass dimension 4. We will see later that terms of
higher order than 4 can be consistently dropped from the Lagrangian, because they have
a coupling constant with dimension [mass]�1. By assuming that the corresponding mass
scale is as large as we want, we can always make such terms arbitrarily small in a natural
way.

But since the GG̃ term has mass dimension 4, the parameter ✓ is dimensionless. It
turns out that ✓ is like an angle: all physics is periodic in ✓. The factor g2

3

and the
normalization are chosen in such a way that that the periodicity of ✓ is 2⇡.

The term (4.8) explicitly violates parity P, but respects charge conjugation C, and
hence it also violates CP. To see why it violates parity note that the ✏-tensor transforms
under Lorentz-transformation ⇤µ

⌫ to ⇤µ
µ0⇤⌫

⌫0⇤
⇢
⇢0⇤

�
�0✏µ

0⌫0⇢0�0
= det (⇤)✏µ⌫⇢�. This implies in

particular that (4.8) is indeed Lorentz invariant. But the determinant is negative for space
inversion ~x ! �~x and also under time reversal. This is consistent with CPT-invariance:
if CP is violated, then T must be violated as well.

Topogical considerations. A noteworthy feature of this term is that it is a total
derivative. Writing Gµ⌫ = GI

µ⌫T
I one has

1

4
TrGµ⌫G̃

µ⌫ = @µK
µ , (4.9)

where
Kµ = ✏µ⌫⇢� Tr[A⌫@⇢A� + 2

3

g
3

A⌫A⇢A�] (4.10)

Normally one would drop such total derivative terms from the Lagrangian. However
one has to be careful with boundary terms. It turns out that in non-abelian gauge theories
there exist field configurations with finite (Euclidean) action for which the boundary
integral on S

3

at infinite radius does not vanish. These are called instantons. They are
characterized by an integral over all of Euclidean space that is always an integer

N
E

=
g2

3

16⇡2

Z

E

d4xTr Gµ⌫G̃
µ⌫ = n 2 Z

Note that this looks very much the action (4.8), but the latter is of course defined in
Minkowski space. The fact that this Euclidean integral is quantized is the reason that
✓ is periodic. This can intuitively be understood as follows (the following discussion
assumes a basic understanding of path integral in quantum field theory). When going to
Euclidean space the integration measure

R
M

d4x is changed to i
R
E

d4x, where ‘M’ and ‘E’
denote Minkowski and Euclidean respectively. This turns the integrand into a negative
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But in non-abelian theories       is not gauge invariantKµ

In abelian theories        is gauge invariant, and 
this argument eliminates 

Kµ

✓1

Z
d

4
x@µK

µ
= Boundary Terms



This leaves ✓2 and ✓3

We will focus on ✓3, and just call it ✓ from now on

How can these terms matter if they do not contribute to 
Feynman diagrams? 

Non-perturbative contributions!

e�1/g2

= 0 + 0g2 + 0g4 + 0g6 + 0g8 . . .



electric dipole moment of the neutron is approximately given by

e

mn

✓
mumd

mu + md

1

⇤
QCD

(4.11)

where ⇤
QCD

is the QCD scale, and mn the neutron mass. We have seen above that ✓
is like an angle, and hence its full parameter space is the interval [0, 2⇡). It could have
take any value in this interval, but nature has chosen it to be remarkably close to 0. To
appreciate the point, define a new parameter x = ✓/2, and suppose the value of x were
experimentally determined to be 3.1415926536 ± 10�10. Wouldn’t you think that this is
remarkably close to ⇡, and that this cannot be a coincidence? But x = ⇡ is physically
equivalent to x = 0, and hence this is essentially what we observe.

The Strong CP Problem. The fact that the angle ✓ is so close to zero seems to
demand an explanation. This problem is called the strong CP problem. A first idea could
be to simply declare that CP is a symmetry of the strong and electromagnetic interactions.
Indeed, since all other terms in the SU(3) ⇥ U(1) Lagrangian respect CP the term (4.8)
cannot be generated if it is set to zero. This is an important lesson, which will come back
several times in these lectures: terms can be consistently removed from a Lagrangian if
their removal leads to an enhanced symmetry. In this situation one says that the absence
of such a term is “natural”.

But note that the absence of P and CP violation is a property of the strong and elec-
tromagnetic interactions, but not a general of property nature, since the weak interactions
do not respect these symmetries. Hence after switching on the weak interactions we do
have to worry about this term.

Indeed, in the presence of CP-violating Yukawa couplings the discussion is rather
di↵erent. It turns out that phase rotations of the quark masses, in order to make them
real, end up changing ✓. The experimental limit is in fact not on ✓ but on a parameter
✓̄, which is the di↵erence between ✓ and an overall phase in the quark mass matrix. Only
this di↵erence is observable. This will be discussed in more detail in section 5.6.

Even if one somehow manages to make ✓̄ exactly zero in the Lagrangian, this still
does not mean that dn = 0. Weak interactions still make contributions to dn of order
10�31ecm. That is about five orders of magnitude smaller than our current limits, but
it is essentally inevitable that such an e↵ect exists in the Standard Model. New physics,
such as low energy supersymmetry, can make contributions as large as 10�25 e.cm, and
hence current experiments are already constraining these options.

4.2 The Weak Interactions

The complete Lagrangian for the weak interactions after symmetry breaking would occupy
several pages, and we will not present it here. However at high energies, in unbroken form,
it is much simpler. Interestingly above the symmetry breaking scale we do not only gain
symmetries, but we also loose some, namely C, P and T. The U(1) gauge group of QED
now becomes part of a larger group SU(2) ⇥ U(1). Following tradition we denote the
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Neutron electric dipole moment

✓ < 10�10



(assuming ✓ = 0)



0  ✓ < 2⇡

Hence there is an objective meaning to saying it is “small” 
Furthermore, our existence does not depend on its smallness. 
Hence there is no potential “anthropic” explanation.

Theoretically,    is an angular variable: ✓

The (in)famous gauge hierarchy problem is numerically much worse: 

M2
Higgs ⇡ 10�34M2

Planck

But: 
1. It requires a second scale to compare with 
2. It has anthropic implications, hence the problem is less pure



The absurd smallness of    is called the “strong CP problem”. ✓
It was first discussed around 1975

Without neutrino masses, the Standard Model has 18 
parameters. All have been measured. Some have strange 
small values, like me/mtop. But it seems there is a 19th 
parameter that is so small we have not even measured it yet. 
There is no symmetry that can be invoked to set it to zero.  

But in fact, the problem is much worse than that.  

However, the reason it is worse also offers a clue to its 
solution.





5.5.1 Feynman Diagram Computation

The computation of these diagrams goes as follows. We take all momenta in the graphs
as incoming, and we will choose the (kµ, a) vertex (the top one) to be the one we act on
with kµ. We choose a loop momentum l, and the fermion propagators are assigned as
indicated in the figure. The Feynman rule for a fermion propagator for a fermion of mass
m and momentum kµ is

i( 6k + m)

k2 � m2 + i✏
(5.40)

The i✏ is needed for making a correct Wick rotation later on, but for the moment we will
just drop it to keep the notation simple. We use vertices of the form introduced in section
2.6, and in particular we allow for a non-abelian generator T a at every vertex.

Then the expression to be computed is

iV µ⌫⇢
abc (p, q) =

�
Z

d4l

(2⇡)4
Tr


(i�µ�

5

Ta)

✓
i(/l + 6p)

(l + p)2

◆
(i�⌫Tb)

✓
i/l

l2

◆
(i�⇢Tc)

✓
i(/l � 6q)
(l � q)2

◆�

To this we have to add the same expression with (p, b, ⌫) simultaneously interchanged with
(q, c, ⇢). Note the overall minus sign due to the fact that we have a fermion loop. The
trace is over the gamma matrices as well as the gauge generators. Collecting all factors
and separating the traces we get

iV µ⌫⇢
abc (p, q) =

�
Z

d4l

(2⇡)4
Tr


�
5

�µ

✓
/l + 6p

(l + p)2

◆
�⌫

✓
/l

l2

◆
�⇢

✓
/l � 6q

(l � q)2

◆�
Tr [TaTbTc]

The integral is linearly divergent: in Euclidean space we observe that the leading terms
behave as

R
d4l(l3/l6) ⇡ R

dl. Finding divergent integrals is quite customary in quantum
field theory, and how to deal with these divergences correctly is a long story. But in any
case the first step in that process is to regularize the integral. This means that we write
it as the limit of a convergent expression. A rather brutal way of doing that is to simply
introduce a momentum cuto↵. But this is not even well-defined, because it depends on
how we define the loop momentum in the first place; note that we can shift l by some fixed
amount. Generally one prefers regularization methods that can be applied directly to the
Lagrangian, rather than manipulating individual diagrams. With such a prescription at
least there is a relation between the ways di↵erent diagrams are regularized. A popular
method in gauge theories is dimensional regularization. One simply treats the number of
space-time dimensions as a variable, and sets it equal to 4 in the end. With proper care,
this can be done in a continuous way. But the presence of a �

5

in the trace makes proper
care very tricky. This matrix is proportional to the product of �0, �1, �2 and �3, and this
is a definition that does not extend smoothly to other dimensions.

For this reason another method is often used, called Pauli-Villars regularization. One
introduces a new particle with the same spin as the fermion going around in the loop,
but with opposite statistics. This particle is given a mass M , and in the end of the
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Linearly divergent; regulate it.

…..

that limit the dependence on p and q can be ignored. After going to polar coordinates in
four-dimensional Euclidean space we get

S = �i
1

(2⇡)4

Z
d⌦

3

Z 1

0

dl
l3

(l2 + M2)3
= � i

8⇡2

1

M2

Z 1

0

dx
x3

(x2 + 1)3
= � i

32⇡2M2

(5.47)

where the �i comes from the Wick rotation and the three signs from the propagator
denominators, and the d⌦

3

integration is over the polar angles; this integral yields the
surface area of a unit 3-sphere and is equal to 2⇡2. In the second step the integration
variable was changed as l = xM . The indefinite integral is

Z
dx

x3

(x2 + 1)3
= � 2x2 + 1

4(x2 + 1)2
(5.48)

Hence we find

ikµV
µ⌫⇢
abc = �(pµ + qµ)

Z
d4l

(2⇡)4
Iµ⌫⇢
M (l, p, q)Tr TaTbTc + (p, ⌫, b) $ (q, ⇢, c)

= �(�8iM2✏↵⌫⇢�p↵q�)S Tr TaTbTc + (p, ⌫, b) $ (q, ⇢, c)

=
1

4⇡2

✏⌫⇢↵�p↵q�Tr TaTbTc + (p, ⌫, b) $ (q, ⇢, c)

=
1

4⇡2

✏⌫⇢↵�p↵q�Tr Ta {Tb, Tc}

If we set T a, T b and T c equal to the identity matrix this yields Eqn. (5.39).

5.5.2 Anomalous Local Symmetries

If all three external lines are gauge bosons, one of the gauge symmetries cannot be an
exact symmetry of the Lagrangian, because the triangle diagram is incompatible with
three independent gauge transformations. Since gauge invariance is a crucial ingredient
in the proof of renormalizability of gauge theories this is unacceptable, and hence we have
to require that anomalies are absent or that they cancel. Cancellation is possible since
the fermion trace is a sum over all fermions that couple to the external gauge bosons.

The currents we consider are of the form i ̄�µPT a , where P is a linear combination
of the identity matrix and �

5

. The trace over the Dirac indices splits thus into two
terms, one without any �

5

matrices, and one with a single �
5

. As indicated in the figure,
there are two diagrams contributing to the amplitude under consideration. It is not hard
to see that for the diagrams without a �

5

the trace over the group representations is
proportional to Tr[T a, T b]T c / fabc, whereas, as we have seen above, for the trace with
a �

5

the trace is proportional to Tr{T a, T b}T c, which due to the cyclic properties of the
trace is completely anti-symmetric in a, b and c. The terms proportional to fabc contain
infinities, which fortunately can be subtracted since the Lagrangian contains terms of this
form as well. The symmetric terms are finite, but they do not satisfy the Ward identity
Eq. (5.39) in all three indices simultaneously.
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i(p+ q)µV
µ⌫⇢
abc

The contraction with the external momentum is finite,  
 and non-zero:



Experimentally verified example: pion decay

break the chiral symmetry one gets a non-zero prediction for the decay width for ⇡0 ! ��
that is however much to small. The correct answer is that @µJ3,A

µ is not zero, but equal
to an anomaly term involving the photon field, generated by a triangle diagram with an
external axial vector current and two photons. Now the decay rate can be computed using
the anomaly, whose normalization is known. The result is

�(⇡0 ! ��) =
↵2m3

⇡N
2

c

576⇡3f 2

⇡

= 7.73 eV , (5.52)

where f⇡ ⇡ 130 MeV is the pion decay constant and Nc is the number of colors. The pion
decay constant can be measured from the decay width of the charged pions to leptons.
Hence the anomaly gives a parameter-free prediction of the ⇡0 ! �� decay width. The
agreement with the observed decay rate, 7.8 ± 0.2 eV is very good, which may be viewed
as direct experimental evidence for the anomaly. Not only that, but the decay width
is sensitive to the properties of the quarks in the loop. Originally, these computations
were done with protons and neutrons instead of quarks. This gives the wrong answer. In
QCD, the amplitude is – obviously– proportional to the number of quark colors, so that
the width is proporional to N2

c . Historically, this is one of the first ways it was discovered
that there have to be tree distinct species of u and d quarks.

5.5.7 The Axial U(1) Symmetry

The second anomaly is due to QCD, breaking the symmetry U(1)
A

(generated by the
current JA

µ ). This axial symmetry is spontaneously broken in the QCD vacuum, and
hence one would expect an extra Goldstone boson with a mass close to that of the pions.
However, there is no such boson. The anomaly by itself is not enough to explain this, since
even in the presence of the anomaly one can define a conserved current, as we have seen
above. The corresponding symmetry is spontaneously broken, and hence one would still
expect a massless Goldstone boson. However, it is now essential that the new current is
not gauge invariant. This allows non-perturbative instanton e↵ects to break the symmetry
explicitly, and remove any argument for the existence of a massless Goldstone boson.

5.5.8 Baryon and Lepton Number Anomalies

The complete Standard Model has one extra gauge group, SU(2), and hence we may
expect an additional independent anomalous current. This third anomaly is that of baryon
number (or lepton number) with respect to the SU(2) factor in the Standard Model gauge
group. Baryon number (B) and lepton number (L) are global U(1) symmetries of the
classical Standard Model action. The values of these charges are B = 1

3

for quarks, �1

3

for anti-quarks and 0 for all other particles, while L = 1 for leptons and �1 for anti-
leptons. These symmetries are “vector-like”, i.e. the current is  ̄�µB (or  ̄�µL ), in
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µ is not zero, but equal
to an anomaly term involving the photon field, generated by a triangle diagram with an
external axial vector current and two photons. Now the decay rate can be computed using
the anomaly, whose normalization is known. The result is
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agreement with the observed decay rate, 7.8 ± 0.2 eV is very good, which may be viewed
as direct experimental evidence for the anomaly. Not only that, but the decay width
is sensitive to the properties of the quarks in the loop. Originally, these computations
were done with protons and neutrons instead of quarks. This gives the wrong answer. In
QCD, the amplitude is – obviously– proportional to the number of quark colors, so that
the width is proporional to N2

c . Historically, this is one of the first ways it was discovered
that there have to be tree distinct species of u and d quarks.
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not gauge invariant. This allows non-perturbative instanton e↵ects to break the symmetry
explicitly, and remove any argument for the existence of a massless Goldstone boson.

5.5.8 Baryon and Lepton Number Anomalies

The complete Standard Model has one extra gauge group, SU(2), and hence we may
expect an additional independent anomalous current. This third anomaly is that of baryon
number (or lepton number) with respect to the SU(2) factor in the Standard Model gauge
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of as coupling constants. These terms in the Lagrangian then generate two-point vertices
with two fermionic external lines, and combining these vertices with gauge boson-fermion
three point couplings one can obtain triangle diagrams.

If one of the currents in the anomaly triangle represents a global symmetry, and
the other two are local, we are forced to preserve the local symmetries (to maintain
consistency) and choose the regularization of the diagram in such a way that the entire
anomaly is in the conservation of the current of the global symmetry. Group theoretically
these anomalies work exactly as the ones discussed above, but the interpretation is quite
di↵erent. Anomalous global symmetries are acceptable, and in fact totally unavoidable.
The only consequence is that a global symmetry of the classical action turns out not to be
a symmetry quantum mechanically. Another way of saying this is: would it be possible to
consistently gauge the global symmetry. If the answer is negative because of anomalies,
then the global symmetry is not a symmetry of the quantum theory.

Hence triangle diagrams involving two generators of G
gauge

and one of G
global

will break
part of the global symmetries. Since non-abelian generators are traceless, only U(1)’s can
be broken in this way. In principle each non-abelian factor in G gauge is responsible for
one anomaly. Furthermore, if there are m U(1) factors in G

gauge

, they yield an additional
1

2

m(m + 1) in principle independent anomalies, since a triangle diagram can have two
di↵erent U(1) gauge generators. Hence in general one may expect n � m + 1

2

m(m + 1) =
n + 1

2

m(m � 1) global U(1)’s to be broken by anomalies. In practice there may be fewer,
since the set of anomalous U(1)’s need not be independent. If this does not exhaust
the set of available U(1) symmetries, the remaining ones may be linearly combined into
non-anomalous symmetries.

Even though a global current may be anomalous, the classical global symmetry means
that at every vertex the charge is conserved. Hence an anomalous global symmetry is not
broken to arbitrary order in perturbation theory since one can simply follow the charges
through the diagram. However, the e↵ects of the anomaly do appear non-perturbatively.

5.5.4 Global Anomalies in Field-Theoretic Form

The anomaly can be represented by a local counter-term involving the gauge fields

@µJ
µ =

g2

8⇡2

TrFµ⌫F̃µ⌫ , (5.51)

where F̃µ⌫ = 1

2

✏µ⌫⇢�F⇢�. The fields Fµ⌫ ⌘ F a
µ⌫T

a are of course in the representation of the
fermions in the loop. The left-hand side of this divergence reproduces precisely Eq. (5.39)
when written in momentum space. Since the left-hand side is itself the divergence of a
current (see Eq. (4.9)) one can define a new current J̃µ = Jµ � g2

4⇡2Kµ that is conserved.
However, this does not change the fact that Jµ is not conserved, and furthermore Kµ is
not gauge invariant: it is invariant under “small” gauge transformations, but not under
certain “large” ones that cannot be continuously deformed to zero.
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5.6 Axions

Let us now return to the QCD ✓-parameter discussed in section 4.1.2. We have already
seen that it should be almost zero, and that within QCD alone it can simply be set equal
to zero by imposing CP. However, since CP is not a symmetry of nature, this cannot
really be justified. Furthermore, even if we put it equal to zero, non-vanishing corrections
to ✓ are to be expected.

In fact, there is an e↵ect which is not even small. To see why, we have to examine more
carefully how we obtained the diagonal quark masses. In the Standard Model the only
possible sources of CP violation are the CKM matrix for quarks and the PMNS matrix
for leptons (see sections 4.3.3 and 5.2.6). Since ✓ is a strong interaction parameter the
CKM matrix is most directly relevant. There is a CP-violating parameter in the CKM
matrix if the number of families is three or larger. CP violation has been observed by
Cronin and Fitch in 1964 in the K

0

� K̄
0

system, and more recently it has also been
found in BB̄ systems. Hence we know that the CP-violating parameter is non-zero. For
this to work the Yukawa coupling matrices gU and gD cannot be real (if they are real the
Lagrangian is manifestly CP invariant). Hence one expects the quark masses produced by
the Higgs mechanism to be complex numbers. In section 4.3.3 we have made symmetry
transformation to make the masses real, but the existence of anomalies in some symmetries
forces us to verify if all those transformations were legitimate.

5.6.1 Phases in Quark Masses

Consider first a simpler example, namely a single quark with a complex mass, coupled
only to QCD. We do not need to be specific here about the origin of the complex mass, but
one may thing about complex, but diagonal, Yukawa couplings multiplied with a Higgs
vev. The Lagrangian, including the ✓-term is

L = �1

4

Ga
µ⌫G

µ⌫,a + ✓
g2

3

16⇡2

Tr Gµ⌫G̃
µ⌫ + i ̄Dµ�

µ + m ̄L R + m⇤ ̄R L (5.53)

Note that the last two terms are each other’s conjugate, and hence the Lagrangian is real,
even if m is complex.⇤

Let us write the mass as m = |m|ei↵. In classical field theory one can make the mass
real by means of the transformation

 L ! ei↵/2 L

 R ! e�i↵/2 R (5.54)

Note that there are other phase choices that achieve this, because simultaneous phase
rotations of  L and  R have no e↵ect at all. But whatever we choose, it is clear that we
will have to transform  L and  R with di↵erent phases to make m real.

⇤ Complex masses are also used in the discussion of unstable particles. Then the real part is the mass
and the imaginary part the decay width. But this has nothing to do with the present case. We have just
a single quark that has nothing it can decay to. Hence its mass must be real.
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Hence the change in the action is

�S = �
Z

d4x1

2

@µ↵(x)Jµ
5

= 1

2

Z
d4x↵(x)@µJ

µ
5

=

Z
d4x↵

g2

3

16⇡2

TrGµ⌫G̃µ⌫

The x-dependence of ↵ was just used here as a trick to do the computation. The final
result also holds for constant ↵. Note that this term is of exactly the same type as the
CP-violating ✓ term. So we discover that the operations needed to make the mass real
leads to a shift in the value of ✓ to the value

✓̄ = ✓ + ↵

Hence we can never observe ✓ and ↵ separately, only the linear combination ✓̄.
At first sight this make the problem worse. The mass terms seem a priori unrelated to

the value of ✓. So if we thought that we could solve the problem by finding an argument
why ✓ = 0, we just learned that we also need an argument why the masses are real. This
might still look possible in this simple example, but – as already stated above – in the real
world the masses are obtained from Yukawa couplings, that must be complex matrices in
order to get CP-violation in the CKM matrix.

A massless up quark? But although this seems to make the problem worse, it also
o↵ers a first glimpse at possible ways out. On possibility is that m = 0. If the mass is
zero, we can multiply it with an arbitrary phase. This phase then just shifts ✓, and we
can shift it to zero without encountering any change in the quark mass. It is su�cient to
have just one such massless quark, because there is just one parameter ✓ to shift. Note
that the electric dipole moment of the neutron, Eq. (4.11) vanishes if one of the light
quark masses is zero (this formula was derived under the assumption that all other quarks
are heavy, otherwise it would have been proportional to all quark masses).

But is there a massless quark in the real world? The lightest quark is the up quark and
its mass is mu = 2.2+.6

�.4
MeV [8]. This is more than five standard deviations away from

zero. Nothing about QCD would change qualitatively if mu = 0, but it just does not seem
to be true. Furthermore, if indeed mu were to vanish this just leads to a problem that at
first sight is as puzzling as ✓ = 0: why would just one of the quark masses vanish exactly?
Of course it is also possible that mu is not exactly zero, but just small. It should then be
small enough that the electric dipole moment of the neutron is below the current limit,
with ✓ of order 1. This requires mu of order 10�9 MeV. This is not only statistically very
unlikely in view of the aforementioned experimental results, but it also looks theoretically
very implausible (although that has not stopped people from pursuing this option).

5.6.2 The Peccei-Quinn Mechanism

A second way out suggests itself if we replace the complex mass by a vacuum expectation
value of a complex field �. This means that we consider the action

L = �1

4

Ga
µ⌫G

µ⌫,a + ✓
g2

3

16⇡2

Tr Gµ⌫G̃
µ⌫ + i ̄Dµ�

µ + g� ̄L R + g⇤�⇤ ̄R L (5.56)
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5.6.3 General Axion Models

The Axion Decay Constant. Here we introduced a constant, usually called the axion
decay constant. In the example discussed above it has the value fa = s/N . The right-hand
side of Eq. (5.62) is the canonical form of the axion-gluon-gluon coupling. In any axion
model there will be such a term, and we define fa so that with a canonically normalized
kinetic term for a, 1

2

@µa@µa, the axion-gluon-gluon coupling has this form. This constant
owes its name to an analogous constant in the pion e↵ective Lagrangian. The pion has
a similar interaction Lagrangian for the pion-photon-photon coupling, with a coe�cient
f⇡ called the pion decay constant. This constant determines the main decay mode of the
⇡0, the decay to two photons (see Eq. (5.52)).

The axion decay constant is the essential parameter of axion physics. In the concrete
model discussed above fa was related to the vacuum expectation value of a scalar by a
definite numerical factor. But in a more general description we just treat fa as a free
parameter. It sets the scale for all axion physics. We will see that the mass of the axion
and all of its couplings are proportional to 1/fa.

Axion E↵ective Action. In order to discuss axion physics without having to worry
about specific models one uses the following e↵ective action

La =
1

2
@µa@µa +

a

fa

g2

3

16⇡2

TrGµ⌫G̃
µ⌫ , (5.63)

This is the action for a free, massless boson with a non-renormalizable (dimension five)
coupling to the gauge bosons. No matter which axion model one considers, one always
ends up with an action of this form. The interaction term is generated by the anomaly
of the axial current, from a triangle diagram with two gluons. In addition to these terms
involving the axion field a there are the other terms involving GG̃, already mentioned
above

L✓ = (✓ + arg det M)
g2

3

16⇡2

TrGµ⌫G̃
µ⌫ , (5.64)

From this e↵ective action one can see immediately how shifting the axion field by a
constant can change the value of ✓ in the strong CP term.

The QCD-generated Axion Potential. Up to now it may have seemed that the
potential of the field a is completely flat. It appears in the action only in the form of
derivatives @µa, plus the coupling to GG̃. But also in this coupling the dependence on a is
through @µa, because GG̃ is a total derivative, and we can move the derivative to a(x) by
partial integration. Hence classically the theory is invariant under shifts a(x) ! a(x) + c,
for any real c. But this is not going to be a symmetry of the full quantum theory, because
we also know that shifting the value of a(x) changes ✓. For di↵erent values of ✓ we will
measure a di↵erent value of quantities like the electric dipole moment dn of the neutron,
so we really have di↵erent physics. And if the physics is di↵erent, the vacuum energy must
be di↵erent as well. Hence somehow QCD creates a non-trivial potential V (a) on top of
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The rest of the discussion then goes as before. We can remove the dependence of the
Lagrangian on a apart from derivatives and a coupling to FF̃ . Of course the value of va
is related to vu and vd. One can determine this relation by expanding the kinetic terms
of �

u

and �
d

and requiring that the resulting kinetic terms for the axion field have the
canonical form 1

2

@µa@µa. It turns out that va =
p

v2

u + v2

d. Then va is related to fa by a
numerical factor that depends on the fermions in the anomaly triangle, because ultimately
the coupling to QCD must be brought to the canonical form (5.62).

5.6.5 The Mass of the Original QCD Axion

The two-Higgs model is the simplest and arguably the most natural way to realize Peccei-
Quinn symmetry in the Standard Model. The first calculation of the axion mass was
done by Weinberg [31] and Wilczek [33]. The results presented here are from the first of
these papers, and were computed using the two-Higgs model. An approximation was used
where the u, d and s quarks are light. One has to consider the mass matrix of the bosons
ūRuL, d̄RdL, s̄RsL as well as the phases of �

d

and �
u

. In the absence of instantons (non-
perturbative QCD-contributions), quark masses and W, Z-bosons all these five particles
are massless Goldstone bosons. Due to instantons one combination, the ⌘0, is not a
Goldstone boson in any reasonable approximation (see section 5.5.7); one combination,
to first approximation the relative phase of �

d

and �
u

, is eaten by the Z; one combination
becomes the ⇡0 and another one the ⌘; and finally the fifth linear combination, essentially
the common phase of �

d

and �
u

, is the axion. For its mass Weinberg finds

mA =
Nm⇡f⇡

2
p

mu + md


mumdms

mumd + mums + mdms

�
1/2 21/4G1/2

F

sin 2↵
. (5.71)

Here Nf is the number of flavors (meanwhile known to be six), GF the Fermi constant

(GF = 1

8

p
2 g22
M2

W
), f⇡ the pion decay constant measurable in pion decay, and ↵ parametrizes

the ratio of the v.e.v’s of the two scalars �
d

and �
u

in Eqn. (5.68): tan ↵ = vd/vu. Apart
from this, all parameters in the formula are known, and in particular there is no unknown
QCD instanton-generated matrix element appearing. All QCD e↵ects are encapsulated
in the pion mass and the pion decay constant. This is possible because the pion is a
pseudo-scalar pseudo goldstone boson, just like the axion. Hence measured parameters of
the pion and its properties can be used in the computation of the axion mass.

Numerically one finds for the mass of the axion (for Nf = 6).

mA ⇡ (140 keV)

sin 2↵
. (5.72)

Note that the axion mass is proportional to m⇡ so that it vanishes in the chiral limit, and
to the masses of the three “light” quarks. The latter dependence is a consequence of the
fact that if one of the quarks is massless the theory becomes independent of ✓ (and hence
✓̄) as discussed before. Then the potential is flat in the axion direction, and hence the
axion is massless. One cannot take the other quark masses to zero in this formula because

89

Axion mass in a two-Higgs model

The rest of the discussion then goes as before. We can remove the dependence of the
Lagrangian on a apart from derivatives and a coupling to FF̃ . Of course the value of va
is related to vu and vd. One can determine this relation by expanding the kinetic terms
of �

u

and �
d

and requiring that the resulting kinetic terms for the axion field have the
canonical form 1

2

@µa@µa. It turns out that va =
p

v2

u + v2

d. Then va is related to fa by a
numerical factor that depends on the fermions in the anomaly triangle, because ultimately
the coupling to QCD must be brought to the canonical form (5.62).

5.6.5 The Mass of the Original QCD Axion

The two-Higgs model is the simplest and arguably the most natural way to realize Peccei-
Quinn symmetry in the Standard Model. The first calculation of the axion mass was
done by Weinberg [31] and Wilczek [33]. The results presented here are from the first of
these papers, and were computed using the two-Higgs model. An approximation was used
where the u, d and s quarks are light. One has to consider the mass matrix of the bosons
ūRuL, d̄RdL, s̄RsL as well as the phases of �

d

and �
u

. In the absence of instantons (non-
perturbative QCD-contributions), quark masses and W, Z-bosons all these five particles
are massless Goldstone bosons. Due to instantons one combination, the ⌘0, is not a
Goldstone boson in any reasonable approximation (see section 5.5.7); one combination,
to first approximation the relative phase of �

d

and �
u

, is eaten by the Z; one combination
becomes the ⇡0 and another one the ⌘; and finally the fifth linear combination, essentially
the common phase of �

d

and �
u

, is the axion. For its mass Weinberg finds

mA =
Nm⇡f⇡

2
p

mu + md


mumdms

mumd + mums + mdms

�
1/2 21/4G1/2

F

sin 2↵
. (5.71)

Here Nf is the number of flavors (meanwhile known to be six), GF the Fermi constant

(GF = 1

8

p
2 g22
M2

W
), f⇡ the pion decay constant measurable in pion decay, and ↵ parametrizes

the ratio of the v.e.v’s of the two scalars �
d

and �
u

in Eqn. (5.68): tan ↵ = vd/vu. Apart
from this, all parameters in the formula are known, and in particular there is no unknown
QCD instanton-generated matrix element appearing. All QCD e↵ects are encapsulated
in the pion mass and the pion decay constant. This is possible because the pion is a
pseudo-scalar pseudo goldstone boson, just like the axion. Hence measured parameters of
the pion and its properties can be used in the computation of the axion mass.

Numerically one finds for the mass of the axion (for Nf = 6).

mA ⇡ (140 keV)

sin 2↵
. (5.72)

Note that the axion mass is proportional to m⇡ so that it vanishes in the chiral limit, and
to the masses of the three “light” quarks. The latter dependence is a consequence of the
fact that if one of the quarks is massless the theory becomes independent of ✓ (and hence
✓̄) as discussed before. Then the potential is flat in the axion direction, and hence the
axion is massless. One cannot take the other quark masses to zero in this formula because

89



VOLUME 40, NUMBER 5 PHYSICAL RKVIKW LKTTKRS $0 JANUARY 1978

Problem of Strong P and T Invariance in the Presence of Instantons

F. %ilczek~'~
Columbia University, ¹wYork, ¹wYork l0027, and The Enstitute for Advanced Studies,

I'rinceton, Net Jersey 08540~~
(Received 29 November 1977)

ameter 0 is
ally deter-
er action
onserva-

unattr ac-
y of type
ly broken
rough a
anglan or
equires
r that a
meson of

n) exist.
ur argu n s are c rrect, at least one of

the following four conditions must hold: (i) P is
softly broken—this condition leads to some awk-
wardness in understanding the two-component
neutrino. (ii) T is softly broken. (iii) The me-
chanical mass' of some quark is zero—this does
not agree with current-algebra estimates, ' but it
is not completely clear that it is excluded, given
the uncertainties of these estimates. If this case
is realized, it gives an interesting parallel be-
tween the quark and lepton sectors (massless
quark and massless neutrino). (iv) An axion,
with properties to be detailed below, exists. "
This is in some ways the most attractive and cer-
tainly the most exciting possibility. Among these
four alternatives, P and T conservation for strong
interactions is natural in the first two and auto-
matic in the second two.
Aenoxrnalization of 8.—Naively, one might ex-

pect that since tr G „,G „,is a dimension- four in-
teraction it will get infinitely renormalized (log-
arithmic divergences) unless it does not conserve
quantum numbers —here the only candidates are
P and T invariance —which are only softly brok-
en. I believe that this is correct, but it requires
some special discussion since the vertex of
trG „,G „,vanishes (as do all instanton effects) in
the usual Feynman perturbation theory. A con-
venient method for recognizing the divergences

Z~, = (8/32@2) trG p„G~v, (I)
where G„, is the gauge field and G„„its dual,
written in matrix form. Although this interaction
is formally a total divergence,

trG~G„, =B„treq,)„A„(BA,+-', AgA, ), (2)

recent work' ' has made it clear that it cannot be
neglected. The interaction in Eq. (I) breaks P
and T but conserves C, so it contributes directly
to the neutron electric dipole moment d„. The
extremely good experimental limits on d„require
a very small 6

8/32m's 10 '. (3)
In this Letter I will analyze whether such a

small quantity can emerge in a credible way from
gauge theories, or if 8 can be made zero in some
sense. Three possibilities can be distinguished:
(i) If the interactions which break P and T lead
to infinite renormalization of 0, we shall say
strong P and T invariance is unnatural. (ii) If
the interactions which break P and T lead to a
small finite renormalization of 8, we shall say
strong P and T invariance is natural. In this
case, if a bare value 0=0 is imposed as a sym-
metry requirement, a physically acceptable theo-
ry may result with no further adjustment. (iii) In

The requirement that P and T be approximately conserved in the color gauge theory of
strong interactions without arbitrary adjustment of parameters is analyzed. Several pos-
sibilities are identified, including one which would give a remarkable new kind of very
light, long-lived pseudoscalar boson.

One of the main advantages of the color gauge a certain class of theories"" the par
theory of strong interactions is that so many of physically meaningless, ' or dynamic
the observed symmetries of strong interactions mined. ' In this case, if the strong int
seem to follow automatically as a consequence of conserves P and T, we shall say the c
the gauge principle and renormalizability —P,T, ti.on is automatic.
C, flavor conservation, the 383* structure of chi- I regard a theory of type (i) as very
ral symmetry breaking, and asymptotic scale in- tive. Below I shall argue that a theor
variance. As a result of this, gauge theories of (ii) requires that either P or T be soft
the weak and strong interactions mesh nicely, —that is, that the breaking occurs th
and effects such as parity-nonconserving and fla- dimensional coupling in the bare Lagr
vor-changing processes can be calculated to be spontaneously. A theory of type (iii) r
small, potentially dangerous renormalization ef- that the mass of some quark be zero o
fects being under control. This attractive pic- remarkable new kind of particie (a 0
ture, however, is based upon neglect of possible mass - 100 keV, which we call an agio
interactions of the form So if o met o
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5.6.9 Generic Axions

The name axion is also used in a more general sense for pseudo-scalar pseudo-Goldstone
bosons. The two “pseudo”’s here have a di↵erent meaning. A pseudo-scalar is a scalar
that is odd under parity. Such a particle may have couplings to gauge field combinations
of the form aGG̃. Another generic feature of axions is an approximate shift symmetry,
a ! a+x. This would imply the existence of massless Goldstone bosons if the symmetry
were exact. But folk theorems about gravity suggest that exact global symmetries cannot
exist. Hence one would expect these symmetries to be broken by some non-perturbative
e↵ect, as QCD does for the Peccei-Quinn axion. Then the Goldstone boson acquires a
mass and becomes a pseudo-Goldstone boson. Particles of this type exist in abundance
in some realizations of string theory. The axion discussed so far, introduced to solve the
strong CP problem, is usually called the QCD axion in order to distinguish it from generic
axions. The constraints on QCD axions are more severe than on generic axions.

If there is more than one axion, their action and coupling to QCD will take the form

La =
1

2
@µa

i@µai +
ai

f i
a

g2

3

16⇡2

TrGµ⌫G̃
µ⌫ , (5.74)

In principle each action might have a coupling to QCD, and this coupling depends on the
way the axion interacts with colored particles. However, in this situation we may define
the QCD axion as

a

fa
=
X

i

ai

f i
a

, (5.75)

and we choose for all other axions a basis that is orthogonal to this. Then only the QCD
axion gets a mass from QCD e↵ects, and all other remain massless.

The other axions must however somehow get a mass in another way, or we would end
up with an ungauged continuous symmetry. So one may ask what happens if we assume
that all axions have an additional explicit mass term, 1

2

m2

i a
2

i . In principle this does not
have to be diagonal, but we may assume that the coupling to QCD we wrote above is in
terms of eigenstates ai of the explicit masses. The QCD generated axion potential plus
the mass terms is in this case (we drop the “axion” label a on f i

a)

V (ai) = F
"
1 � cos

 
X

i

ai

fi
+ ✓̄

!#
+ 1

2

X

i

m2

i a
2

i . (5.76)

Here F is the parameter introduced in (5.65); its value is roughly m2

⇡f
2

⇡ . The equations
of motion determining the minimum of the combined potential are

F
fj

sin

 
X

i

ai

fi
+ ✓̄

!
+ m2

jaj = 0

Multiplying with fj and subtracting the equations from each other we find

fjm
2

jaj = fkm
2

kak = �Fsin

 
X

i

ai

fi
+ ✓̄

!
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Multiple axions
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This combination is the QCD axion

The other linear combinations are “axion-like particles"



3. WISPy cold dark matter

QCD axions are very well motivated candidates for cold dark matter [75,
76, 77]. Axion cold dark matter is produced non-thermally in the early
universe by the vacuum-realignment mechanism and, in some models and
under certain circumstances, also via the decay of topological defects such as
axion strings and domain walls (for a review, see Ref. [78]). Importantly, the
vacuum-realignment mechanism does not work exclusively for QCD axions.
It works in fact generically for bosonic WISPs such as ALPs [19, 20, 27] and
hidden photons [27, 79]. Once produced, a population of very light cold dark
matter particles is extremely difficult to reabsorb by the primordial plasma.
Therefore, for ALPs and hidden photons, a huge region in parameter space
spanned by their masses and their couplings to standard model particles can
give rise to the observed dark matter.

The vacuum-realignment mechanism relies on assuming that fields in the
early universe have a random initial state (arising from quantum fluctuations
during inflation) which is fixed by the cosmic expansion. Fields with mass
mi evolve on timescales t ∼ m−1

i . After such a timescale, the fields respond
by attempting to minimise their potential, and consequently oscillate around
the minimum. If there is no significant damping via decays, these oscillations
can behave as a cold dark matter fluid since their energy density is diluted
by the cosmic expansion as ρi ∝ a−3, where a is the cosmic scale factor.

Assuming that the reheating temperature after inflation is below fa and
that there is no dilution by, e.g., late decays of particles beyond the standard
model (e.g. moduli), the expected cosmic mass fraction in QCD axion cold
dark matter is then [78]

Ωah
2 ≈ 0.71×

(

fa
1012 GeV

)7/6 (Θa

π

)2

, (30)

where Θa is the initial misalignment angle, while the one in ALP cold dark
matter is [27]

Ωaih
2 ≈ 0.16×

(mi

eV

)1/2
(

fai
1011 GeV

)2(Θi

π

)2

, (31)

where mi is the mass of the ALP. Therefore, the QCD axion can be the dom-
inant part of cold dark matter if its decay constant exceeds fa ! 1011 GeV,
corresponding to a mass ma " 10−4 eV. That is, the QCD axion predicted,
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Weak theta angle:

This angle changes under phase rotations 

ei↵B

Where B is Baryon number. Hence we can rotate the angle 
to zero. There is no price to pay for this because baryon 
number is an exact symmetry  apart from an anomaly with 
respect to SU(2)W
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Axion helioscope: assume the sun produces axions
Axion haloscope: assume axions exist in galactic halo





Light shining through a wall experiments (e.g. ALPS)



Part 2
Grand Unification





GROUP 
THEORY 
AHEAD



Different groups can have the same Lie-algebra  
(e.g. SU(2) and SO(3)) 

Some Lie algebra representations may not be 
representations of the corresponding group  
(e.g. spinor representations are not representations of 
SO(3)) 



List of irreducible representations

• SU(2):  1,2,3,4,5,6,7,….. 
• SO(3):  1,3,5,7,9,11,….. 
• SU(3):  1,3,3*,6,6*,8,10,10*,15,15*….. 
• SU(4):  1,4,4*,6,10,10*,15,20,20*,20’,…… 
• SU(5):  1,5,5*,10,10*,15,15*,24,…..



LQ = i ̄l
L�

µ
�
@µ � ig3A

I
µT

I � ig2A
a
µT

a � ig1BµY
�
 l
L

LQ = i
3X

l=1

4X

↵=1

4X

µ=1

3X

i=1

2X

p=1

 ̄↵,l,i,p
L �µ↵�

 
�ij�pq@µ � ig3�pq

8X

I=1

AI
µT

I
ij � ig2�ij

3X

a=1

Aa
µT

a
pq � ig1

1
6�ij�pqBµ

!
 �,l,j,q
L

(3, 2, 1
6 )L

Quark doublet 



Charge Quantization



SU(3)3 SU(2)3 SU(3)2 x U(1) SU(2)2 x U(1) U(1)3 (Grav) x U(1)

(3,2,1/6) 2 0 1/3 1/2 1/36 1

(3*,1,-2/3) -1 0 -2/3 0 -8/9 -2

(3*,1,1/3) -1 0 1/3 0 1/9 1

(1,2,-1/2) 0 0 0 -1/2 -1/4 -1

(1,1,1) 0 0 0 0 1 1

Sum 0 0 0 0 0 0

Q

U*

D*

L

E*



GUTs, anomalies and Charge Quantization

One can try to impose one-family charge quantization on all three families 
by requiring that they all couple to the same Higgs. 

But even that does not work: 
One can have chiral fermions with irrational charges (in SM units) that get 
their mass from the SM Higgs

(3, 2,
1

6
� x

3
) + (3̄, 1,�2

3
+

x

3
) + (3̄, 1,

1

3
+

x

3
)

+(1, 2,�1

2
+ x) + (1, 1, 1� x) + (1, 1,�x)



where U
3

and U
2

are unitary 3⇥3 and 2⇥2 matrices satisfying the relation det U
3

det U
2

=
1. This is precisely the group S(U(3) ⇥ U(2)) identified in section 8.2 as the global group
of the Standard Model. If we write U

3

= ei�Û
3

and U
2

= ei�Û
2

where Û
3

and Û
2

have
determinant 1, then we have identified the SU(3) and SU(2) subgroups. The phases must
satisfy 3� + 2� = 0 mod 2⇡. This leaves one independent phase, corresponding to the
U(1).

8.4.1 Decomposition of SU(5) Representations

If the fundamental theory underlying the Standard Model is an SU(5) GUT, all mat-
ter must belong to some SU(5) representation. The available representations and their
dimensions can be enumerated using Young tableaux, as discussed in appendix B. We
will have to determine how these representations decompose if the symmetry breaks to
SU(3) ⇥ SU(2) ⇥ U(1). This is usually written as

R !
X

i

(ri, si, yi) , (8.21)

where R is an SU(5) representation, ri an SU(3) representation, si an SU(2) representa-
tion, and yi the U(1) charge. If this decomposition is known for the vector representation,
then the subgroup embedding is completely fixed, and hence we can compute the decom-
position for all other representations. There are several ways of doing that. One method
is to construct the representation matrices in SU(5) and decomposing the space on which
they act into SU(3) ⇥ SU(2) blocks, as we did above for the vector representation. A
more often used method is to build representations as a tensor product of vector repre-
sentations, and then work out the tensor products of the SU(3) and SU(2) components.
After doing that one works out the U(1) charges for each component.

In the following we denote SU(5) representations by their dimension in bold face,
and the complex conjugate representation of an SU(5) representation by an asterisk. In
appendix B.6 we derive the decomposition of the representations of most interest, namely
the 5, the 10 and the 24, the adjoint representation. Here we just summarize the result,
including for completeness also the symmetric tensor 15.

5 ! (3, 1, �1

3

q) + (1, 2, 1

2

q) (8.22)

24 ! (8, 1, 0) + (1, 3, 0) + (1, 1, 0) + (3, 2, �5

6

q) + (3⇤, 2, 5

6

q) . (8.23)

10 ! (3⇤, 1, �2

3
q) + (1, 1, q) + (3, 2,

1

6
q) , (8.24)

15 ! (6, 1, �2

3
q) + (1, 3, q) + (3, 2,

1

6
q) , (8.25)

Here we have allowed for an arbitrary real factor q since the normalization of U(1)
charges is not fixed by the algebra. The SU(3) and SU(2) generators can simply be taken
as a subset of the SU(5) generators.
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8.5.2 Matter in the Five-Dimensional Representation.

The representations contained in the 5 do not match any Standard Model particle, but
the complex conjugates do. Hence we choose the anomaly-free representation 5⇤ +10 (we
could just as easily have conjugated the embedding of SU(3) ⇥ SU(2) ⇥ U(1) in the 5,
but that is not the standard convention). Now the 5⇤ precisely contains particles with
the quantum numbers of dc, e� and ⌫, i.e. the representation

(3⇤, 1,
1

3
) + (1, 2, �1

2
) (8.27)

Here and in the following all fermions are left-handed unless explicit subscripts R are
shown.

8.5.3 Particle Content of the Ten-dimensional Representation

The decomposition of the 10 is

10 ! (3⇤, 1, �2

3
) + (1, 1, 1) + (3, 2,

1

6
) , (8.28)

and we recognize the representations of the particles uc, e+ and the doublet u, d. Thus
the SU(5) representation 5⇤ + 10 contains precisely one family of the Standard Model.

8.5.4 Detailed Particle Decompositions

The precise decomposition of this representation into SU(3)⇥U(1) particle representations
is as follows. By convention, the 5 contains (3, 1, �1

3

) + (1, 2, 1

2

). In the five dimensional
space, the first three components are reserved for SU(3), and the last two for SU(2).
Within SU(2) the ordering of the doublet is important, because SU(2) is eventually
broken, and two members of the same doublet will become particles with di↵erent charges.
We will choose the 4th component to coincide with the upper component of the SU(2)
doublet. Now we are able to write down the decomposition of the 5: (d

1

, d
2

, d
3

, e+, ⌫),
including the color index for the d’s. Here d, e+ and ⌫ are nothing but short-hand
notations for certain SU(3) ⇥ U(1) representations. Then the 5⇤ decomposes to

 = (dc
1

, dc
2

, dc
3

, e�, ⌫) . (8.29)

[There is one subtlety here. In a normal SU(2) doublet the upper component has an
electric charge that is higher (by one unit) than that of the lower, because Q

em

= T
3

+Y .
This is true for the doublet (e+, ⌫) in the 5 but not for the doublet (e�, ⌫) in the 5⇤. The
reason is simple: the doublet in the 5⇤ transforms in the complex conjugate representation
2⇤, and not in the 2. These representations are equivalent, but the equivalence relation
involves the invariant tensor ✏ij, which turns the doublet upside down.]

Now we construct the 10 by taking the anti-symmetric product of two 5’s. This field is
most easily represented by a 5⇥5 matrix, whose elements i, j have the quantum numbers
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of the tensor product of the ith components times the jth component of the 5. Here e+di

yields the SU(3) ⇥ U(1) representation of ui and ✏ijkdidj that of uc
k. The result is

� =
1p
2

0

BBBB@

0 uc
3

�uc
2

�u
1

�d
1

�uc
3

0 uc
1

�u
2

�d
2

uc
2

�uc
1

0 �u
3

�d
3

u
1

u
2

u
3

0 �e+

d
1

d
2

d
3

e+ 0

1

CCCCA
(8.30)

The factor 1p
2

is added to ensure that the kinetic terms have the proper normalization

(note that every field appears twice in the 10).

8.5.5 Distributing Family Members.

This describes one family, but one word of caution is needed. In the Standard Model it
is customary to say that u and d belong to the first family, c and s to the second and t
and b to the third, but that is not really true. The group SU(2) does not relate the mass
eigenstates u and d, but u and a linear combination of d, s and b (which is dominated by
d). With the leptons the situation is even less clear. If, by definition, u belongs to the
first family, then how do we know that its family member is e, µ or ⌧? We don’t, and it
makes no di↵erence because there are no transitions between leptons and quarks in the
Standard Model, or, equivalently, they never occur within one irreducible representation.
However within SU(5) they do, and it becomes meaningful to ask who belongs to the first
family, e, µ or ⌧ , or some linear combination. This question can only be answered once
we know the mass matrices, and we will return to it later.

8.6 The Standard Model Higgs Field.

The Standard Model Higgs field denoted � in section 4.2 belongs to the representation
(1, 2, 1

2

). In SU(5) there is no two-dimensional complex representation that precisely
contains it. We are forced to choose a bigger one, and hence get additional particles. It is
clear from the previous paragraphs that the representation 5 contains (1, 2, 1

2

), and hence
is a natural candidate, and indeed the smallest one. It contains three extra components
in the representation (3, 1, �1

3

), corresponding to scalars which have not been observed
(yet). This SU(5) extension of the Standard Model Higgs field will be denoted as H.
There are other possibilities, see section 8.9.

8.7 Choosing the GUT-breaking Higgs Field

Up to now we have only embedded SU(3) ⇥ SU(2) ⇥ U(1) in SU(5). Clearly the full
SU(5) is not an exact symmetry of nature, and thus we have to find a mechanism to
break SU(5) to SU(3) ⇥ SU(2) ⇥ U(1). In this process the 12 Standard Model gauge
bosons should remain massless, and the other 12 should become massive. We will try
to do this by the only method we know, the Higgs mechanism. Note that the name
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The first family





which we can decompose into two SU(3) ⇥ U(1) components. These components are
massive vector bosons usually called X and Y . They are color triplets and have charges
±4

3

and ±1

3

respectively. Their coupling to fermions follows straightforwardly from the
minimal couplings in the SU(5) Lagrangian. They appear in these couplings as

X1

µ,iT
1(i, 4) + X2

µ,iT
2(i, 4) + Y 1

µ,iT
1(i, 5) + Y 2

µ,iT
2(i, 5) , (8.32)

where i is the color index and

T 1(i, j)kl = 1

2

(�ik�jl + �il�jk)

T 2(i, j)kl = 1

2

i(�ik�jl � �il�jk)

These matrices are thus like 1

2

�
1

and 1

2

�
2

. Just like one does for the W -bosons, we now
go to the charge eigenstates X± = 1p

2

(X1 ⌥ iX2) and analogous for Y (the upper index

± refers only to the sign of the charge).
The full set of SU(5) gauge bosons can in fact be represented as a matrix G = AaT a,

where T a is a matrix in the representation 5 and only the group structure is indicated;
all space-time indices are suppressed. The group structure of the minimal coupling to the
field  is then ( )T (�GT ) , because �GT = �G⇤ is the matrix representing G in the
5⇤. The representation 10 is the anti-symmetric tensor product of two 5’s. If we label
the field �mn (m, n = 1, . . . 5), then the group structure of the couplings to � is

�̄mn [Gmk�nl + Gnl�mk]�kl , (8.33)

which can be written as �2Tr�̄G�.
For one family the complete result is (the first terms in each line are derived from the

coupling to the 5⇤, the last from the coupling to the 10).

LX = g5p
2

X�
µ [ē��µdc + d̄�µe+ � ūc�µu] + c.c

LY = g5p
2

Y �
µ [ ⌫�µdc � ū�µe+ � ūc�µd] + c.c (8.34)

For simplicity we have suppressed color indices. They are contracted as follows for the
X-boson couplings: Xidc

i , X id̄i, ✏ijkXiūc
juk and analogously for the Y boson couplings.

As expected these couplings violate both baryon number and lepton number. Diagrams
for processes leading to proton decay are easy to construct, for example
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where i is the color index and

T 1(i, j)kl = 1

2

(�ik�jl + �il�jk)
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2
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1
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2
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X-boson couplings: Xidc

i , X id̄i, ✏ijkXiūc
juk and analogously for the Y boson couplings.

As expected these couplings violate both baryon number and lepton number. Diagrams
for processes leading to proton decay are easy to construct, for example
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Proton stability (PDG 2016)

Susy GUTS:

10

34
to 10

36
years (dimension 6 operators)


