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‘...The Ancients were wont to draw Diagrams & thus divine
Predictions for future Happenings, by Arts magickal or conjec-
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they study to foretell the Events of Nature...
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Chapter 0

Introductory remarks

0.1 Preface

In what follows, whatever is correct I owe to many other people ; that which
is wrong I managed on my own. I am perpetually in need of, and grateful
to, those pointing out typing or thinking errors in these notes1.

About exercises : these are intended to make you sufficiently proficient
in actually computing things. Theoretical knowledge without dirty hands is
not very good. The exercises apposite to a topic are indicated by a box like
E ℵ in the margin, where ‘ℵ’ is the number of the exercise, situated at the

end of the chapter. E 0

1I cordially invite all and sundry to do so. The P 4 Hall of Fame collects the names of
friends who have helped me in learning about, formulating, contemplating, or execrating
one or several issues.

13
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0.2 Basic tools

0.2.1 Units and fundamental units

The fundamental constants2 of relativistic quantum field theory are the speed
of light in vacuo :

c = 299792458
m

sec
,

and Planck’s (or rather Dirac’s) constant

h̄ = 1.054571726(47) × 10−34 Joule sec .

Compared to the scales of our everyday experiences, h̄ is miniscule and c is
huge : in the world of elementary particles, they are just about right. We
can see this as follows. It is customary to replace our human-scale meters,
kilograms and seconds by what may be called fundamental units of mass,
length and time :

Mf = 1.7826618 10−27 kg ,

Lf = 1.9732696 10−16 m ,

Tf = 6.5821190 10−25 sec .

In terms of these units, we have precisely

h̄ =
Mf Lf

2

Tf
, c =

Lf
Tf

,

so that both h̄ and c have the numerical value one ; and the unit of energy
turns out to be

Mf Lf
2

Tf
2 = 1.6021765 10−10 Joule = 1 GeV .

The mass and size of the proton are of the same order as Mf and Lf , re-
spectively, and Tf is roughly the time scale of strong interactions. The use of
fundamental units is attractive since you won’t have to write factors of c and

2The values quoted here are taken from the 2014 Review of Particle Physics, K.A. Olive
et al . (Particle Data Group), Chin. Phys. C, 38, 090001 (2014). The numbers in brackets
denote the experimental error in the last digits. The speed of light is known exactly since
it is the definition of the meter.
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h̄, and one then expresses both length and time in inverse GeV, and mass
in GeV. But this usage obscures the dimensionality of the various objects3,
and I have decided to try to retain the h̄’s and c’s where they belong ; af-
ter all, it is much easier to erase them from formulæ than to put them back in.

0.2.2 Planck units

Along with h̄ and c there exists a third4 fundamental constant of nature,
namely Newton’s (or rather Cavendish’s) gravitational constant :

G = 6.67384(80) 10−11 m3

kg sec2
.

The truly, ultimately fundamental units of mass, length and time that can
be recovered from c, h̄ and GN are then the Planck units :

MP =

√
h̄

Gc
= 2.17644 10−8 kg ,

LP =

√
h̄G

c3
= 1.61625 10−35 m ,

TP =

√
h̄G

c5
= 5.39124 10−44 sec .

These values are outrageously far removed from the typical scales of particle
phenomenology. We may interpret this as an indication that in what follows
the gravitational interaction will not play any part. In fact, in any case we
do not (yet) have a satisfactory quantum theory of gravitation leading to
specific and falsifiable predictions for particle phenomenology5.

3This has the unfortunate consequence of making it impossible to check the (at least)
grammatical correctness of an expression by dimensional analysis, and even leads to erro-
neous statements about ‘classical limits’ and the like : see our discussion of particle masses
in chapter 6.

4Consider that we have, basically, only the three measures of length, time, and mass to
do physics with ; and there are precisely three natural constants. Suppose a fourth one is
discovered : it would be only natural that we would try very hard to relate it to the other
three in some way. Thus is fundamental physics formed.

5To bring the Planck units close to the fundamental units we need to increase the value
of G, thus the strength of gravity, by a factor of about 1038.
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0.2.3 Charges

The electrostatic charge is adopted to the Gaussian system, so as to have
no truck with the ‘permeability of the vacuum’ and suchlike : that is, two
charges e1 and e2 separated by a distance r feel a mutual Coulomb force ~F
characterized by

| ~F | = 1

4π

| e1e2 |
r2

.

This implies that the charge has the dimensionality of
√
h̄c. It follows that,

if we choose the proton charge as the unit charge e, the combination

αe =
e2

4π h̄ c

is a dimensionless number6. Experimentally,

αe =
1

137.035999074(44)
,

which yields the result

e = 0.30282212
√
h̄c = 5.3843836 10−14 kg1/2 m3/2

sec
.

0.2.4 Conventions

Step functions

The Whittaker (or step) function is a function of a real number :

θ(x) =

{
1 if x ≥ 1
0 if x < 0

. (1)

We extend this to a logical step function of a predicate P :

θ(P) =

{
1 if P is true
0 if P is false

. (2)

6Meaning that it has the same value in all possible systems of units ! An alien civiliza-
tion in outer space will find the same value.
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The metric

By convention, the Minkowski metric7 has the form

gµν = gµν = diag(1,−1,−1,−1) .

In many textbooks the metric tensor is introduced as a diagonal matrix. This
is of course misleading since the covariant metric tensor has only lower in-
dices, whereas a matrix has one upper and one lower index. Unfortunately,
the ‘correct’ matrix form of the metric, which would be gµν , equals the iden-
tity matrix whatever the metric !

Kronecker’s symbol

The Kronecker symbol is defined by

δαµ =

{
1 if α = µ
0 if α 6= µ

.

Note : in Minkowski space, Kronecker symbols tend to carry one upper, and
one lower index. Kronecker symbols with two upper or two lower indices are
slightly suspect and to be treated with care.

The antisymmetrizer

Using Kronecker symbols we can build the following antisymmetric objects :{
µ1

ν1

}
= δµ1ν1 ,

{
µ1 µ2

ν1 ν2

}
= δµ1ν1δ

µ2
ν2 − δµ1ν2δµ2ν1 ,{

µ1 µ2 µ3

ν1 ν2 ν3

}
= δµ1ν1δ

µ2
ν2δ

µ3
ν3 + δµ1ν2δ

µ2
ν3δ

µ3
ν1 + δµ1ν3δ

µ2
ν1δ

µ3
ν2

− δµ1ν1δµ2ν3δµ3ν2 − δµ1ν2δµ2ν1δµ3ν3 − δµ1ν3δµ2ν2δµ3ν1

and so on. Here we encounter all signed permutations8 of the lower indices.
These are compuationally handy as we see below.

7In the usual Cartesian coordinate systems. Since we are not doing general relativity
in these notes, we shall adhere to this simplest of coordinate system throughout, except
when discussing phase space integration where polar coordinates often come in handy.
But there we shall not refer to the metric.

8Even permutations occur with a +, and odd permutations with a – sign.
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The Levi-Civita symbol

The totally antisymmetric Levi-Civita symbol is defined by

ε0123 = + 1 hence ε0123 = − 1 .

This implies the following identities :

εµ1µ2µ3µ4ε
ν1ν2ν3ν4 = −

{
ν1 ν2 ν3 ν4

µ1 µ2 µ3 µ4

}
,

εµ1µ2µ3µ4ε
ν1ν2ν3µ4 = −

{
ν1 ν2 ν3

µ1 µ2 µ3

}
,

εµ1µ2µ3µ4ε
ν1ν2µ3µ4 = −2

{
ν1 ν2

µ1 µ2

}
,

εµ1µ2µ3µ4ε
ν1µ2µ3µ4 = −6

{
ν1

µ1

}
,

εµ1µ2µ3µ4ε
µ1µ2µ3µ4 = −24 .

In order not to lumber ourselves with too many explicit Lorentz indices, we
shall use notations such as

εµ(a, b, c)

to stand for
εµνρσaνbρcσ .

Finally, although it falls outside the scope of these notes, it is useful to note
that the Kronecker and antisymmetrizer symbols are fully-fledged tensors
in a much wider class of spaces than Minkowski space, but the Levi-Civita
symbols themselves are not. For instance, if we move from Cartesian to
polar coordinates, say, the Kronecker symbol remains unaffected but the
Levi-Civita is changed.

Minus in the momentum

There is a subtlety : the contravariant partial derivative contains a possibly
surprising minus sign :

∂µ =
∂

∂xµ
=

(
1

c

∂

∂t
, −~∇

)
. (3)

This explains why in nonrelativistic quantum mechanics the momentum op-
erator is ~p = −ih̄ ~∇ whereas in the relativistic theory we use pµ = ih̄ ∂µ.
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The polyparenthetophobe rules

This deals with the notation for compound vector products. If pµ1,2,3,4 are
four-vectors, then the expression

(p1 + p2 · p3 + p4)

must be understood to mean

(p1 · p3) + (p2 · p3) + (p1 · p4) + (p2 · p4)

The more rigorously correct form

(
(p1 + p2) · (p3 + p4)

)
is in my opinion less easily readable, unless by true parenthetophilomaniacs.
In the same spirit, a slight tendency to periodophobia will lead us to write,
e.g., (pq) as shorthand for (p · q) where no risk of confusion is likely. Also, k2

occurs when it is clear that (k ·k) is intended rather than the second spacelike
component of kµ.

In favor of loose terminology

Among particle physicists there exist a tendency to be sloppy with some
terms. In particular this holds for the usage of the words ‘mass’ and ‘mo-
mentum’. Strictly speaking, in the Feynman rules to be discussed the ‘mass’
m and the ‘momentum’ kµ have dimensions of inverse length and therefore
cannot be the same as the notions of the classical mass M , expressed in kg,
and the classical momentum pµ, expressed in (kg m/sec) . As discussed in
section 5.3.3, these various notions are related by

m = Mc/h̄ , kµ = pµ/h̄ .

Not wishing to succumb to pedantry, I shall use ‘mass’ and ‘momentum’
insouciantly. Experience shows that one easily gets used to it.
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Chapter 1

QFT in zero dimensions

1.1 Introduction

For the description of elementary particles, a theory including both relativity
and quantum mechanics is necessary ; we shall introduce relativity further
on, and concentrate in this chapter on the quantum-mechanical nature of
nature. The fundamental object used for describing the particles is a quantum
field. In many treatments quantum fields are considered to be operator-valued
entities ; we shall rather adhere to Feynman’s approach and use what are
called c-number fields. Such a field assigns one or more numbers to every
point in spacetime, and is hence a pretty complicated subject the behaviour
of which is not to be characterized trivially, especially when it also undergoes
quantum fluctuations. It is therefore useful to first build up expertise in the
various necessary techniques in a more controllable situation. To this end
we shall first simplify the whole four-dimensional spacetime arena of particle
physics to a lower-dimensional system ; in fact, we shall reduce spacetime to
a single point, hence a zero-dimensional arena. The quantum fields are then
assignments of a single number ; the simplest quantum field is, in this case,
a single stochastic, or random, number. Many of the techniques of quantum
field theory do apply to this case : in particular the notion of path integrals,
Green’s functions, the Schwinger-Dyson equation, and Feynman diagrams
come up naturally.

21
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1.2 Probabilistic considerations

1.2.1 Quantum field and action

We shall consider a quantum field ϕ that takes its values on the whole real
axis from −∞ to +∞. Since it is a random variable, the most we can specify
about it is its probability density P (ϕ), which we write, for now, as

P (ϕ) = N exp
(
− S(ϕ)

)
. (1.1)

The function S(ϕ) is called the action of the particular quantum field theory :
in a sense, it defines the theory. For the probability density to be acceptable,
S(ϕ) must go to infinity sufficiently fast as |ϕ| → ∞. The normalization
factor N is defined by1

N−1 =
∫

exp
(
− S(ϕ)

)
dϕ . (1.2)

1.2.2 Green’s functions, sources and the path integral

Since the quantum field is a random variable, the most that can be com-
puted about it2 is the collection of its moments, in the jargon called Green’s
functions3 :

Gn ≡ 〈ϕn〉 ≡ N
∫

exp
(
− S(ϕ)

)
ϕn dϕ , n = 0, 1, 2, 3, . . . . (1.3)

1If not explicitly indicated otherwise, integrals run from −∞ to +∞.
2You are here approaching a career decision. You may decide simply to measure the

value of ϕ : in that case you have decided to become an experimentalist rather than a
theorist.

3A clarifying remark must be made here. In this text, the Green’s functions are simply
defined to be expectation values. This may appear to contrast with the use of Green’s
functions in the solution of inhomogeneous linear differential equations such as are encoun-
tered in classical electrodynamics where one uses them to compute the electromagnetic
field configurations for given sources. The difference is only apparent since, as we shall
recognize, the latter type of Green’s functions are in our treatment simply the two-point
Green’s functions ; and for theories such as electrodynamics, where the electromagnetic
fields do not undergo self-interaction, the two-point functions are in fact the only nonzero
connected Green’s functions. Be not, therefore, misled into thinking that there are some-
how two sorts of Green’s functions. The Green’s function formulation of electrodynamics
will in fact appear as the classical limit of the Schwinger-Dyson equation discussed below.
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We shall assume that Gn exists for all n. By construction, we must always
have

G0 =
〈
ϕ0
〉

= 〈1〉 = 1 . (1.4)

The most fruitful way4 of discussing the set of all Green’s functions is in
terms of their generating function :

Z(J) =
∑
n≥0

1

n!
Jn Gn . (1.5)

This is called the path integral, for reasons that will become clear later. It
can be written as

Z(J) = N
∫

exp
(
− S(ϕ) + Jϕ

)
dϕ . (1.6)

The number J , which here serves purely as a device to distinguish the various
Green’s functions, is called a source, again for reasons that will become ap-
parent later. Once Z(J) is known, an individual Green’s function is extracted
by differentiation :

Gn =

⌊
∂n

(∂J)n
Z(J)

⌋
J=0

. (1.7)

1.2.3 Connected Green’s functions

The path integral Z(J) contains all the information about the Green’s func-
tions, and hence about the probability density P (ϕ). The same information
is, therefore, also contained in its logarithm. We write

W (J) = logZ(J) ≡
∑
n≥1

1

n!
Jn Cn , (1.8)

where the sum starts at n = 1 since Z(0) = 1. The quantities Cn (with,
obviously C0 = 0 since G0 = 1) are called the connected Green’s functions of
the theory, and will play an important rôle in what follows.

The connected Green’s functions can be recognized to be the cumulants
of the probability density:

C1 = 〈ϕ〉 : the mean,
C2 = 〈(ϕ− 〈ϕ〉)2〉 : the variance,
C3 = 〈(ϕ− 〈ϕ〉)3〉 : the skewness,
C4 = 〈(ϕ− 〈ϕ〉)4〉 − 3C2

2 : the kurtosis,

4Kids ! Do this at home. Whenever a infinite collection of objects with some kind of
structure between them occurs, generating functions are always a good idea.
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and so on.E 1

Since W (0) = C0 = 0, the same information about the probability density
is also contained in the field function:

φ(J) ≡ ∂

∂J
W (J) =

∑
n≥0

1

n!
Jn Cn+1 . (1.9)

Since from its definition, we have

φ(J) =
[∫

exp
(
− S(ϕ) + Jϕ

)
ϕ dϕ

] [∫
exp

(
− S(ϕ) + Jϕ

)
dϕ
]−1

,

(1.10)
we can say that φ(J) is the expectation value of the quantum field ϕ in the
presence of sources: to denote this, we might write

φ(J) = 〈ϕ〉J , (1.11)

which explains the similar typographies for the quantum field and the field
function. We should not, however, forget the difference in status of these
objects : ϕ is the physical entity, an unknowable, fluctuating random field ;
but φ(J) is an eminently well-defined function that contains all the informa-
tion about the probability density of ϕ, and is5 computable once the action is
given.

1.2.4 The free theory

The simplest probability density is probably6 the Gaussian one, given by the
action

S(ϕ) =
1

2
µϕ2 , (1.12)

with µ a positive real number. For any action, we shall call the part quadratic
in the fields (or bilinear in the case of several fields) the kinetic part. This
action, called the free action, consists of only a kinetic part. The path integral

5In principle, if not in practice completely.
6A uniform density may be thought even simpler, but then it cannot run from ϕ = −∞

to ϕ = +∞. As a matter of fact, ask any mathematician or physicist to name you a nice
proability density over the whole real line, and she will almost without fail quote the
Gaussian.
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is now simply computed by

Z(J) = N
∫

exp
(
−1

2
µϕ2 + Jϕ

)
dϕ

= N
∫

exp

−1

2
µ

(
ϕ− J

µ

)2

+
J2

2µ

 dϕ

= exp

(
J2

2µ

)
. (1.13)

It is not even necessary7 to actually calculate the value of N . By Taylor
expansion of the exponential, we immediately find that

G2n =
(2n)!

2nn!

1

µn
, G2n+1 = 0 , n = 0, 1, 2, . . . , . (1.14)

The connected Green’s functions follow from

W (J) = logZ(J) =
J2

2µ
, φ(J) =

J

µ
, (1.15)

so that the only nonvanishing connected Green’s function is

C2 =
1

µ
. (1.16)

The fact that here only the two-point connected Green’s function is nonvan-
ishing is the reason for calling this model the free theory (again, things will
become clearer later on, in a more realistic spacetime).

1.2.5 The ϕ4 model and perturbation theory

An action S(ϕ) may contain other terms than just the quadratic one. Such
terms are called interaction terms : they may be linear, but more usually
they are of higher power in the field ϕ. The simplest acceptable interacting
theory is therefore given by the action

S(ϕ) =
1

2
µϕ2 +

1

4!
λ4ϕ

4 . (1.17)

The (nonnegative !) real number λ4 is called a coupling constant : this model
is called the ϕ4 theory8. E 2

7Because we must always have Z(0) = 1.
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Computing the path integral is now a much less trivial matter. A possible
approach is to assume that, in some sense, the ϕ4 theory is close to a free
theory, that is, in the same some sense, λ4 is a small number. We can then
expand the probability density in powers of λ4 :

exp(−S(ϕ)) = exp
(
−1

2
µϕ2

) ∑
k≥0

1

k!

(
−λ4

24

)k
ϕ4k . (1.18)

This procedure is called perturbation theory. Having thus reduced the prob-
lem to the previous case of the free theory, we cavalierly9 interchange the
series expansion in λ4 with the integration over ϕ and arrive at the following
expression for the Green’s functions :

G2n = H2n/H0 ,

H2n =
1

µn
∑
k≥0

(4k + 2n)!

22k+n(2k + n)!k!

(
− λ4

24µ2

)k
. (1.19)

For example, we have

H0 = 1− 1

8
u+

35

384
u2 − 385

3072
u3 + · · · ,

1/H0 = 1 +
1

8
u− 29

384
u2 +

107

1024
u3 + · · · , (1.20)

with u ≡ λ4/µ
2. Note that, in this theory, also the normalization N has to

be treated perturbatively, which explains the expression for 1/H0. For the
first few nonvanishing Green’s functions we find

G0 = 1 ,

G2 =
1

µ

(
1− 1

2
u+

2

3
u2 − 11

8
u3 + · · ·

)
,

G4 =
1

µ2

(
3− 4u+

33

4
u2 − 68

3
u3 + · · ·

)
,

G6 =
1

µ3

(
15− 75

2
u+

445

4
u2 − 1585

4
u3 + · · ·

)
. (1.21)

8An action in which ϕ3 is the highest power does not lead to a convergent integral
over the real axis (see, however, Appendix 2). Of course, an action of the form S(ϕ) =
µϕ2/2 +λ3ϕ

3/3! +λ4ϕ
4/4! is perfectly acceptable, and we shall consider this ‘ϕ3/4 model’

later on.
9And not with impunity ! See Appendix 1.
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The corresponding connected Green’s functions are given by

C2 =
1

µ

(
1− 1

2
u+

2

3
u2 − 11

8
u3 + · · ·

)
,

C4 =
1

µ2

(
−u+

7

2
u2 − 149

12
u3 + · · ·

)
,

C6 =
1

µ3

(
10u2 − 80u3 + · · ·

)
. (1.22)

Note that, whereas the Green’s functions all have a perturbation expansion
starting with terms containing no λ4, the connected Green’s functions of in-
creasing order are also of increasingly high order in λ4 : the higher connected
Green’s functions need more interactions than the lower ones.

1.2.6 The Schwinger-Dyson equation for the path in-
tegral

Although the path integral is, generally, a very complicated function of J ,
it is nevertheless easy to find an equation describing it completely. This is
the Schwinger-Dyson equation (SDe), which we construct as follows. Let the
action be given by the general expression10

S(ϕ) =
∑
k≥1

1

k!
λk ϕ

k , (1.23)

where λ2 = µ. Now, from the observation that

∂p

(∂J)p
Z(J) = N

∫
exp

(
− S(ϕ) + Jϕ

)
ϕp dϕ , p = 0, 1, 2, 3, . . . (1.24)

we immedately deduce that−J +
∑
k≥0

λk+1

k!

∂k

(∂J)k

Z(J) =

= N
∫

exp
(
− S(ϕ) + Jϕ

) −J +
∑
k≥0

λk+1

k!
ϕk

 dϕ

= N
∫

exp
(
− S(ϕ) + Jϕ

) [
S ′(ϕ)− J

]
dϕ = 0 , (1.25)

10A constant, ϕ-independent term in the action is always immediately swallowed up by
the normalization factor N .
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where in the last lemma we have used partial integration, and the fact that
the integrand vanishes at the endpoints at infinity. Symbolically, we may
write the SDe as⌊

∂

∂ϕ
S(ϕ)

⌋
ϕ=∂/∂J

Z(J) = S ′
(
∂

∂J

)
Z(J) = JZ(J) . (1.26)

For our sample model, the ϕ4 theory, the SDe reads11E 3

1

6
λ4Z

′′′(J) + µZ ′(J)− JZ(J) = 0 . (1.27)

Using the series expansion of the path integral we can express this as a
relation between different Green’s functions :

λ4

6
Gn+3 + µGn+1 − nGn−1 = 0 , n ≥ 1 . (1.28)

This relation may usefully be rewritten as follows :

Gn =
1

µ

(
(n− 1)Gn−2 −

λ4

6
Gn+2

)
, n ≥ 2 . (1.29)

If we start by assigning to the Green’s functions the values

G0 = 1 , Gn = 0 , n 6= 0 , (1.30)

then repeated applications of Eq.(1.29) will precisely reproduce the Green’s
functions of Eq.(1.21)12.

1.2.7 The Schwinger-Dyson equation for the field func-
tion

From the definition of φ(J) as the logarithmic derivative of the path integral,
we can infer that

∂p

(∂J)p
Z(J) = Z(J)

(
φ(J) +

∂

∂J

)p
e(J) . (1.31)

11The SD equation is, in general, of higher than the first order. It therefore has several
independent solutions, only one of which corresponds to the usual perturbative expansion.
The nature of the other solutions is discussed in Appendix 2.

12The correct way to do this is to subsequently evaluate G2, G4, G6, . . .. On the first
iteration, the lowest-order expressions are obtained. Each subsequent iteration gives one
higher order in perturbation theory. Note that if we want to obtain the kth order term in
Gn, the (k + 1)th order term in Gn+2 is needed, and so on. It is therefore necessary to
compute the lower-order terms for more Gn’s.
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Here, e(J) is the unit function: e(J) ≡ 1. We immediately arrive at the form
of the SDe for the field function: E 4

S ′
(
φ(J) +

∂

∂J

)
e(J) = J . (1.32)

For the ϕ4 theory, it reads

φ(J) =
J

µ
− λ4

6µ

(
φ(J)3 + 3φ(J)

∂

∂J
φ(J) +

∂2

(∂J)2φ(J)

)
. (1.33)

Although this leads to very nonlinear relations between the various connected
Green’s functions this form of the SD equation is actually even simpler to
apply : with φ(J) = 0 as a starting pont, iterating the assignment (1.33) then
results13 in the correct form of φ(J), giving the connected Green’s functions
of Eq.(1.22). For the ϕ3/4 theory, the Schwinger-Dyson equation reads E 5

φ(J) =
J

µ
− λ3

2µ

(
φ(J)2 +

∂

∂J
φ(J)

)

−λ4

6µ

(
φ(J)3 + 3φ(J)

∂

∂J
φ(J) +

∂2

(∂J)2φ(J)

)
. (1.34)

1.3 Diagrammatic considerations

1.3.1 Feynman diagrams

An extremely useful tool for computing Green’s functions and connected
Green’s functions is at hand in the form of Feynman diagrams. In this section
we shall first introduce these diagrams and their concomitant Feynman rules.
Only after that shall we prove that these diagrams do, indeed, correctly
describe Green’s functions.

Feynman diagrams are constructs of lines and vertices. A vertex is a
meeting point for one or more lines. Diagrams are allowed in which one or
more lines do not end in a vertex but, in a sense wandern ins Blaue hinein :
such lines are called external lines. Lines that are not external lines, and

13For this approach to work in practice, it turns out to be useful to truncate φ(J) as a
power series in J , the truncation order increasing by one with each iteration. If you don’t
do this, each iteration triples the highest power in J , leading to very unwieldy expressions
with only the first few terms being actually correct.
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end up at vertices at both ends, are called internal lines. Diagrams may be
connected, in which case one can move between any two points in the diagram
following lines of that diagram ; or they may be disconnected, in which case
it consists of two or more disjoint pieces that are themselves connected. Any
graph14 consists of a finite number of connected subgraphs. The ‘empty’
graph, containing no lines or vertices whatsoever, also exists ; it does not
count as connected15. Diagrams containing one or more closed loops are
perfectly allowed. Diagrams with no closed loops are called tree diagrams.
Some examples of Feynman diagrams are

a connected graph a disconnected graph a connected tree graph

Note that the precise shape of the lines and the precise position of the ver-
tices are irrelevant. The important thing is the way in which the lines are
connected to the vertices16.

1.3.2 Feynman rules

The noteworthy thing about Feynman diagrams is that they have an alge-
braic interpretation; that is, they correspond to numbers that may be added
and multiplied. The assignment of a number to a Feynman diagram is gov-
erned by the Feynman rules , which postulate a numerical object for every
ingredient of a Feynman graph. In the simple zero-dimensional theories that

14The terms ‘diagram’ and ‘graph’ are interchangeable.
15Casuistically, it has no points between which one might wish to move.
16As you will discover, I have endeavoured in these notes to avoid drawing straight

lines, or to draw blobs or closed loops as circles. Many texts do employ only straight lines
and circles. This not only leads to awfully unæsthetic-looking pictures, but is also deeply
misleading. Readers will often look at Feynman diagrams with the idea that the lines
represent ‘particles moving freely through space’ so that the lines ‘ought’ to be straight
according to Newton’s first law. That this is completely wrong becomes immediately clear
if we realize that, in the zero-dimensional world we are dealing with for now, there cannot
be any notion of movement yet, let alone any Newton to pronounce on it. In fact, Newton’s
first law ought to be derived from our theory, and we shall do so in due course.
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we consider here the Feynman rules are just numbers. We may use, for
instance, the following rules :

↔ 1/µ

↔ −λ3

↔ −λ4

↔ +J

Feynman rules, version 1.1 (1.35)

A vertex at which a single line ends (and which carries a Feynman rule factor
+J) is called a source vertex.

A disconnected diagram evaluates to the product of the values of its
disjunct connected pieces. Because of this multiplicative rule, the value of
the empty diagram is taken to be unity.

In addition, we assign to every Feynman diagram a symmetry factor. The
symmetry factor is the single most nontrivial ingredient of the diagrammatic
approach. We shall therefore devote a separate section to this issue.

1.3.3 Symmetries and multiplicities

Feynman diagrams have, in general, an ‘inner’ and an ‘outer’ part. The ‘in-
ner’ part consists of the various vertices and internal lines : the ‘outer’ part
is made up from the external lines (if any). The inner part concomitates with
the symmetry factor of the diagram, and for the outer part we have what
may be called the multiplicity , to be discussed below. Let us first turn to the
symmetry factor.

For the symmetry factor, the rules are the following :

• for every set of k lines that may be permuted without changing the
diagram, there will be a factor 1/k! ;
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• for every set of m vertices that may be permuted without changing the
diagram, there will be a factor 1/m! ;

• for every set of p disjunct connected pieces that maybe interchanged
without changing the diagram, there will be a factor 1/p!;

• a factor 1/k for every k-fold rotational symmetry17;

• a factor 1/2 for every mirror symmetry.

External lines cannot be permuted without changing the diagram. Since
external lines cannot be permuted, only vacuum diagrams, that is diagrams
without any external lines, can have a rotational symmetry. It is important
to note that the symmetry factor cannot be read off from the individual
components of the diagram, but depends on the topology of the whole di-
agram18. As our universe grows from zero to more dimensions, and as the
particles considered acquire more properties, the Feynman rules will grow in
complication ; but the symmetry factors remain the same19.

A few examples of diagram values are presented here. First, consider the
diagram

=
λ3

2

µ5
. (1.36)

In this case, the symmetry factor is 1, since for a tree diagram no internal
lines or vertices can be interchanged with impunity. The similar-looking
diagram

=
1

2

λ3
2

µ5
J3 . (1.37)

has a symmetry factor 1/2! since the upper two one-point vertices are inter-
changeable. Then, there is the graph

= −1

2

λ4

µ3

17Note: 1/k, not 1/(k!).
18This is what makes the automated evaluation of diagrams a nontrivial task : compo-

nent factors of diagrams can be easily assigned, but working out the symmetry factor of a
diagram calls for for very complicated computer algorithms indeed.

19This is only modified if we include lines of different types, or oriented lines. Then again,
the more-dimensional diagrams have the same symmetry factors as their zero-dimensional
siblings.
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Here, there is a symmetry factor 1/2 because the ‘leaf’ can be flipped over
without changing the diagram20. The diagram

=
1

6

λ4
2

µ5

carries a symmetry factor of 1/3! because the three internal lines are inter-
changeable. The graph

= −1

4

λ4
3

µ7

carries a symmetry factor (1/2!)(1/2!) since there are now only two inter-
changeable internal lines, and a single ‘leaf’. Finally, the diagram

=
1

48

λ4
2

µ4

has a symmetry factor (1/4!)(1/2!) since there are 4 equivalent internal lines,
and moreover the diagram can be ‘flipped over’ without changing it. E 6

Next, we address the multiplicity. This is the number of different ways
the external lines (that each have their own ‘individuality’) can be attached.
To determine the multiplicity we must imagine that the whole diagram, or a
part of it, can be ‘flipped over’ while retaining the same attachement of the
external lines. To illustrate this, we temporarily denote the external lines
with a letter, and then notice that the two diagrams

a

b

c

d

and
c

d

b

a

are, in fact, identical ; the multiplicity of this graph is therefore 3, since
there are 3 ways to group four letters into two groups of two without regard

20This is due to the fact that the line in the loop is not oriented: for oriented lines it
will no longer hold. The discussion of symmetry factors of Feynman diagrams goes, in
practice, with a lot of remarks like ‘... so you flip over this leaf, you wriggle this set of
internal lines, you shove these vertices back and forth ... see ?’ Although the symmetry
factor is totally unambiguous, the arguments for a symmetry factor often come with a lot
of prestidigitatorial hand-waving and finger-wriggling in front of a blackboard.
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to ordering. We see that the diagram of Eq.(1.36) has, also, multiplicity 3,
while that of Eq.(1.37) has multiplicity 1. We see that, if we include the
multiplicity, the replacing of p external lines with p one-point source vertices
induces a factor of 1/p!, which will become important later on.

The determination of symmetry factors may appear somewhat fanciful,
calling for finger-wriggling and such, but of course it has a solid and un-
ambiguous basis ; the symmetry factor (and the multiplicity) can always
be computed. The procedure is somewhat involved, and will be outlined in
appendix 2.

1.3.4 Vacuum bubbles

Feynman diagrams exist that contain neither external lines nor source ver-
tices. These are called vacuum bubbles. The empty graph (which we shall
denote by the symbol E) is, obviously, a vacuum bubble. We may consider
the set of all vacuum bubbles, which we denote by H0. Let us assume that
only four-point vertices occur. Then, H0, given by

H0 = E + + + + + · · · (1.38)

(where the ellipsis denotes diagrams with more four-vertices) evaluates to

H0 = 1− 1

8

λ4

µ2
+

1

2

(
1

8

λ4

µ2

)2

+
1

16

λ4
2

µ4
+

1

48

λ4
2

µ4
+ · · ·

= 1− 1

8

λ4

µ2
+

35

384

λ4
2

µ4
+ · · · , (1.39)

which, indeed, looks suspiciously like H0 for the ϕ4 theory.

1.3.5 An equation for connected graphs

We shall now construct an equation for a special set of diagrams. We do this
for the set of Feynman rules of section 1.3.2. First, let us denote by Cn the
set of all connected graphs with no source vertices and precisely n external
lines. Clearly this is a enumerably infinite set. Next, we define the object
Ψ(J), denoted by the symbol

Ψ(J) ≡
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

(1.40)
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to be the set of all connected diagrams with precisely one external line, and
any number of source vertices. The shading indicates that all the diagrams
in the blob must be connected . Clearly, then, we have

Ψ(J) =
∑
n≥0

1

n!
Jn Cn+1 , (1.41)

where the extra factor 1/n! is the additional symmetry factor for n source
vertices.

Let us now consider what can happen if we enter the blob of Eq.(1.40)
along the single external line. In the first place, we can simply encounter a
source vertex, so that the diagram is just

=
J

µ
. (1.42)

Alternatively, we may encounter a vertex. If this is a three-point vertex, the
line splits into two. Taking one of these branches, we may be able to come
back to the vertex via the other branch. In that case, the diagram has the
form

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

On the other hand, it may happen that the two branches end up in disjunct
connected pieces of the diagram, which then looks like

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������

������
������
������
������
������
������

Note that these two alternative cases can be unambiguously distinguished
because we have restricted ourselves to using only connected graphs. Another
important insight is that, in the above diagram, the two final blobs (with their
attached lines) are both exactly identical to the original Ψ(J) of Eq.(1.40),
and therefore also to each other : a situation that is of course only possible
because the blobs represent infinite sets of diagrams. In contrast, the closed-
loop blob of the first alternative is not equal to Ψ(J) since it has not one
but two lines sticking out ; but then again these two lines are completely
equivalent.
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If we encounter a four-point rather than a three-point vertex, the line
splits into three, with three alternatives : no branches meeting again fur-
ther on, all three meeting again, or only two out of the three. We find the
diagrammatic equation

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
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�����
�����
�����
�����
�����

= + �����
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+
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�����
�����
�����
�����
�����
�����
�����
�����
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. (1.43)

Now, realize that

�������
�������
�������
�������
�������
�������
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�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

=
∑
n≥0

1

n!
Jn Cn+2 =

∂

∂J
Ψ(J) (1.44)

and

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

=
∑
n≥0

1

n!
Jn Cn+3 =

∂2

(∂J)2 Ψ(J) , (1.45)

so that we can translate the diagrammatic equation (1.43) into an algebraic
equation for Ψ(J) by carefully implementing the correct Feynman rules, in-
cluding nontrivial symmetry factors for equivalent blobs and lines:

Ψ(J) =
J

µ
− λ3

µ

(
1

2
Ψ(J)2 +

1

2

∂

∂J
Ψ(J)

)

−λ4

µ

(
1

6
Ψ(J)3 +

1

2
Ψ(J)

∂

∂J
Ψ(J) +

1

6

∂2

(∂J)2 Ψ(J)

)
. (1.46)

Now Eq.(1.46), obtained from the Feynman diagrams via the Feynman rules,
has exactly the same form as Eq.(1.34), valid for the field function φ(J) – note
the importance of the symmetry factors ! Moreover, the iterative solution
for φ(J) starts with φ(J) = J/µ, also identical to the diagrammatic starting
point . We therefore conclude that

Ψ(J) = φ(J) , (1.47)

in other words
Cn = Cn , n ≥ 1 . (1.48)
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This proves that connected Green’s functions can be obtained by the follow-
ing recipe: to obtain Cn (n ≥ 1), write out all connected Feynman
diagrams with no source vertices and precisely n external lines.
Evaluate the diagrams using the Feynman rules, and sum them. E 7

1.3.6 Semi-connected graphs and the SDe

A useful notion, which allows us to write SDe’s more compactly, is that of
semi-connected graphs. We shall denote these with a lightly shaded blob, and
they are defined as follows : a semi-connected graph with n ≥ 1 lines at the
left is a general unconnected graph with n lines on the left (and any number
of other external lines), with the constraint that each connected piece of the
semi-connected graph is attached to at least one of the lines indicated on the
left. This may sound more intimidating that is actually is : an example is

1

2

3

=
1

3

2
+

3

1

2
+

3

1

2

+

1

3

2

+ 2

1

3

. (1.49)

A single semi-connected graph with n indicated lines stands for B(n) dia-
grams with explicit connected graphs, where B(n) is the so-called Bell num-
ber : the number of ways to divide n distinct objects into non-empty groups21.
For ϕ3/4 theory, the SDe then becomes simply

= + + . (1.50)

We shall use semi-connected diagrams to good effect in later chapters. Note
that the sum of the symmetry factors of all connected diagrams arising from

21For small n we have B(0) = 1, B(1) = 1, B(2) = 2, B(3) = 5, B(4) = 15, and
B(5) = 52 ; more general values can be obtained from the identity∑

n≥0

B(n)
xn

n!
= exp (ex − 1) .

which is derived in Appendix 13.15.
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a ϕp vertex must be equal to B(p− 1)/(p− 1)!, which may serve as a check
on your SDe’s.

1.3.7 The path integral as a set of diagrams

By affixing a source vertex to the single external line of Ψ(J), we immediately
have the result that the generating function W (J) is the sum of all
connected Feynman diagrams without external lines and at least
one source vertex. If we explicitly indicate the source vertices, and recall
that n source vertices in a diagram imply a factor 1/n!, we can write

W (J) =
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+ · · · , (1.51)

where the ellipsis contains connected contributions with more source vertices.
Vacuum bubbles do not contribute to W (J). By taking careful account of
the symmetry factor assigned to identical connected parts of a disconnected
diagram, we can see that
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+ (lots of other diagrams) . (1.52)

Similar arguments hold for higher powers of W (J). In addition, W (J)0 = 1
is represented by the empty diagram. From this it easy to see that the
path integral Z(J) consists of all Feynman diagrams without exter-
nal lines, and without vacuum bubbles, but including the empty
diagram.

We might wonder why the vacuum bubbles are so conspicously absent.
Suppose that we would allow the inclusion of arbitrary numbers of vacuum
bubbles in Z(J). Then the Green’s function G0 = 1 would be represented
not by the single empty graph but by the whole set H0 discussed before:
indeed, H0 is proportional to H0. In fact, any Green’s function Gn would
acquire exactly the same additional factor H0. The normalization factor N ,
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that must be chosen such as to make G0 equal to unity, therefore extracts
exactly the factor H0 from any Green’s function. In the jargon, the vacuum
bubbles ‘disappear into the normalization of the path integral’. This is not
to say that vacuum diagrams are never important ; but in our approach
to computing Green’s functions and connected Green’s functions they are
indeed irrelevant. Another way of seeing this is very simple : if we take
our diagrammatic prescription of Z(J) and then take J = 0, all diagrams
disappear except the empty one, and we find Z(0) = E = 1, just as we must.

1.3.8 Dyson summation

Why is the Feynman rule for lines, stemming from the quadratic part of
the action, so different from those for the vertices, that come from the non-
quadratic terms ? To see that our treatment is actually a consistent one, let
us consider an action is given by

S(ϕ) =
1

2
µϕ2 +

1

2
λ2ϕ

2 +
1

4!
λ4ϕ

4 . (1.53)

If we wish, we may treat the λ2 term as an interaction, described by a vertex
with two legs. the SDe is then seen to be
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corresponding to

φ(J) =
J

µ
− λ2

µ
φ(J)− λ4

6µ

(
φ(J)3 + 3φ(J)

∂

∂J
φ(J) +

∂2

(∂J)2φ(J)

)
. (1.55)

Multiplying the equation by µ and transposing the λ2 term to the left, we
obtain

φ(J) =
J

µ+ λ2

− λ4

6(µ+ λ2)

(
φ(J)3 + 3φ(J)

∂

∂J
φ(J) +

∂2

(∂J)2φ(J)

)
, (1.56)

precisely what we woud have obtained by taking the combination (µ+λ2) as
the kinetic part from the start. This procedure, by which the effect of two-
point (effective) vertices is subsumed in a redefinition of the kinetic part,
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is called Dyson summation. In the present example, the summation is of
course trivial ; but we shall see that two-point interactions can also arise
from more complicated Feynman diagrams corresponding to higher orders
in perturbation theory. The manner in which Dyson summation is usually
treated is by explicitly writing out the propagator, ‘dressed’ with two-point
vertices in all possible ways :

+ + + + · · ·

=
1

µ
− 1

µ
λ2

1

µ
+

1

µ
λ2

1

µ
λ2

1

µ
− 1

µ
λ2

1

µ
λ2

1

µ
λ2

1

µ
+ · · ·

=
1

µ

∑
k≥0

(
− λ2

µ

)k

=
1

µ

1

1 + λ2/µ
=

1

µ+ λ2

, (1.57)

where it should come as no surprise that we cheerfully ignore all issues about
convergence, in the spirit of perturbation theory. Every propagator line can
(and must !) be dressed in this way once any two-point vertex (elementary
of effective, that is, as the result of a collection of closed loops with two legs
sticking out) is at hand.

1.4 Planck’s constant

1.4.1 The loop expansion

As we have seen, Green’s functions can be computed in a perturbative ex-
pansion in which the coupling constant λ4 is in some sense a small number.
Now consider doing perturbation theory in the ϕ3/4 theory. We then have
to decide on the relative order of magnitude of the two coupling constants
λ3 and λ4 : are they of the same order, or should we take, say, λ4 to be
of the same order as λ3

2 ? And what if even more coupling constants are
involved ? We shall adopt the approach that the order of magnitude of the
various diagrams should depend not on their coupling-constant content but,
rather, on their complexity, in particular on the number of closed loops. That
is, the more closed loops a diagram contains, the smaller it is considered to
be ; and perturbation theory then prescribes the perturbation expansion to
be truncated at a given number of closed loops.
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To quantify these ideas we shall assign to every closed loop a factor h̄,
where h̄ is a (small) number22. That is, we define the following ratios :
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etcetera. This implies, of course, a modification of the Schwinger-Dyson
equation from the form (1.34) into

φ(J) =
J

µ
− λ3

2µ

(
φ(J)2 + h̄φ(J)

∂

∂J
φ(J)

)

−λ4

6µ

(
φ(J)3 + 3h̄φ(J)

∂

∂J
φ(J) + h̄2 ∂2

(∂J)2φ(J)

)
. (1.58)

In turn, we shall have to modify everything else as well : we must re-define

φ(J) = h̄
∂

∂J
logZ(J) , (1.59)

so that the SDe for the path integral must read

S ′
(
h̄
∂

∂J

)
Z(J) = JZ(J) . (1.60)

The path integral must therefore be re-defined with inclusion of h̄ :

Z(J) = N
∫

exp
(
−1

h̄

(
S(ϕ)− Jϕ

))
dϕ , (1.61)

and for the Green’s functions we have

Gn =

⌊
h̄n

∂n

(∂J)n
Z(J)

⌋
J=0

, Cn =

⌊
h̄n

∂n

(∂J)n
logZ(J)

⌋
J=0

. (1.62)

The Feynman rules must, therefore, take the form

22As the notation suggests, it will develop into Planck’s (or Dirac’s) constant as our
universe increases in complexity.
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↔ h̄

µ

↔ −λ3

h̄

↔ −λ4

h̄

↔ +
J

h̄

Feynman rules, version 1.2 (1.63)

The introduction of h̄ as the perturbation expansion parameter allows us to
determine the relative orders of magnitude of coupling constants. Since with
our definition all tree diagrams are of the same order, the two graphs

and

tell us that λ4 is of the same order as λ3
2. Similarly, a k-point coupling

constant λk is of the same order as λ3
k−2. As a last point, you may note that

the including h̄ does not influence the Dyson summation of sec.1.3.8, since
every extra two-point vertex (with 1/h̄) also gives an extra propagator (with
h̄).E 8

1.4.2 Diagrammatic sum rules

Since in the Feynman rules h̄ appears all over the place, it is advisable to
check that the h̄-behaviour of the Feynman graphs is indeed as desired. To
this end, we shall first determine diagrammatic sum rules , valid for all non-
trivial Feynman diagrams. For an arbitrary given unconnected diagram let
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us define the characteristics

E = number of external lines,
I = number of internal lines,
Vq = number of vertices of q-point type,
L = number of closed loops,
P = number of disjunct connected pieces.

An example is

E = 2 , I = 6 , V1 = 1 , V3 = 3 ,

V4 = 1 , P = 1 , L = 2 .

We now look for linear combinations T of these numbers that are the same
for all diagrams. That is, whatever we do to a diagram, the value of T must
remain unchanged. It is easy to see that any diagram can be transformed into
any other diagram by application of the following four basic transformations,
or their inverse :

(i) coalescing a q-vertex and a 3-vertex :

↔

(ii) adding an external line onto any other line :
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(iii) cutting through a line such that the graph falls apart :
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(iv) cutting through a line which is part of a loop :
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These four operations modify the characteristics as follows :

(i) : V3 → V3 − 1 , Vq → Vq − 1 , Vq+1 → Vq+1 + 1 , I → I − 1 ;
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(ii) : E → E + 1 , I → I + 1 , V3 → V3 + 1 ;

(iii) : I → I − 1 , E → E + 2 , P → P + 1 ;

(iv) : I → I − 1 , E → E + 2 , L → L− 1 .

If the combination

T = αEE + αII +
∑
q

αqVq + αLL+ αPP (1.64)

is to be invariant under the four basic transformations, then the coefficients
α must obey

(i) : −αq + αq+1 − α3 − αI = 0 ,

(ii) : αE + αI + α3 = 0 ,

(iii) : αI − 2αE − αP = 0 ,

(iv) : αI − 2αE + αL = 0 . (1.65)

Adding (i) and (ii) we find

−αq + αq+1 + αE = 0 , (1.66)

with the general solution
αq = β − qαE . (1.67)

(ii) then gives us
αI = 2αE − β (1.68)

and (iii) and (iv) yield αP = −αL = −β. The invariant T can therefore be
written as

T = αE

(
−
∑
q

qVq + E + 2I

)
− β

(
−
∑
q

Vq + I + P − L
)

, (1.69)

where αE and β are undetermined. We see that we have precisely two dia-
grammatic sum rules. By inspection of an arbitrary23 diagram we see that
T = 0, so that the sum rules are∑

q

Vq = I + P − L ,
∑
q

qVq = 2I + E . (1.70)

23Arbitrary, except that it must contain at least one vertex. There are two connected
diagrams without vertices: the first one, , conforms to the sum rules by choosing
I = −1, and the second one, , fits in if we choose I = 0. But these choices are
obviously somewhat forced.



March 26, 2017 45

We are now able to read off the power of h̄ associated with an arbitrary
connected diagram (with P = 1). From the Feynman rules, we infer that
every line contributes a factor h̄ and every vertex a factor 1/h̄. The total
power of h̄ is, therefore

E + I −
∑
q

Vq = E + L− 1 .

Independently of its precise form, the power of h̄ of any connected diagram
depends only on the number of its external lines and the number of loops,
and indeed each extra loop leads to an additional factor h̄, as advertised.

1.4.3 The classical limit

Since in perturbation theory h̄ is taken to be an infinitesimally small quantity,
the limit h̄ → 0 is of automatic interest. This limit has to be taken with
some care since h̄ = 0 strictly would imply that only Green’s functions with
E +L = 1 would survive24. Instead, the classical limit h̄→ 0 is meant to be
the result of leaving out diagrams containing closed loops. The diagrammatic
SDe will, for the ϕ3/4 theory, then take the form
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. (1.71)

The corresponding solution will be denoted by φc(J) (with c for ‘classical’),
and the classical SDe is written as

φc(J) =
J

µ
− λ3

2µ
φc(J)2 − λ4

6µ
φc(J)3 . (1.72)

The classical field function is exclusively built up from tree diagrams : this
is called the tree approximation. Note that it obeys an algebraic, rather than
a differential, equation, that can be written as

S ′(φc(J)) = J . (1.73)

This is called the classical field equation. This is not to be confused with
equations from classical, nonquantum physics. In fact, the classical field

24Later on, the discussion about truncation will clarify how this is not inconsistent.
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equations will turn out to be the Klein-Gordon, Dirac, Proca and Maxwell
equations. Of these, only the Maxwell equations can be considered classical,
since they do not contain a particle mass.. Note that such equations have, in
general, more than a single solution. Here, however, we are interested in that
solution that vanishes as J → 0, which may be written out using Lagrange
expansion :

φc(J) =
J

µ
+
∑
n≥1

1

n!
µn−1 ∂n−1

(∂J)n−1

[(
S ′
(
J

µ

))n]
. (1.74)

Let us now look at the path-integral picture of the classical limit. When h̄
becomes small, the fluctuations in the path integrand

exp

(
−1

h̄

(
S(ϕ)− Jϕ

))

become extremely exaggerated. The main contribution to 〈ϕ〉 therefore
comes from that value where the probability distribution attains its max-
imum, that is,

〈ϕ〉J ≈ ϕc , where S ′(ϕc) = J , S ′′(ϕc) > 0 . (1.75)

Also in the classical limit, we therefore have φc(J) = ϕc.

1.4.4 On second quantisation

The ‘classical’ approximations of our quantum field theory are25 quantum
equations. In fact, this is not so very surprising. In ordinary quantum me-
chanics, the classical variables such as position, momentum, etcetera are
identified with the expectation values of their quantum-mechanical counter-
parts, and considered a useful approximation of reality as long as they are
reasonably well-defined26. So it is here again : the field generating function
φ(J) is considered as the expectation value of the quantum field ϕ, and it
is identified with the quantum-mechanical wave function of whatever object
it is we are studying. In this sense, to go from ϕ to a classical observable

25Will be found to be ; see the later chapters of these notes.
26With small uncertainty , that is, the variance of their statistical distribution around

the expectation value.



March 26, 2017 47

we have to ‘classicify’ two times. The transition from ordinary quantum me-
chanics to what we are doing here is therefore dubbed ‘second quantization’.
Of course, from the point of view we have taken here, this is simply a matter
of taking limits (expectation value upon expectation value), but if one comes
in from the classical side it may look quite mysterious. This is another re-
minder that one should not try to build a more fundamental theory from a
limiting case. Limiting cases are only hints.

1.4.5 Instanton contributions

As mentioned, for a non-free action S(ϕ), the equation (1.73) has, of couse,
more than a single solution27. Suppose that we have several such solutions,
denoted by ϕ(0)

c , ϕ(1)
c , ϕ(2)

c ,. . ., and that the minimal value of S(ϕ) − Jϕ is
attained for ϕ(0)

c . Then, the other classical solutions will give contributions
that, relative to the dominant one, are suppressed by exponential factors of
order

exp

(
−1

h̄

(
S(ϕ(k)

c )− S(ϕ(0)
c )− Jϕ(k)

c + Jϕ(0)
c

))
, k = 1, 2, . . . .

Here we plot the (normalized)
form of exp(−S(φ)/h̄) for the ϕ3/4

model with µ = λ4 = 1 and
λ3 = 1.8, for h̄ = 1 and h̄ = 0.15.
It is seen how the lowest mini-
mum of S(ϕ) starts to dominate
the integral as h̄ becomes small ;
the contribution from the sub-
leading maximum decreases non-
perturbatively fast.

Such subdominant solutions to the classical field equations are called instan-
tons. Their contribution to Green’s functions do, as we see, not have a series
expansion around h̄ = 0. Such nonpertubative effects are therefore not acces-
sible using Feynman diagrams. This is not to say that they are irrelevant.

27Since the action is at least of order ϕ3, the classical field equation is at least quadratic.
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Indeed, we usually have a finite value for h̄ ; more dramatically, if we let J
vary as a parameter, ϕ(1)

c , say, may for some value of J take over from ϕ(0)
c

as the true maximum position of the probability density, causing a sudden
shift in the value of φc(J) from ϕ(0)

c to ϕ(1)
c .

1.5 The effective action

1.5.1 The effective action as a Legendre transform

Since perturbation theory presumes that higher orders in the loop expansion
are small compared to lower orders, the following question suggests itself : is
it possible to find, for a given action S(ϕ), another action, called the effective
action, with the property that its tree approximation reproduces the full field
function of the original action S ? If such an effective action, denoted by
Γ(φ), exists, we must have

Γ′(φ) = J , (1.76)

where φ(J) is the full solution to the SDe belonging with S(ϕ). We can use
partial integration to find

Γ(φ) =
∫

J dφ = J φ−
∫

φ dJ = J φ− h̄W , (1.77)

where J is now to be interpreted as a function of φ. The transition from
W (J) to Γ(φ) is called the Legrendre transform. In classical mechanics, we
have the same situation : there, h̄W would be the Lagrangian with J as the
velocity and φ as the momentum, and then the effective action would turn
out to be the Hamiltonian.

An important fact to be noted about the effective action can be inferred
as follows. Let us consider the derivative of φ(J). If we denote the probability
density (including the sources) of the quantum field ϕ by PJ(ϕ), that is,

PJ(ϕ) =
A(ϕ)∫
dϕA(ϕ)

, A(ϕ) = exp
(
−1

h̄
(S(ϕ)− Jϕ)

)
, (1.78)

we can write this derivative as

1

h̄
φ′(J) =

1

h̄

d

dJ

(∫
PJ(ϕ) ϕ dϕ∫
PJ(ϕ) dϕ

)
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=

∫
PJ(ϕ) ϕ2 dϕ∫
PJ(ϕ) dϕ

− (
∫
PJ(ϕ) ϕ dϕ)2

(
∫
PJ(ϕ) dϕ)2

=

∫
PJ(ϕ1)PJ(ϕ2) (ϕ1

2 − ϕ1ϕ2) dϕ1 dϕ2

(
∫
PJ(ϕ) dϕ)2 . (1.79)

By symmetry, we can replace the factor (ϕ1
2 − ϕ1ϕ2) by (ϕ1 − ϕ2)2/2, so as

to see that dφ(J)/dJ is positive. This implies that

∂2

(∂φ)2 Γ(φ) =
dJ

dφ
> 0 . (1.80)

In other words, the effective action is concave everywhere28. Whereas one
would assume that the effective action Γ would differ only slightly from the
original action S, this can obviously no longer hold in situations where the
action S is not concave.

1.5.2 Diagrams for the effective action

A tree approximation consists of tree diagrams only. To see how the loop
effects of the action S end up in Γ, we define a new concept, that of a one-
particle irreducible (1PI) diagram. A connected Feynman graph is 1PI if
it contains no internal line such that cutting that line makes the diagram
disconnected.

1PI diagrams a non-1PI diagram

External lines, of course, do not enter in the 1PI criterion29. Note that a
diagram consisting in only external lines and a single vertex also counts as
1PI, since it does not have any internal lines to be cut whatsoever. A typical
one-loop 1PI diagram looks like this :

(1.81)

28This concavity persists in case there are more than just a single field involved. By
extension, it also holds for Euclidean theories in more dimensions ; see also Appendix 3.

29Including them would be silly, since any diagram falls apart if we chop through an
external line.
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Let us denote the set of all 1PI graphs with precisely n external lines by
−γn/h̄, where the convention is that the Feynman factors for the external
lines are not included. Consider, now, what happens if we enter the field
function by way of its single external leg, as in the SDe. If we encounter
a vertex, that vertex is part of a 1PI subdiagram (possibly consisting of
only the vertex itself). Indicating the 1PI property with cross-hatches, we
therefore obtain the diagrammatic equation
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· · · . (1.82)

Algebraically, it reads

φ(J) =
J

µ
− 1

µ

(
γ1 + γ2φ(J) +

1

2!
γ3φ(J)2 +

1

3!
γ4φ(J)3 + · · ·

)
, (1.83)

in other words
Γ′(φ) = J , (1.84)

where

Γ(ϕ) = γ1ϕ+
1

2!
(γ2 + µ)ϕ2 +

1

3!
γ3ϕ

3 +
1

4!
γ4ϕ

4 + · · · . (1.85)

We conclude that the vertices of the effective action are determined
by the 1PI diagrams. It must be noted that, in general, the effective action
contains vertices with arbitrarily large numbers of legs, even if the original
action S goes up only to ϕ3 or ϕ4, say.E 10

1.5.3 Computing the effective action

We shall now describe a computation of the effective action

Γ(φ) = Γ0(φ) + h̄Γ1(φ) + h̄2Γ2(φ) + · · · , (1.86)

from its Feynman diagrams, for a theory with arbitrary couplings :

S(ϕ) =
1

2
µϕ2 +

∑
k≥3

λk
k!
ϕk . (1.87)
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We start by considering a general one-loop 1PI diagram such as that of
Eq.(1.81), and cutting through the loop at some arbitrary place. We then
have a propagator ‘dressed’ with zero or more vertices where external lines
are ‘radiated off’. If there are precisely n external lines we can denote this
by

n

Such an object has, of course, its own SDe. Taking careful account of all
possibilities to attach external lines, we can write it as

n

= θ(n = 0)

+

(
n
1

)
n−1

+

(
n
2

)
n−2

+

(
n
3

)
n−3

+ · · · (1.88)

We define the generating function for such dressed propagators as

P (z) = =
∑
n≥0

zn

n!

n

, (1.89)

and see that the SDe reads

P (z) =
h̄

µ
− zλ3

µ
P (z)− z2

2!

λ4

µ
P (z)− z3

3!

λ5

µ
P (z)− · · · , (1.90)

in other words,

P (z) =
h̄

S ′′(z)
. (1.91)

We now close the loop again with an arbitrary vertex, at which vertex at least
one other external line is included. By the same combinatorial arguments as
above we can find the generating function L(z) for such loops :

L(z) = + + + · · ·
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=
1

2

{
−λ3

h̄
P (z)− zλ4

h̄
P (z)− z2

2!

λ5

h̄
P (z)− · · ·

}

= − S
′′′(z)

2S ′′(z)
. (1.92)

The symmetry factor 1/2 arises from the fact that the propagator is not
oriented and thus we have to avoid double-counting. Considering that a
propagator with n external legs leads to a closed loop with at least n + 1
external legs, we see that the one-loop effective action is given by

Γ1(φ) = −h̄
∫
dφ L(φ) =

h̄

2
log(S ′′(φ)) . (1.93)

A few remarks are in order here. In the first place, we see that the effective
action obtained in this way is only well-defined where the action itself is
concave, in agreement with the discussion in 1.5. In the second place, the
trick of closing the loop with an extra vertex, rather than just trying to
‘glue’ the endpoints of P (z) together, is technically useful since it avoids
enormous problems with the symmetry factors. To see this, consider the
three possibilities for n = 2 :

1 2 2 1
1 2

If we glue the endpoints of the propagator, the first two diagrams result in
the same loop graph, so that these three propagator diagrams end up as two
loop diagrams. With more external legs attached, this becomes ever so much
more complicated : assigning a special rôle to one external line avoids this.
In the last place, the above calculation is possible since all external lines are,
so to speak, identical. In more dimensions, where external lines can carry
momentum, this is no longer true. However, the effective potential, that is
the effective action at zero momentum, does lend itself to such a calculation
in higher dimensions30.

We can extend this treatment to higher loop orders as well. Let us denote
a vertex where at least n+ 1 lines come together by

n = n + n+1 + n+2 + · · · (1.94)

30For simple scalar theories. Of course external lines may carry more than just momen-
tum information, that is, they can also carry spin/charge/colour· · · information. Then the
calculation is again more difficult.



March 26, 2017 53

and assign to this dressed vertex the Feynman rule

n = −1

h̄
S(n+1)(z) . (1.95)

Now, we introduce the notion of a tadpole diagram : this is a connected di-
agram with precisely one external line and no source vertices. The effective
action as given above then follows from writing out the 1PI tadpole dia-
grams, replacing propagators by dressed propagators and vertices by dressed
vertices ; we can then simply read off the result.

→
���
���
���
���
���

���
���
���
���
���

= − S(3)(z)

2S(2)(z)
⇒ Γ′1(φ) =

S(3)(φ)

2S(2)(φ)
, (1.96)

as before. In two loops, the 1PI tadpole is given by the diagrams

+ + +

Dressing these tadpole diagrams gives us
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= h̄

{
S(3)(z)S(4)(z)

6 S(2)(z)3
− S(3)(z)3

4 S(2)(z)4
+
S(3)(z)S(4)(z)

4 S(2)(z)3
− S(5)(z)

8 S(2)(z)2

}
(1.97)

The two-loop contribution to the effective action is therefore

d

dφ
Γ2(φ) =

S(5)(φ)

8 S(2)(φ)2
− 5 S(3)(φ)S(4)(φ)

12 S(2)(φ)4
+

S(3)(φ)3

4 S(2)(φ)4
. (1.98)

The effective action itself, the integral over the above experession, has no
nice simple form as in Eq.(1.93), but is of course calculable as soon as S(φ) is
explicitly given ; moreover, we see that it will become undefined where S ′′(φ)
vanishes. From our diagrammatic approach we see that this will persist in
all loop orders31.

31Because in all 1PI diagrams we have to dress the propagators, which implies lots of
S′′(φ) in the denominators.
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1.6 Exercises for Chapter 1

Excercise 1 Green’s functions and connected Green’s functions
We have

Z(J) =
∑
n≥0

Gn
Jn

n!
, W (J) =

∑
n≥0

Cn
Jn

n!

and
W (J) = log(Z(J)) .

Using that G0 = 1, and the expansion

− log(1− x) =
∑
n≥1

xn

n
= x+

x2

2
+
x3

3
+
x4

4
+
x5

5
− · · · ,

express C0,...,5 in terms of the G’s.

Excercise 2 The problem with ϕ4 theory
By examining the case where λ is infinitesimally small, either positive and
negative, argue that the point λ = 0 establishes, in fact, an extremely singular
theory.

Excercise 3 The SD equation for Z in another action
For the action

S(ϕ) =
µ

2!
ϕ2 +

6∑
k=3

λk
k!
ϕk ,

Find the SDe for the path integral Z(J).

Excercise 4 Writing the SDE for φ
Let the action be S(ϕ). The SDe for the path integral obeys

S ′
(
h̄
d

dJ

)
Z(J) = JZ(J)

as we have seen in the course. Show that the SDe for the field function φ(J)
can be written as

S ′
(
φ(J) + h̄

d

dJ

)
e(J) = J

where e(J) ≡ 1 is the unit function. Do this using the fact that

Z(J) = exp
(

1

h̄

∫
dJ φ(J)

)
,

and then considering Z ′, Z ′′ and so on.
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Excercise 5 The SD equation for φ in another action
For the action of Exercis 3, derive the SDe for φ(J).

Excercise 6 The symmetry factor of life, the universe, and every-
thing
Devise a diagram (or set of diagrams) that has a symmetry factor of 1/42.

Excercise 7 Diagrammatic SDE for ϕ6 theory
Give the diagrammatic SDE for ϕ6 theory, and write it out algebraically.

Excercise 8 Vacuum diagrams
Consider a theory with couplings ϕn, n = 3, 4, 5, 6, . . ..

1. At one loop, there is a single vacuum diagram. Write it out, and prove
that its symmetry factor is actually zero.

2. At two loops, there are three vacuum diagrams. Write them down and
determine the symmetry factors.

3. A three loops, there are fifteen vacuum diagrams. Write them down
and determine the symmetry factors.

Excercise 9 Some diagrams to consider
Of the following 12 diagrams, determine the multiplicity factor, the symmetry
factor, and the number of loops :
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Excercise 10 SDe for the effective action
The effective action is defined such that Γ′(φ(J)) = J . Show that the SDe
for pure ϕ4 theory can be written as

µφ = Γ′(φ)− λ4

6

(
φ3 + 3h̄

φ

Γ′′(φ)
− h̄2 Γ′′′(φ)

Γ′′(φ)3

)

Let the effective action have a perturbation expansion :

Γ(φ) = Γ0(φ) + h̄Γ1(φ) + h̄2Γ2(φ) + · · ·

Use the SDe to find Γ0, Γ1 and Γ2. Compare the results with the correspond-
ing 1PI diagrams with up to 6 external legs.

Excercise 11 A wonderful action ?
Consider the action

SL(ϕ) = −a log(1− bϕ)− cϕ ,

with

ab = c , ab2 = µ , ab3 =
λ

2
.

1. The domain of ϕ is now no longer (−∞,∞). Determine which domain
is appropriate, and prove that the path integrand indeed vanishes at
the endpoints of that domain.

2. Prove that this theory has ϕn interactions for all n = 3, 4, 5, . . . and
that the vertex for a ϕn interaction reads −(n− 1)!abn.

3. Prove that the SDe for this theory reads

µh̄ ∂
∂J

1− bh̄ ∂
∂J

Z(J) = JZ(J) .

4. Prove that the field function is given by

φ(J) =
J − bh̄
µ+ bJ

.

5. Prove that the field function has only one-loop corrections : all higher-
order corrections vanish. Check this by writing out all 2-loop correc-
tions to the two-point function and evaluating them.
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6. Using Γ′(φ) = J , compute the effective action. Show that it, also, if
free from higher-order corrections beyond one loop.

7. For J → −µ/b = −c, the field function diverges. Show that this
corresponds precisely to the limit in which the path integrand no longer
vanishes at one of the endpoints.
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Chapter 2

Renormalization : the
principles

2.1 Doing physics : mentality against reality

In this chapter, we digress a bit into a discussion of what it is that particle
physicists claim to be doing : confronting theory with reality. This leads to
some interesting subtleties.

2.1.1 Physics vs. Mathematics

If we were mathematicians, the subject matter in the previous chapter might
be formulated as the following task : given the parameters µ, λ3 and λ4 of the
action, to compute the connected Green’s functions. This ‘mathematician’s
scheme’ may be depicted as follows :

µ , λ3 , λ4 −→ C1 , C2 , C3 , C4 , C5 , C6 , C7 , . . .

In this set-up, the parameters are supplied from outside the computational
and experimental context. Since, however, we are physicists1 the situation is
somewhat different : we first have to measure the values of the parameters
from inside the experimental context, using some of the connected Green’s
functions as measurement processes, and then predict some other connected
Green’s functions, which we shall call prediction processes. That, rather

1I hope.

59
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different, situation may be depicted by the scheme

Ek = Ck , k = 1 . . . 4 −→ µ , λ3 , λ4 −→ C5 , C6 , C7 , . . .

Here, the quantities E1,2,3,... stand for the experimentally observed values of
the connected Green’s functions : barring experimental errors, these numeri-
cal values do not change under any improvement of the theory. Now consider
the fact that we are doing perturbation theory. That is, both the measure-
ment and the prediction processes are known only as truncated series in h̄.
Let us suppose that by stolidity and perseverance a next higher order in
perturbation theory for the prediction processes has become available. Is
this any good ? Obviously not, unless a similar increased level of precision
has been attained for the measurement processes. Only in that case a new
‘fit’ of the parameters of the action can be made, and improved values of
the ‘prediction’ connected Green’s functions can usuefully be obtained. This
order-by-order improvement is called renormalization. Let us denote by a
superscript the order to which the connected Green’s functions have been
computed. The ‘physicist’s scheme’ can then be envisaged as follows :

Ek = C
(0)
k , k = 1 . . . 4 −→ µ(0) , λ

(0)
3 , λ

(0)
4 −→ C

(0)
5 , C

(0)
6 , . . .

Ek = C
(1)
k , k = 1 . . . 4 −→ µ(1) , λ

(1)
3 , λ

(1)
4 −→ C

(1)
5 , C

(1)
6 , . . .

Ek = C
(2)
k , k = 1 . . . 4 −→ µ(2) , λ

(2)
3 , λ

(2)
4 −→ C

(2)
5 , C

(2)
6 , . . .

Ek = C
(3)
k , k = 1 . . . 4 −→ µ(3) , λ

(3)
3 , λ

(3)
4 −→ C

(3)
5 , C

(3)
6 , . . .

...
...

...

Order by order, the parameters keep getting updated, but in the overall pic-
ture they are just bookkeeping devices that allow one to go from measurements
to predictions of the more physically interesting connected Green’s func-
tions. It should not come as a surprise that in the measurement-parameter-
prediction protocol, a higher-order correction in the parameters due to an
improved measurement expression is cancelled again, to some extent, in the
prediction. In fact, for certain classes of theories, which are called renormal-
izable, these cancellations may be quite extreme.
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2.1.2 The renormalization program : an example

As an example of the renormalization program, we shall investigate ϕ3/4

theory. To orderO (h̄) in perturbation theory, the first few connected Green’s
functions are given by

C1 = h̄

(
− λ3

2µ3

)
+O

(
h̄2
)
,

C2 = h̄

(
1

µ

)
+ h̄2

(
− λ4

2µ3
+
λ3

2

µ4

)
+O

(
h̄3
)
,

C3 = h̄2

(
−λ3

µ3

)
+ h̄3

(
−4λ3

2

µ6
+

7λ3λ4

µ5

)
+O

(
h̄4
)
,

C4 = h̄3

(
−λ4

µ4
+

3λ3
2

µ5

)
+ h̄4

(
24λ3

4

µ8
+

7λ4
2

2µ6
− 59λ3

2λ4

2µ7

)
+O

(
h̄5
)
,

C5 = h̄4

(
10λ3λ4

µ6
− 15λ3

3

µ7

)

+ h̄5

(
605λ4λ3

3

2µ9
− 192λ3

5

µ10
− 80λ4

2λ3

µ8

)
+O

(
h̄6
)
, (2.1)

and of course the next-order corrections and connected Green’s functions
are readily computable. Let us assume that the experimental values of the
connected Green’s functions C2,3,4 have been measured, with negligible ex-
perimental error for simplicity. We shall denote these values by E2,3,4, re-
spectively. For purposes of illustration, we shall assume that these values
are

E2 = h̄ , E3 = −h̄2 , E4 = 2h̄3 . (2.2)

In lowest order of perturbation theory, we can then find the action’s param-
eters to be

µ = 1 , λ3 = 1 , λ4 = 1 . (2.3)

If this were all, we could then compute the connected Green’s functions. This
‘naive’ treatment would give the following results up to two loops :

C1
naive = −1

2
h̄+

1

24
h̄2 +O

(
h̄3
)
,

C2
naive = h̄+

1

2
h̄2 − 3

4
h̄3 +O

(
h̄4
)
,
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C3
naive = −h̄2 − 1

2
h̄3 − 131

24
h̄4 +O

(
h̄5
)
,

C4
naive = 2h̄3 − 2h̄4 − 147

4
h̄5 +O

(
h̄6
)
,

C5
naive = −5h̄4 +

61

2
h̄5 +

5665

24
h̄6 +O

(
h̄7
)
,

C6
naive = 10h̄5 − 295h̄6 − 5105

4
h̄7 +O

(
h̄8
)
,

C7
naive = 35h̄6 − 5195

2
h̄7 − 47075

24
h̄8 +O

(
h̄9
)
,

(2.4)

However, we see that now C2,3,4 = E2,3,4 no longer hold, and therefore we
must re-tune the parameters order by order in perturbation theory. In the
present case, we find up to two-loop accuracy :

µ = 1 +
1

2
h̄+ h̄2 +O

(
h̄3
)

,

λ3 = 1 + h̄− 49

24
h̄2 +O

(
h̄3
)

,

λ4 = 1− 3

2
h̄+

5

4
h̄2 +O

(
h̄3
)
, (2.5)

and the renormalized connected Green’s functions, suitably truncated to the
correct order in h̄, read

C1 = −1

2
h̄+

1

24
h̄2 +O

(
h̄3
)
,

C2 = h̄ ,

C3 = −h̄2 ,

C4 = 2h̄3 ,

C5 = −5h̄4 + 3h̄5 − 5

2
h̄6 +O

(
h̄7
)
,

C6 = 10h̄5 − 45h̄6 + 90h̄7 +O
(
h̄8
)
,

C7 = 35h̄6 + 480h̄7 − 2065h̄8 +O
(
h̄9
)
. (2.6)

The difference between the ‘naive’ and the renormalized connected Green’s
functions is quite evident. In particular C2,3,4 are completely free of higher-
order corrections. For the other connected Green’s functions the coefficients
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in the perturbation expansion tend to be smaller in absolute value than in
the ‘naive’ expressions.

The above discussion is obviously only a drastically simplified example
of a phenomenological situation that is usually much more complicated. For
instance, one does not, usually, renormalize connected Green’s functions but
rather quantities extracted from scattering matrix elements, that are them-
selves not identical to, but extracted from connected Green’s functions. The
experimental observables E therefore do not take the simple form given here.
The higher-order corrections themselves are usually much more complicated,
and not completely free from ambiguities, nor necessarily finite. Neverthe-
less, the operational scheme outlined above is essentially the same as those
that are employed in real-life physics. In particular, it cannot be stressed
often enough that the renormalization procedure is necessary simply because
one does perturbation theory, not because loop corrections may contain in-
finities2.

2.2 A handle on loop divergences

2.2.1 A toy : the dot model

Notwithstanding the above remarks on the per se necessity of renormal-
ization, the fact that, in nontrivial theories, loop diagrams often contain
infinities makes the need to do something about them all the more urgent.
Loop divergences arise from summation over internal degrees of freedom of
Feynman diagrams. In zero dimensions there are no such internal degrees
of freedom, and all diagrams are finite. We can, however, introduce the fol-
lowing toy model. Consider, as before, our working-horse ϕ3/4 theory. Let
us assume that we introduce yet another Feynman rule : we shall apply a
factor 1 + c1 to every closed loop that contains precisely one vertex, and a
factor 1 + c2 to every closed loop that contains precisely two vertices. Loops
with more vertices remain unaffected3. The numbers c1 and c2 may depend
on the parameters of the theory, or on other parameters. In the spirit of
‘loop divergences’ we shall envisage that c1,2 →∞ at some stage. In terms of

2This insight is, even at present, not as endemic as one might wish.
3This rule accords with ‘naive power counting’ for four-dimensional scalar theories

without derivative couplings, the most direct four-dimensional extension of the zero-
dimensional theories we are discussing in this chapter.
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Feynman diagrams, this rule amounts to duplicating each one- or two-vertex
loop with a ‘dotted’ loop :

= + , ≡ c1 × ,

= + , ≡ c2 × . (2.7)

For example, under this rule the following two-loop diagrams are modified
accordingly :

→ + + +

= (1 + c1)(1 + c2) ,

→ +

= (1 + c2) . (2.8)

The Feynman diagrams are governed by the Schwinger-Dyson equation. Our
new rule must therefore be implemented, somehow, into a modified SDe.
Some reflection tells us that the necessary new ingredients are made up out
of those Feynman diagrams that contain only dotted loops. Fortunately,
these form a manageable set, where we differentiate between 1PI diagrams
with up to 4 legs4 :

≡ + + + · · ·

≡ + + + · · ·

+ + + + · · ·

+

≡ + + + · · ·

≡ + + + · · · (2.9)

4With 5 or more legs our rule does not allow for diagrams with only dotted loops.
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The only diagram that does not carry a ‘tower’ of loops on its back is the
last diagram in the two-point dotted series. Using these artefacts, we can
now rewrite the appropriate SDe for our ϕ3/4 theory with the added dotting
rule :
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We can readily translate this SDe into algebraic form. If we take out the
external propagators from the ‘black box’ graphs, we can write

= B1 , = B2 , = B3 , = B4 . (2.11)

We shall leave the actual evaluation of these sets of graphs for later: at this
point, we shall simply treat them as effective vertices. The ‘dotted-loop’-
modified SDe then reads, when we work out the graphs one after the other,
in the order in which they are displayed above :

φ =
J

µ
− B1

µ
− B2

µ
φ− λ3

2µ
φ2 − h̄λ3

2µ
φ′

−B3

2µ
φ2 − B3

µ
φ2 − h̄B3

2µ
φ′ − h̄B3

µ
φ′

−λ4

6µ
φ3 − h̄λ4

2µ
φφ′ − h̄2λ4

6µ
φ′′
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−B4

2µ
φ3 − h̄B4

2µ
φφ′ − h̄B4

µ
φφ′ − h̄2B4

2µ
φ′′ . (2.12)

We can simply rewrite this SDe as

(µ+B2)φ = (J −B1)− (λ3 + 3B3)(φ2 + h̄φ′)

−(λ4 + 3B4)(φ3 + 3h̄φφ′ + h̄2φ′′) (2.13)

But, this is exactly the SDe equation belonging to the action

S(ϕ) = B1ϕ+
1

2
(µ+B2)ϕ2 +

1

6
(λ3 + 3B3)ϕ3 +

1

24
(λ4 + 3B4)ϕ4 . (2.14)

Therefore, the spirit of renormalization tells us that in every application the
bare parameters µ, λ3 and λ4 will never occur on their own, but always only
in the combinations µ + B2, λ3 + 3B3, and λ4 + 3B4 ; and that therefore,
whatever the values of B2,3,4, the combination will automatically be finite
if the experimental quantities in which they enter are finite. We can there-
fore choose the action’s parameters such that all Green’s functions come out
finite ; and the remaining B1 can always be completely absorbed into a linear
term in the bare action. Indeed, this is the way in which the notorious ‘loop
divergences’ are absorbed into the bare action : infinite loop corrections are
compensated for by infinite bare parameters.

2.2.2 Nonrenormalizeable theories

The significant point in the discussion above is the fact that all dotted-loop
contributions can be absorbed into a finite number of terms of the bare action.
We may formulate the requirement of a renormalizeable theory as that which
states that a finite number of measured quantities5 suffice to make
all other predictions of the theory well-defined. If an infinite number
of measured quantities would be necessary, the theory would be called non-
renormalizeable : but, worse, from the operational point of view it would be
worthless6.

5Think of E2,3,4,.
6In modern thought, this train of thought tends to be relaxed. If the necessary addi-

tional experimental values are only relevant at some very high energy scale, the theory
would be effectively renormalizeable. It is a matter of taste whether you feel comfortable
with this, or not.
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As an example of a non-renormalizeable situation, let us consider a Feyn-
man rule in which a loop with three vertices acquires a dotted counterpart :
that is, we would have a (potentially infinite) contribution of the form

This can, of course, be repaired by introducing into the bare action a ϕ6

term ; but in that case there would arise dotted loops with eight external
legs :

which would necessitate a ϕ8 term in the bare action — and so on. A the-
ory would arise in which an infinite number of measured quantities would
be needed before any consistent7 prediction could be made : a non-renorm-
alizeable situation ! The same problem occurs in a theory with a bare ϕ6

interaction. It is seen that the requirement of renormalizeability puts con-
straints on the bare action8.

2.3 Scale dependence and such

2.3.1 The scale, and its divergence ?

As mentioned above, the parameters of the action have to be determined by
comparison to experimentally measured quantities. Such measurement ex-
periments do not take place in some abstract realm, but rather in a concrete
physical situation. This experimental context partially determines the mea-
surement result. A very concrete example is the measurement of the coupling
constant using a scattering process : in that case, one of the determining fac-
tors is the energy at which the scattering takes place. Also choices made in
the theoretical computation of the measured quantities play their rôle : for
example, in dimensional regularization9 an energy scale must be introduced,

7i.e. finite in high orders of perturbation theory.
8It must come as no surprise that the Higgs potential of the Standard Model has no

interaction terms for the Higgs field (which is scalar) more complicated than the four-point
coupling.

9To be discussed later on.
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and this scale can to a large extent be chosen arbitrarily. We shall lump all
these effects together into a quantity s, which we shall call the scale. It must
be stressed that the scale also contains the (regularized) loop divergences,
and may be expected to become infinite at some stage.

Let us consider a theory with only one parameter : an example of such
a theory is massless QCD, that is the theory of massless quarks and gluons
and their interactions. The single parameter is then the coupling constant.
Let the bare parameter, as it occurs in the action, be denoted by v. The
renormalized parameter, extracted from experiment, will be denoted by w.
The renormalized coupling is then given by the bare coupling and the exper-
imental context, embodied by the scale s :

w = F (s; v) . (2.15)

This relation ought to be invertible, so that we can find v given w :

v = G(s;w) . (2.16)

Obviously we have

w = F (s;G(s;w)) , v = G(s;F (s; v)) . (2.17)

By differentiation we find the following relations between the derivatives of
F and G :

F1G1 = 1 , F0 + F1G0 = 0 , (2.18)

where the subscript 0 denotes partial derivatives with respect to s, and the
subscript 1 stands for a partial derivative with respect to the other argu-
ment. Let us now consider an infinitesimal change in the scale. Since v is
independent10 of s, the value of w has to adapt itself in a manner prescribed
by F :

d

ds
w = F0(s; v) . (2.19)

This expression contains the (divergent) scale s and the (divergent) value of
the bare coupling v. We can, of course, express everything in terms of w :

d

ds
w = F0(s;G(s;w)) . (2.20)

10After all, the action doesn’t know which experiment is going to be used to measure
the parameter.
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This expression now contains the finite number w and the divergent scale
s. It can, therefore, only make sense11 if s actually drops out. We therefore
require F (s, ; v) to be such that

∂

∂s
F0(s;G(s;w)) = 0 . (2.21)

In other words,
F00 + F01G0 = 0 . (2.22)

Using Eq.(2.18) and dividing once by F1 we can write this as

F00

F1

− F0F10

F1
2 =

∂

∂s

(
F0

F1

)
= 0 . (2.23)

There must, therefore, exist a function h(v) of v only, such that

∂

∂s
F (s; v) = h(v)

∂

∂v
F (s; v) . (2.24)

By separation of variables, Eq.(2.24) is easily solved, and we find

w = F (s; v) = f
(
s+ ρ(v)

)
,

d

dv
ρ(v) =

1

h(v)
, (2.25)

for some function f . There must exist some value s0 for s, such that w and
v precisely coincide. This value can, of course, depend on v, so we write it
as s0(v). We therefore have

f
(
s0(v) + ρ(v)

)
= v , s0(v) + ρ(v) ≡ j(v) , (2.26)

so that f and j are each other’s inverse : f(j(v)) = v. Applying j to Eq.(2.25)
we see that

s+ ρ(v) = j(w) = s0(w) + ρ(w) . (2.27)

Note that in this equation, both terms on the left-hand side are divergent,
but on the right-hand side they are finite. We can now determine the scale
dependence of w. This dependence, called the beta function of the theory, is
given by

β(w) ≡ d

ds
w =

∂

∂s
f
(
s+ ρ(v)

)
= f ′

(
j(w)

)
=

1

j′(w)
=

h(w)

1 + h(w)s′0(w)
. (2.28)

11Note that this is not a proof, it is a requirement that we make on the theory.
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All reference to the bare coupling has been removed : we see that the renor-
malized coupling has a definite, predictable dependence on the energy scale
of the measuring experiment12. Note, also, that whereas we introduced h as a
function of the bare parameter, it enters in the beta function as a function of
the renormalized parameter. Finally, as we shall see in the next section, the
h functions usually starts at second order (O (v2)) in perturbation theory, so
that the two first terms in the beta function are independent of the form of
s0(v) as long as this is non-singular for v = 0.

2.3.2 Low-order approximation to the renormalized cou-
pling

Let us examine the possible shape of the function F (v, s) in some more detail.
In the spirit of perturbation theory, it will be given by a series expansion like

F (v, s) = v + v2α1(s) + v3α2(s) + v4α3(s) + · · · . (2.29)

Let us assume that the functions αj(s) vanish at s = 0, so that s0(v) = 0
and h(v) = β(v). The h function is given by

h(v) =
F2(v, s)

F1(v, s)
=
v2α′1(s) + v3α′2(s) + v4α′3(s) + · · ·

1 + 2vα1(s) + 3v2α2(s) + · · ·
, (2.30)

so that we see that the beta function must start with v2 :

β(v) = β0v
2 + β1v

3 + β2v
4 + · · · (2.31)

The requirement that the beta function depend not on s governs the form of
the functions αj(s) : to low order in v we have from Eq.(2.30)

β(v) = v2α′1(s) + v3
(
α′2(s)− 2α1(s)α′1(s)

)
+ · · · , (2.32)

12A remark is in order here. What, in these notes, is called the scale is usually under-
stood to be the logarithm of the actual energy scale : indeed, whereas the energy scale has
the dimension of energy (obviously), the number s is, strictly speaking, dimensionless. If
we denote the scale by the conventional symbol µ, the derivative dw/ds should then be
rewritten as

d

ds
w → µ

d

dµ
w

.
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so that we can derive

α1(s) = β0s , α2(s) = (β0s)
2 + β1s , . . . (2.33)

It is easily derived that the leading term in αn(s) is (β0s)
n.

Let us assume that the beta function is dominated by its lowest-order
term, that is, β(v) = β0v

2. In that case, h(v) = −1/(β0v), and we find

1

w(s)
=

1

v
− β0s . (2.34)

We can exchange the bare parameter v for the measured value of w at some
fixed scale s0, and then the running is given by

1

w(s)
=

1

w(s0)
− β0(s− s0) , (2.35)

or

w(s) =
w(s0)

1− β0w(s0)(s− s0)
. (2.36)

At this point we may start to distinguish between different theories. The
renormalized, physical parameter w is a priori unknown, and has to be de-
termined by experiment ; but the number β0 is perfectly computable from
inside the theory13. The running of the coupling is therefore determined as
soon as the action has been sufficiently specified. Now, it may happen that β0

is positive : in that case, the effective coupling w(s) increases with increas-
ing s, and will eventually become infinite at some high scale. On the other
hand, when β0 is negative, the effective coupling decreases with increasing
energy scale. This is called asymptotic freedom. It is the phenomenon that
has saved the theory of strong interactions : in the 1960’s when the typical
energy scales of experiments where low, the effective coupling was so high (of
order 10) as to cast doubts on the usefulness of perturbation theory, whereas
at the high energies current from around 197514 the effective coupling has
become small enough (of the order of 0.1) to warrant the use of perturbation
techniques.

13The number β0 is a combinatorial factor with the addition of some powers of π,
and simple numbers depending on the ingredients and quantum numbers of the particles
pertaining to the theory.

14I take the commissioning of the PETRA (Hamburg, BRD) and PEP (Stanford, USA)
colliders as the definitive starting point of the relevance of perturbative QCD.
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2.3.3 Scheme dependence

We must recognize that not only the scale of a given measurement process is
important, but of course also the nature of the measurement process. That is,
we may define the measured coupling constant w in two different ways, on the
basis of two different measurement processes15 : let us denote the two results
by w and w̃. We say that such different values have been obtained using
different renormalization schemes. In all cases I have encountered, two such
schemes agree at the tree level16, and the results are therefore perturbatively
related :

w̃ = w + t1w
2 + t2w

3 + t3w
4 + · · · , (2.37)

with t1,2,3,... computable numbers ; and conversely

w = w̃ − t1w̃2 +
(
2t1

2 − t2
)
w̃3 −

(
5t1

3 − 5t1t2 + t3
)
w̃4 + · · · (2.38)

Having computed the beta function for w, we can now simply obtain it for
w̃ :

β(w̃) =
dw̃

ds
=

dw̃

dw

dw

ds

=

(
1 + 2t1w + 3t2w

2 + 4t3w
3 + · · ·

)(
β0w

2 + β1w
3 + β2w

4 + · · ·
)

= β0w
2 + (β1 − 2t1β0)w3 +

(
β2 − 2t1β1 + 6t1

2β0 − 3t2β0

)
w4 + · · ·

= β0w̃
2 + β1w̃

2 +
(
β0t1

2 − β0t2 + t1β1 + β2

)
w̃2 + · · · (2.39)

The two beta functions can be transformed from one scheme to another ; for
any scheme dependence for which Eq.(2.37) holds, the first two coefficients,
β0 and β1, are seen to be independent of the actual scheme, as was to be
expected : the two schemes correspond to different functions s0(v) as defined
in section 2.3.

15In practice, this difference can be quite small, as between the so-called MS and MS
schemes. With ‘different measurement processes’, we here mean two different, complete
operational schemes that both lead to a well-defined value for coupling constants.

16This rules out possible but, for a practicing physicist useless and/or irrelevant, differ-
ences such as for instance obtained by defining w̃ = 2w. Get a life !



Chapter 3

More fields in zero dimensions

3.1 Enlarging the one-field picture

We now have established an overview of the quantum-field theoretic be-
haviour of a single field ϕ in zero dimensions. The generalization to a theory
with more than one field is fairly straightforward, and we shall make it in
this chapter.

3.2 The action and the path integral

We shall assume that there are K distinct fields, labelled ϕj, j = 1, 2, . . . , K.
The number K can be taken as large as we please, and even infinite provided
that the fields form a countable set1. These fields have a combined probability
density given by

P (ϕ1, ϕ2, . . . , ϕK) = N exp
(
− 1

h̄
S(ϕ1, ϕ2, . . . , ϕK)

)
, (3.1)

where we have immediately introduced h̄ since we are now familiar with it.
In the special case where the action is separable, that is,

S(ϕ1, ϕ2, . . . , ϕK) = S1(ϕ1) + S2(ϕ2) + · · ·+ SK(ϕK) ,

the fields are actually independent random variables ; the theory is just so
many copies of the single-field one, and in the following we shall disregard

1This notion will have to be relaxed later on.
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such an uninteresting situation. A remark is in order here : in concert
with our convention of having a coupling constant λn accompanied by a
factor 1/n!, we shall let the coupling of several fields be accompanied by
combinatorial factors for each field separately, so the action may contain a
term

λ1,3,7

(2!)(2!)(4!)
ϕ1

2ϕ3
2ϕ7

4 ,

which gives the Feynman rule −λ1,3,7/h̄ for this vertex.

The Green’s functions are defined by

Gn1,n2,...,nK = 〈ϕ1
n1 ϕ2

n2 · · ·ϕKnK 〉 (3.2)

In order to be able to keep the various fields apart, we have to assign to each
of them its own source Jj, j = 1, 2, . . . , K. The path integral therefore reads2

Z(J1, . . . , JK) =
∑

n1,...,K≥0

Jn1
1 · · · JnKK
n1! · · ·nK !

Gn1,...,nK

= N
∫

exp

−1

h̄

S(ϕ1, . . . , ϕK)−
K∑
j=1

Jjϕj

 dϕ1 · · · dϕK . (3.3)

The extraction of the Green’s functions is then performed as

Gn1,...,nK = h̄n1+···nK

⌊
∂n1

(∂J1)n1
· · · ∂nK

(∂JK)nK
Z(J1, . . . , JK)

⌋
J1=···=JK=0

.

(3.4)

3.3 Connected Green’s functions and field func-

tions

The relation between the Green’s functions and their connected counterparts
is again given by straightforward generalization:

W (J1, . . . , JK) = log
(
Z(J1, . . . , JK)

)
=

∑
n1,...,K≥0

Jn1
1 · · · JnKK
n1! · · ·nK !

Cn1,...,nK (3.5)

2Where possible, we denote multiple integral by a single integration sign. This usually
does not lead to confusion.
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The precise expression of the G’s in terms of the C’s is of course now some-
what more involved : for instance, for K = 3 we have

G1,0,0 = C1,0,0 ,

G1,1,0 = C1,0,0C0,1,0 + C1,1,0 ,

G1,1,1 = C1,0,0C0,1,0C0,0,1 + C1,1,0C0,0,1

+ C1,0,1C0,1,0 + C0,1,1C1,0,0 + C1,1,1 . (3.6)

We now have K field functions, one for each field ; they are given by

φj(J1, . . . , JK) = h̄
∂

∂Jj
W (J1, . . . , JK) . (3.7)

An important thing to note is that, since the field functions are derivatives,

∂

∂Jk
φj(J1, . . . , JK) =

∂

∂Jj
φk(J1, . . . , JK) . (3.8)

3.4 The Schwinger-Dyson equation

The SDe for the path integral can be summarized as follows :⌊
∂

∂ϕk
S(ϕ1, . . . , ϕK)

⌋
ϕj=h̄

∂
∂Jj

Z(J1, . . . , JK) = JkZ(J1, . . . , JK) , (3.9)

as can easily be verified.

For the field functions, the SDe is best illustrated with an example. Sup-
pose that we have the following action for K = 2 :

S(ϕ1, ϕ2) =
1

2
µ1ϕ1

2 +
1

2
µ2ϕ2

2 +
λ

4
ϕ1

2ϕ2
2 . (3.10)

This time, the coupling constant λ carries a factor 1/(2!)/(2!) since there
are not four identical fields ‘meeting’ at the vertex, but rather two pairs of
identical fields, as mentioned above. We indicate the field type with either
‘1’ or ‘2’. The Feynman rules for this case are

1 ↔ h̄

µ1

, 2 ↔ h̄

µ2

,
1

1 2

2 ↔ −λ
h̄

,

1 ↔ J1

h̄
, 2 ↔ J2

h̄
. (3.11)
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There are two coupled Schwinger-Dyson equations, one for each field :
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(3.12)

with the following analytical representation for the field functions φj =E 12
φj(J1, J2) (j = 1, 2) :

φ1 =
J1

µ1

− λ

2µ1

(
φ1φ

2
2 + h̄φ1

∂

∂J2

φ2 + 2h̄φ2
∂

∂J2

φ1 + h̄2 ∂2

(∂J2)2φ1

)
,

φ2 =
J2

µ2

− λ

2µ2

(
φ2φ

2
1 + h̄φ2

∂

∂J1

φ1 + 2h̄φ1
∂

∂J1

φ2 + h̄2 ∂2

(∂J1)2φ2

)
.

(3.13)

The effective action must of course be a two-variable function Γ(φ1, φ2) such
that

∂

∂φj
Γ(φ1, φ2) = Jj , j = 1, 2 . (3.14)

This effective action is also concave. The two-field case can, obviously, be
extended to the case of arbitrarily many fields, provided the couplings are
unambiguously defined.E 13
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3.5 A zero-dimensional template for QED

We consider the following action for three fields, including sources :

S(ϕ, ϕ̄, B) =
1

2
µB2 +mϕϕ̄+ eϕ̄Bϕ− J̄ϕ− ϕ̄J −HB . (3.15)

Note the absence of symmetry factors since all the fields in the three-point
vertex are distinct. Also the two-point interaction term mϕ̄ϕ carries no
factor of 1/2. Such an action can stand for an extremely primitive model
for QED, the theory of electrons and photons. The action has three partial
derivatives :

∂

∂ϕ
S(ϕ, ϕ̄, B) = mϕ̄+ eϕ̄B − J̄ ,

∂

∂ϕ̄
S(ϕ, ϕ̄, B) = mϕ+ eBϕ− J ,

∂

∂B
S(ϕ, ϕ̄, B) = µB + eϕ̄ϕ−H . (3.16)

The SDe’s for the path integral are therefore(
h̄m

∂

∂J
+ eh̄2 ∂2

∂J∂H
− J̄

)
Z(J̄ , J,H) = 0 ,(

h̄m
∂

∂J̄
+ eh̄2 ∂2

∂J̄∂H
− J

)
Z(J̄ , J,H) = 0 ,(

h̄µ
∂

∂H
+ e

∂2

∂J̄∂J
−H

)
Z(J̄ , J,H) = 0 . (3.17)

The field-generating functions (the ‘field functions’) are, of course, each a
function of J , J̄ and H, and are given by

ψ = h̄
∂

∂J̄
logZ , ψ̄ = h̄

∂

∂J
logZ , A = h̄

∂

∂H
logZ , (3.18)

so that

h̄
∂

∂J̄
Z = ψ Z , h̄

∂

∂J
Z = ψ̄ Z , h̄

∂

∂H
Z = AZ , (3.19)

and Eq.(3.16) can be written as

ψ =
1

m
J − e

m

(
Aψ + h̄

∂

∂H
ψ

)
,
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ψ̄ =
1

m
J̄ − e

m

(
ψ̄ A+ h̄

∂

∂H
ψ̄

)
,

A =
1

µ
H − e

µ

(
ψ̄ ψ + h̄

∂

∂J
ψ

)
. (3.20)

Incidentally, note that we could rewrite these SDe’s since

∂

∂H
ψ =

∂

∂J̄
A ,

∂

∂H
ψ̄ =

∂

∂J
H ,

∂

∂J
ψ =

∂

∂J̄
ψ̄ . (3.21)

The Feynman rules are, for this action, as follows :

ψ ψ ↔
h̄

m
,

↔ h̄

µ
,

↔ − e
h̄
. (3.22)

A few things are of interest here. In the first place, we have here the first
instance of an important concept : that of oriented lines. The propagator
is oriented, it runs from ϕ to ϕ̄ (or the other way around). In the secondE 14
place, in the action we find the two terms J̄ϕ and ϕ̄J , which would suggest
that J is the source in the SDe of ψ̄, and J̄ is the source in the SDe for ψ ;
but it is actually the other way around ! What is the source for a given field
function is seen by taking the derivative of the action, and inspecting which
field then occurs as a linear term, and which source term is left by itself after
the differentiation.E 15

3.6 Exercises for Chapter 3

Excercise 12 Two-field action
Consider the two-field action, now with the sources included :

S(ϕ1, ϕ2) =
µ

2

(
ϕ1

2 + ϕ2
2
)

+
λ

4
ϕ1

2ϕ2
2 − J1ϕ1 − J2ϕ2

1. Determine the 2 SDe’s for the path integral.

2. From these, determine the 2 SDe’d for the field functions φ1 and φ2.
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3. Verify that this is agreement with the diagrammatically obtained result.

Excercise 13 A symmetric theory
Consider a theory containing N fields ϕ1,2,...,N , with the following action :

S(~ϕ) =
µ

2
|~ϕ|2 +

λ

24
|~ϕ|4 ,

and with sources J1,2,...,N .

1. Show by using diagrams that the SDe can be written as

µφk = Jk −
λ

6

(
φk|~ϕ|2 + h̄φk(~∇ · ~φ) + h̄

∂

∂Jk
|~φ|2 + h̄2~∇2φk

)

Notice that to obtain this form one may have to use the fact that
∂φk/∂Jm = ∂φm/∂Jk.

2. Show that the same result can be obtained algebraically, by working
out de SDe in the following form :

Sk
(
~φ+ h̄~∇

)
e = Jk

where Sk stands for the partial derivative of the action S(~ϕ) to ϕk, and
∇k stands for ∂/∂Jk.

3. By symmetry, W must depend on | ~J | alone. We can therefore write

φk = Jk F
(
| ~J |2/2

)
for some function F . Show that this function obeys

µF (x) = 1− λ

6

(
2xF (x)3 + h̄

(
(N + 2)F (x)2 + 6xF (x)F ′(x)

)
+ h̄2

(
(N + 2)F ′(x) + 2xF ′′(x)

))

Excercise 14 Symmetry factors in QED
For the model of section 3.5, write the three SDe’s in diagrammatic form.
Show that all symmetry factors are equal to unity for diagrams with at
least one external leg. Show that this implies the same for actual Quantum
Electrodynamics, that is, the same model but extended to Minkowski space
and with more complicated propagators and vertices.
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Excercise 15 The 123 theory
We consider a theory containing not 1 but 3 fields, labeld ϕ1,2,3. The action,
including the sourves, is given by

S(ϕ1, ϕ2, ϕ3) =
µ

2

(
ϕ1

2 + ϕ2
2 + ϕ3

2
)

+ gϕ1ϕ2ϕ3 − J1ϕ1 − J2ϕ2 − J3ϕ3

In the following we shall concentrate on Feynman diagrams and will not
worry about the convergence of the path integral.

1. Prove that there are now 3 different SDe’s, of the form

µh̄
∂

∂Ji
Z + gh̄2 ∂

∂Jj

∂

∂Jk
Z = JiZ

where i, j, k is a permutation of 1,2,3.

2. There are now of course also 3 field functions φ1,2,3. Prove that

∂

∂Ji
φj =

∂

∂Jj
φi , i, j ∈ (1, 2, 3)

3. Give the SDe for the field functions using diagrams.

4. Prove that for any diagram with nj external lines of type j (j = 1, 2, 3)
the following must hold: the nj are either all even, or all odd.

5. By Cij we denote the connected Green’s function with two external
legs, one of type i and one of type j. Prove that

Cij = 0 , i 6= j ,

and furthermore that there are no tadpole diagrams.



Chapter 4

QFT in Euclidean spaces

4.1 Introduction

The main characteristic of a space(-time) of more than zero dimensions is
the fact that the quantum field is defined at more than one point ; in fact,
at an infinity of points. The possibility of sending signals from one point to
another one requires the existence of correlations between the field values
at different points. The nature of this correlation, and its reflection in the
appropriate Feynman rules, is our subject now.

4.2 One-dimensional discrete theory

4.2.1 An infinite number of fields

We shall consider a theory of a countably infinite set of fields in zero dimen-
sions. We denote by {ϕ} the set of all these fields :

{ϕ} = . . . , ϕ−3 , ϕ−2 , ϕ−1 , ϕ0 , ϕ1 , ϕ2 , ϕ3 , . . .

where the field labels run from −∞ to +∞. Similarly, there is the collection
of all the corresponding sources, denoted by {J}. We shall, as a working
example, consider a theory where the interaction consists of four fields with
the same label meeting at one point. Moreover, we shall assume the kinetic

81
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terms to be uniform in the field labels. Thus, the action will be1 :

S({ϕ}, {J}) =
∑
n

[
1

2
µϕn

2 − γϕnϕn+1 +
λ4

4!
ϕn

4 − Jnϕn
]
, (4.1)

where we include the sources in the action2. If γ were zero, the action would
be separable and the theory would be a rather uninteresting series of replicas
of the zero-dimensional action for a single field. We shall consider positive
values of γ ; in that case, the action tends to minimize if ϕn and ϕn+1 carry
the same sign : a positive correlation between neighbouring fields is the result.
Note, moreover, that the action has be chosen such as to be invariant under
the relabelling of n by n + K with any fixed K : this is called translation
invariance, in this case translation by a fixed increment in labelling3. The
model is also invariant under the relabelling of n by −n : this is called parity
invariance.

The Feynman rules are easily derived from the action of Eq.(4.1) :

n ↔ h̄

µ

mn ↔ +
γ

h̄

(
δm,n+1 + δm,n−1

)

n

n n

n

↔ −λ4

h̄

n ↔ +
Jn
h̄

Feynman rules, version 4.1 (4.2)

1If not indicated explicitly otherwise, sums will run from −∞ to +∞.
2Take care to note that both µ and γ are independent of n simply because we choose

them so.
3This will lead to momentum conservation later on. Note however that, as indicated

above, momentum conservation is a consequence of our choice, or in practice of our belief
in the translation invariance of our physical laws. Other models are possible and not a
priori wrong : they are simply much more complicated.
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The identity of the field is indicated by its label. Alternatively, the four-
vertex and the source vertex may be labelled. The SDe now takes the fol-
lowing form, for any n :
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, (4.3)

or, in terms of the field functions φn({J}), that depend on all sources :

φn =
Jn
µ

+
γ

µ
(φn−1 + φn+1)

−λ4

6µ

(
φ3
n + 3h̄φn

∂

∂Jn
φn + h̄2 ∂2

(∂Jn)2φn

)
. (4.4)

4.2.2 Introducing the propagator

The Schwinger-Dyson equation (4.3) can be cast in another form, that will
turn out to be more useful. Consider the fact that, upon entering the field
function via its external leg, one must encounter either zero or more two-
point functions before encountering a source vertex or a four-vertex. Let us
denote by

Πm,n ≡
m

n (4.5)

the total set of diagrams that contain only two-point vertices (or no vertices),
and have fields n and m at its external legs4. The SDe can then be rewritten
as follows :
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4To go from ϕn to ϕm one needs, of course, at least |n−m| vertices, but more vertices
are also possible.
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where a summation over the label of the field exiting the Π is implied. There-
fore, we have

φn =
∑
m

Πn,m ×[
Jm
µ
− λ

6µ

(
φm

3 + 3h̄φm
∂

∂Jm
φm + h̄2 ∂2

(∂Jm)2φm

)]
. (4.7)

The object Πm,n, which describes to what extent the field ϕn influences ϕm,
will be called the propagator from now on.

4.2.3 Computing the propagator

From the translation and parity invariance of the model we have discussed,
we can infer that Πm,n can actually only depend on |m− n|, so that we can
restrict ourselves to Π0,n ; we denote this by Π(n). For Π(n), we have a very
simple Schwinger-Dyson equation :

0 n = 0 n +
0 1

n +
0 

n

−1
, (4.8)

or

Π(n) =
h̄

µ
δ0,n +

γ

µ

(
Π(n+ 1) + Π(n− 1)

)
. (4.9)

The easiest way to solve this set of equations is by Fourier transform. We
define

R(z) =
∑
n

Π(n) e−inz , (4.10)

from which5 the propagator may be recovered using

Π(n) =
1

2π

+π∫
−π

e+inz R(z) dz . (4.11)

5We choose e−inz rather than e+inz in Eq.(4.10) by convention. Although this may not
be glaringly obvious at this point, our convention is ultimately related to the fact that,
in nonrelativistic quantum mechanics, the Schrödinger equation has been chosen to read
ih̄∂|ψ〉/∂t = Ĥ|ψ〉 rather than −ih̄∂|ψ〉/∂t = Ĥ|ψ〉.
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Multiplying both sides of Eq.(4.9) by exp(−inz) and summing over n leads
to

R(z) =
h̄

µ
+
γ

µ
R(z)

(
eiz + e−iz

)
=

h̄

µ− γ (eiz + e−iz)
=

h̄ u

µu− γ(u2 + 1)
(4.12)

where we have introduced u = eiz. This allows us to write the integral (4.11)
as

Πn = − h̄

2iπγ

∮
|u|=1

du
un

(u− u+)(u− u−)
, (4.13)

where u± are the two roots of the quadratic form µu− γ(u2 + 1) :

u± =
1

2

µ
γ
±
(
µ2

γ2
− 4

)1/2
 . (4.14)

Provided that µ exceeds 2γ, the two poles of the integrand are real, and
0 < u− < 1 < u+. We can then contract the contour around the point
u = u−, upon which we find

Π(n) = h̄
u−

n

γ(u+ − u−)
, n ≥ 0 . (4.15)

The general solution for the propagator is therefore6

Π(n) =
h̄√

µ2 − 4γ2
u−
|n| . (4.16)

Unsurprisingly, the propagator falls off exponentially with |n|. Some points E 16
are to be noted. In the first place, if γ were negative, then u− would also be
negative, and the propagator would oscillate between positive and negative
correlations. In the second place, if µ were 2γ or smaller, the poles of the
integrand would lie on the unit circle |u| = 1, making the integral ill-defined.

Having at hand the explicit form of the propagator, we can now switch
to a new set of Feynman rules :

6This derivation is valid for n ≥ 0. For negative n, Cauchy’s theorem on which it is
based does not hold immediately : but in that case we can perform the variable transform
from u to 1/u and obtain the result.
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n m ↔ Π(m− n)

n

n n

n

↔ −λ4

h̄

n ↔ +
Jn
h̄

Feynman rules, version 4.2 (4.17)

The difference with the previous set of rules is that now the line denotes a
propagator running between n and m. The SDe is now very similar to that
of the zero-dimensional ϕ4 theory :
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with the summation over m implied.

4.2.4 A figment of the imagination, and a sermon

The concept of an infinite number of fields all huddling together at a single
point simply cries out for a better visualization. The most useful picture is
that of each field occupying its own point. Indicating by a line those fields
that have a direct coupling, we arrive at a picture like the following :

ϕ ϕ ϕ ϕϕ
0−1 1 2 3

We now introduce a new notion, that of distance. In our sensorial experience,
distances are, in their essence, measured by the sending and receiving of
signals, and the weaker the signal from one point to another, the further those
points are deemed to be apart ; in the language of these notes, the smaller
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Π(m−n), the larger the ‘distance’ between n and m. We can therefore dress
up our picture by introducing a fundamental distance ∆, subsequent field
locations being separated by this distance :

ϕ ϕ ϕ ϕϕ
0−1 1 2 3

}}} } }} ∆ ∆∆∆∆∆

The distances between the points are all equal since the couplings γ are
all equal. We have, as it were, constructed a one-dimensional universe. It
may come as a surprise that the concept of space is here presented as a
visualization device. If we reflect, however, on how someone who (like a
new-born infant) has no a priori concept of spacelike separations would have
to envisage the workings of the physical world, we shall conclude that that
person had better invent space in order not to go insane pretty quickly. In
its essence, space, like so much else in the world around us, is simply a
mental construction that allows us to come to grips with, and control, our
environment7.

After all this has been said, we must acknowledge the emprical fact that to
our knowledge space seems not to be made up from single points8. Therefore
we have to assume that ∆ must be much smaller than the smallest distances
that can, at present, be resolved9. We therefore introduce the continuum
limit : we assume that the theories we consider are such that the limit ∆→ 0
can be taken in a sensible manner, yielding sensible results. This sidesteps
the interesting question of whether ∆ is really zero or not. Indeed, we do not
know. Any theoretical result that depends sensitively on whether ∆ = 0 or
∆ 6= 0 would be extremely important since experimental information about
it would allow us a look at the fundamental structure of space ; but for us
it is safer to construct theories the predictions of which do not hinge on this
unknown. As we shall see, this can be made to work. As an added bonus,
we can feel free from misgivings about the mathematical rigour of taking the
continuum limit : after all, we may not be at the limit after all.

7See also Peter L. Berger and Thomas Luckmann, The Social Construction of Reality :
A Treatise in the Sociology of Knowledge (Garden City, New York: Anchor Books, 1966).

8Nor does it appear to be one-dimensional – but that is easily repaired, as we shall see.
9About 10−18 meter.
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4.3 One-dimensional continuum theory

4.3.1 The continuum limit for the propagator

Having identified the positions occupied by the various fields with points in
space (or time), we define the distance between points m and n by

x = (n−m)∆ . (4.19)

The dimension of x is that of ∆, that is, a length L. The continuum limit
is, then, that where ∆ → 0 and |n −m| → ∞ while x remains fixed. The
propagator is now a function of x, so we redefine it as

Π(x)← Π(x/∆) .

This means that

Π(x) =
h̄

2π

+π∫
−π

dz
exp(ixz/∆)

µ− 2γ cos(z)
, (4.20)

where we have to assume µ > 2γ if we want to avoid singularities in the
integrand. A corresponding change in the integration variable z is now in
order : we write

z = k∆ , (4.21)

The dimension of k is therefore L−1. The propagator becomes

Π(x) =
h̄∆

2π

+π/∆∫
−π/∆

dk
exp(ixk)

µ− 2γ cos(k∆)

≈ h̄∆

2π

∫
dk

exp(ixk)

(µ− 2γ) + γ∆2k2
. (4.22)

In the last line, we have taken ∆ to be very small indeed. Note that the
approximation cos(z) ≈ 1 − k2∆2/2 is, of course only justified as long as
k is finite ; but for very large k the integrand is extremely oscillatory and
contributes essentially nothing10. Now, in order to avoid a propagator that

10This handwaving argument is justified by the fact that we get the right propagator in
the continuum limit.
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either blows up or vanishes, we must define the ∆-dependence of µ and γ
such that γ ∼ 1/∆ and µ− 2γ ∼ ∆. We shall take

γ → 1

∆

(
1− m2∆2

4

)
, µ→ 2

∆

(
1 +

m2∆2

4

)
, (4.23)

with m2 a positive number (remember that we need µ > 2γ). We shall also
take m itself to be positive. We then find the exact results

µ− 2γ = m2∆ ,
√
µ2 − 4γ2 = 2m , u− =

1−m∆/2

1 +m∆/2
. (4.24)

The propagator takes the form11

Π(x) =
h̄

2π

∫
dk

eixk

k2 +m2
=

h̄

2m
exp(−m|x|) . (4.25)

To check that this result is indeed the correct one, we can consider the
continuum limit directly for the propagator result (4.16) :

Π(n)→ h̄

2m

(
1−m∆/2

1 +m∆/2

)|x/∆|
→ h̄

2m
exp(−m|x|) , (4.26)

as desired.

4.3.2 The continuum limit for the action

In the action (4.1), we shall want to replace the sum over n by an integral
over x : ∑

n

∆ →
∫
dx .

It is therefore necessary that every term in the action acquires a factor ∆.
Now, the action depends on the quantum fields ϕn. As we let the distance
between the points shrink to zero, the collection of values {ϕ} turns into a

11To obtain the last lemma of this expression, we can use the fact that the integrand
has simple poles at k = im and k = −im. For x > 0, the integral contour in the complex
k-plane can be closed over the positive imaginary parts, and for x < 0 over the negative
imaginary parts : the result then follows immediately by Cauchy integration.
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function ϕ(x). The precise correspondence between {ϕ} and ϕ(x) is some-
thing that, in the end, we have to decide for ourselves. Out of the several
possibilities we shall adopt the following :

ϕ(x) =
1

2

(
ϕn+1 + ϕn

)
, ϕ′(x) =

1

∆

(
ϕn+1 − ϕn

)
. (4.27)

This assignment is called the Weyl ordering. Its converse reads, of course,

ϕn = ϕ(x)− ∆

2
ϕ′(x) , ϕn+1 = ϕ(x) +

∆

2
ϕ′(x) . (4.28)

In a sense, the field value ϕ(x) is sitting ‘in between’ the points ϕn and
ϕn+1. Other assignments can be proposed, for instance ϕn = ϕ(x). However,
these are less attractive12. Upon careful application of Weyl ordering and the
assumed continuum limits for µ and γ, the kinetic part of the action (4.1)
has the following continuum limit :

∑
n

[
µ

2
ϕn

2 − γϕnϕn+1

]
=

=
∑
n

[
1

2
(µ− 2γ)ϕ(x)2 +

∆2

8
(µ+ 2γ)ϕ′(x)2

]

=
∑
n

[
1

2
m2ϕ(x)2 +

1

2
ϕ′(x)2

]
∆

=
∫ [

1

2
m2ϕ(x)2 +

1

2
ϕ′(x)2

]
dx . (4.29)

The interaction and source terms in the path integral do not have a factor
∆ coming out naturally, but we may simply define the continuum limits by
redefining the objects in the action :

λ4 → ∆λ4 , Jn → ∆J(x) , (4.30)

12For example, consider a function ϕ(x) that vanishes for x → ±∞. The integral∫
2ϕ(x)ϕ′(x) dx then vanishes upon partial integration. Weyl ordering tells us that

2ϕ(x)ϕ′(x) = (ϕn+1
2 − ϕn2)/∆, leading to the correspondence∫

2ϕ(x)ϕ′(x) dx ↔
∑
n

∆ (ϕn+1
2 − ϕn2) ,

where the sum also vanishes explicitly after relabelling. For the alternative assignment
ϕn = ϕ(x) the vanishing cannot be proven.
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so that the continuum limit of the full action, including this time also the
sources, becomes13

S[ϕ, J ] =
∫ [

1

2
m2ϕ(x)2 +

1

2
ϕ′(x)2 +

λ4

4!
ϕ(x)4 − J(x)ϕ(x)

]
dx . (4.31)

Note the notation with square brackets: the action is now no longer a num-
ber depending on (a countably infinite set of) numbers, but rather on the
functions ϕ(x) and J(x) ; this is called a functional.

4.3.3 The continuum limit of the classical equation

For the discrete action, there is an obvious classical equation :

∂

∂ϕn
S({ϕ}) = 0 ∀n , (4.32)

where, again, the source terms have been subsumed into the action. For the
ϕ4 model of Eq.(4.1), the classical equation is therefore

µϕn − γ(ϕn+1 + ϕn−1) +
∆λ4

3!
ϕ3
n = ∆Jn (4.33)

for all n, and the extra factor ∆ in the coupling constant and the sources
have been taken into account. The Weyl prescription leads us to write

µϕn − γ(ϕn+1 + ϕn−1) ≈ m2∆ϕ(x)−∆ϕ′′(x) , (4.34)

so that the continuum limit of the classical field equation takes the form

m2ϕ(x)− ϕ′′(x) +
λ4

3!
ϕ(x)3 = J(x) . (4.35)

This is precisely the Euler-Lagrange equation, that can also be obtained im-
mediately from the continuum form of the action by taking functional deriva-
tives. To see this, let us assume that the action of a theory can be written
as

S[ϕ] =
∫
F

(
ϕ(x);ϕ′(x)

)
dx . (4.36)

13Strictly speaking, the Weyl ordering requires the replacement of Jn not by ∆J(x) but
by ∆J(x) + ∆2J ′(x)/2. The additional term, however, vanishes in the continuum limit as
∆→ 0, as do the higher powers of ∆ involved in the ϕn

4 term.
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Upon ‘discretization’ using the Weyl ordering, this becomes

S =
∑
k

∆ F
(

1

2
(ϕk+1 + ϕk);

1

∆
(ϕk+1 − ϕk)

)

= ∆ F
(

1

2
(ϕn+1 + ϕn);

1

∆
(ϕn+1 − ϕn)

)
+ ∆ F

(
1

2
(ϕn + ϕn−1);

1

∆
(ϕn − ϕn−1)

)
+ terms not containing ϕn . (4.37)

The classical equation then reads

0 =
1

∆

∂

∂ϕn
S =

1

2
F1

(
1

2
(ϕn+1 + ϕn);

1

∆
(ϕn+1 − ϕn)

)
+

1

2
F1

(
1

2
(ϕn + ϕn−1);

1

∆
(ϕn − ϕn−1)

)
− 1

∆
F2

(
1

2
(ϕn+1 + ϕn);

1

∆
(ϕn+1 − ϕn)

)
+

1

∆
F2

(
1

2
(ϕn + ϕn−1);

1

∆
(ϕn − ϕn−1)

)
, (4.38)

where Fj denotes the partial derivative of F with respect to its j-th argument.
Re-inserting the Weyl ordering, we can write this equation as

0 =
1

2
F1

(
ϕ(x);ϕ′(x)

)
+

1

2
F1

(
ϕ(x−∆);ϕ′(x−∆)

)

− 1

∆
F2

(
ϕ(x);ϕ′(x)

)
+

1

∆
F2

(
ϕ(x−∆);ϕ′(x−∆)

)
.(4.39)

By Taylor expansion we get, for arbitrary f :

f

(
ϕ(x−∆);ϕ′(x−∆)

)
≈

≈ f

(
ϕ(x)−∆ϕ′(x);ϕ′(x)−∆ϕ′′(x)

)

≈ f

(
ϕ(x);ϕ′(x)

)

−∆

{
ϕ′(x)f1

(
ϕ(x);ϕ′(x)

)
+ ϕ′′(x)f2

(
ϕ(x);ϕ′(x)

)}

= f

(
ϕ(x);ϕ′(x)

)
−∆

d

dx
f

(
ϕ(x);ϕ′(x)

)
. (4.40)
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The classical equation thus takes the form

F1

(
ϕ(x);ϕ′(x)

)
− d

dx
F2

(
ϕ(x);ϕ′(x)

)
= 0 . (4.41)

we can cast this in the formal language of functional derivatives : we define,
using the Dirac delta function,

δϕ(y)

δϕ(x)
= δ(x− y) ,

δϕ′(y)

δϕ(x)
= 0 ,

δϕ′(y)

δϕ′(x)
= δ(x− y) ,

δϕ(y)

δϕ′(x)
= 0 , (4.42)

where, as we see, ϕ(x) and ϕ′(x) are treated as independent variables. Apply-
ing these rules to the continuum form of the action, we find that the formal
form of the classical field equation is therefore that of the Euler-Lagrange
equation. The language of functional derivatives is, in these notes, treated
as an effective method, valid in the continuum limit, of writing the more
fundamental discrete classical field equation. In the functional formalism,
the Euler-Lagrange equation reads

δ

δϕ(x)
S[ϕ, J ]− d

dx

(
δ

δϕ′(x)
S[ϕ, J ]

)
= 0 . (4.43)

For ϕ4 theory, the Euler-Lagrange equation takes precisely the form of Eq.(4.35).

4.3.4 The continuum Feynman rules and SDe

Let us have a look again at the SDe for the discrete model, for simplicity
taking the ϕ4 model again :

φn =
∑
m

Π(n−m)

×
{
Jm −

λ

6

(
φ3
m + 3h̄φm

∂

∂Jm
φm + h̄2 ∂2

(∂Jm)2φm

)}
. (4.44)

Going over to the continuum limit etails, as we have seen, the following
substitutions :

φn, φm → φ(x), φ(y) ,
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Π(n−m) → Π(x− y) ,

Jm → ∆J(y) ,

λ4 → ∆λ4 ,∑
m

→ 1

∆

∫
dy ,

∂

∂Jm
→ δ

δJ(y)
. (4.45)

With this, the SDe becomes

φ(x) =
∫
dy Π(x− y) ×

{
J(y)

−λ4

6

(
φ(y)3 + 3h̄φ(y)

δ

δJ(y)
φ(y) + h̄2 δ2

(δJ(y))2
φ(y)

)}
. (4.46)

On this basis, we can now formulate Feynman rules for the continuum limit :

x y
↔ Π(x− y)

↔ −λ4

h̄

x

↔ +
J(x)

h̄

Feynman rules, version 4.3 (4.47)

This comes with the understanding that the positions of all vertices are to
be integrated over, and that the field function φ is now a functional of the
source J . For a free theory there are no interactions, and we find

φ(x) =
∫
dy Π(x− y) J(y) . (4.48)

We see that the free field is the sum of its responses to the source, weighted
by the correlation between the position where the field is measured and that
of the strength of the source at all points. It is this property that establishes
the propagator as the ‘differential-equation’ Green’s function; but note that
this correspondence is only valid for non-interacting theories.
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4.3.5 Field configurations in one dimension

Before entering spaces of more dimensions, we may have a look at the field
variables. The zero-dimensional variable ϕ, with its integration element, is
in the discrete one-dimensional formulation replaced by the whole set ϕ, for
which the path integration element reads, of course,

Dϕ =
∏
n

dϕn

The continuum limit of this object is defined to be the continuum-formulation
path integration element, however badly defined this may be. The assigning
a functional value S[ϕ] to a given field ϕ(x) is not problematic ; rather it is
the prescription of how all field configurations are to be summed over that
makes it so hard to define path integrals rigorously14. It is instructive to
consider the nature of the dominant contributions. Consider the part of the
path integrand that governs the point-to-point variation of the paths: it is

exp
(
− 1

2h̄∆
(ϕn+1 − ϕn)2

)
.

It is clear that the majority of values (ϕn+1 − ϕn)2 will be of order O (h̄∆),
as usual for Gaussian distributions. This means that ϕn+1 and ϕn must ap-
proach each other as ∆→ 0, so the contributing fields are continuous. On the
other hand, the approach is not too fast, since by ϕn+1−ϕn ≈ ∆ϕ′(x) we see
that the derivative ϕ′(x) diverges as ∆−1/2, hence the contributing functions
are nowhere differentiable. This is not to say that differentiable fields are not
allowed : rather, the nondifferentiable ones are the overwhelming majority.
Two conclusions follow. In the first place, the use of continuum-formulation
objects like ϕ′(x) or ϕ′′(x) in the action are to be treated as highly sym-
bolic, almost purely mnemonic, concepts. In the second place, the classical
solution, which is typically almost everywhere differentiable, is itself not the
dominant contribution to the path integral ; rather, it is the bundle of fields
close to the classical one that constitutes the lowest-order approximation to
the behaviour of the theory.

To gain some insight in the structure of a typical path (field configura-
tion), let us consider the interrelation of three consecutive fields : it is given

14In fact, the mathematical definition of continuum path integrals relies on the discrete
formulation !
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by

K∆(ϕ0, ϕ1)K∆(ϕ1, ϕ2) = exp

(
− 1

2h̄∆

(
(ϕ0 − ϕ1)2 + (ϕ1 − ϕ2)2

))
.

(4.49)
For simplicity, we neglect the rest of the action. The positions of these three
fields are separated by ∆. The ‘typical’ jumps in field values are of order√

∆, as mentioned above. Now imagine ‘zooming out’, that is, disregarding
the value of ϕ1, and inspecting only ϕ0 and ϕ2, which are now separated by
2∆. This is obtained by integrating over ϕ1 in Eq.(4.49) :∫

dϕ1K∆(ϕ0, ϕ1)K∆(ϕ1, ϕ2) ∝ exp
(
− 1

4h̄∆
(ϕ0 − ϕ2)2

)
= K2∆(ϕ0, ϕ2) , (4.50)

where the proportionality constant is absorbed in the normalization of the
path integral. The typical jump from ϕ0 to ϕ2 is now of order

√
2∆. We

conclude that, if we resolve the continuum path down to a scale ∆, the
typical fluctuations over this scale will always be of order

√
∆. The typical

path has a fractal structure. Such behaviour, with zigs and zags at every
length scale, is encountered in Brownian motion – and in the behaviour of
the stock market15.

Here we plot a typical fractal path running over 10,000 points separated by a

15Note that this qualitative picture holds only for one-dimensional theories (and, luckily,
the price of stocks, bonds, futures etc is expressed in one-dimensional currency). In more
dimensions, the paths’ behaviour is even more wild.
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distance of 0.01, with ∆ = 1. The first plot shows all points ; in the second,
only every 10th point is used, and in the third plot only every 100th point is
used. The qualitative form of the three paths remains the same, as expected
for a fractal path. The average absolute value of the point-to-point jumps
are 0.80, 2.49, and 6.97, respectively : the ratios between these numbers are
indeed roughly equal to

√
10.

4.4 The momentum representation

4.4.1 Fourier transforming the SDe

We are now ready to make an important technical change. So far, we have
considered the fields and their expectation values as functions of position. It
will turn out to more practical to consider them as functions of momentum
or, in the one-dimensional case, of wave number 16. There are a number of
good reasons for doing so. In the first place, in the free theory the various
momentum modes are independent of one another, in contrast to the fields
at different space points17: propagators are simpler in momentum language
than in position language. In the second place, there is a law of momen-
tum conservation operative in the universe, and not a law of conservation
of position. In the third place, momenta are more directly the physical
characteristics that are controlled and measured in actual particle physics
experiments. E 17

The transition from position to momentum is nothing but applying Fourier
transforms : we already had, from Eq.(4.25),

Π(x− y) =
∫ dk

2π

h̄

k2 +m2
exp(ikx) , (4.51)

and we now add18

φ(x) =
∫ dk

2π
φ(k) exp(ikx) ,

J(x) =
∫ dk

2π
J(k) exp(ikx) . (4.52)

16Recall the discussion on loose terminology in Chapter 0.
17Indeed, the more-dimensional theories have been constructed expressly to make fields

at different points correlate to one another!
18We use the same notation for the position-dependent quantities and their momentum-

dependent Fourier transforms. This will not lead to confusion since we shall soon drop
the position-dependent ones anyway.
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We now have to figure out what the correct Feynman rules are in this
new language. To do so we use (what else ? ) the SDe. It suffices to restrict
ourselves to ϕ3 theory at the tree level, where it reads

φ(x) =
∫
dy Π(x− y)

[
1

h̄
J(y) − λ3

2h̄
φ(y)2

]
. (4.53)

Inserting the Fourier representation leads to∫ dk

2π
φ(k) eikx =

∫
dy

∫ dk

2π
eik(x−y) h̄

k2 +m2
×[∫ dk3

2π

J(k3)

h̄
eik3y − λ3

2h̄

∫ dk1

2π

dk2

2π
φ(k1)φ(k2) ei(k1+k2)y

]
(4.54)

We find the following form of the SDe in momentum language :

φ(k) =
h̄

k2 +m2

J(k)

h̄

− h̄

k2 +m2

λ3

2h̄

∫ dk1

2π

dk2

2π
φ(k1)φ(k2) (2π) δ(k − k1 − k2) (4.55)

4.5 Doing it in momentum space

4.5.1 The Feynman rules

On the basis of the above we can now formulate the Feynman rules for our
theory in momentum space (for the example of ϕ4 theory) :

k
↔ h̄

k2 +m2

4

k
1

k
2

k
3

k

↔ −λ
h̄

(2π) δ

∑
j

kj


k q

↔ +
1

h̄
J(q) (2π) δ (q + k)

∞∫
−∞

d k

2π
for every momentum k

Feynman rules, version 4.4 (4.56)



March 26, 2017 99

Where before we had to integrate over the position of every vertex, we
now have to integrate over every momentum. It is of course possible (and
this is in fact the most common situation) that the source contains only a
single momentum mode. In that case the external legs in a diagram carry a
single momentum ; but all momenta of the internal lines have to be integrated
over. Also note that the vertices now carry Dirac deltas imposing momentum
conservation. This is a direct consequence of our choosing the vertices of the
theory to be position-independent19. In addition, it has becomes necessary
to indicate how the momenta involved in the vertices are to be counted. It
is usual to count all the momenta either incoming or outgoing. The precise
convention is unimportant, but it is important to use it consistently.

4.5.2 Some example diagrams

Here we present some diagrams, evaluated according to the rules we have
formulated so far. The first one,

q k

(4.57)

with a source on only one endpoint, evaluates to∫ dk

2π

1

h̄
J(q) (2π) δ(q − k)

h̄

k2 +m2
= J(q)

1

q2 +m2
. (4.58)

When we add another source,

2
qq

1

(4.59)

this gives us
1

h̄
J(q1)

1

q1
2 +m2

J(q2) (2π) δ(q1 + q2) . (4.60)

we see here an important fact : every connected diagram contains one Dirac
delta informing us that overall momentum must be conserved. The diagram

q

qq
2

3

1

(4.61)

19This means that the homogeneity of space(-time) can be investigated by very carefully
checking momentum(-energy) conservation in interactions. Of course, if vertices take on
different values very far away in space or time these effects may be undetectable.
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bears this out : it reads∫ dk1

2π

dk2

2π

dk3

2π

J(q1)

h̄

J(q2)

h̄

J(q3)

h̄

× h̄

k1
2 +m2

h̄

k2
2 +m2

h̄

k3
2 +m2

×(2π)δ(q1 − k1)(2π)δ(q2 − k2)(2π)δ(q3 − k3)

×−λ3

h̄
(2π)δ(k1 + k2 + k3)

= J(q1)J(q2)J(q3)
1

q1
2 +m2

1

q2
2 +m2

1

q3
2 +m2

×−λ3

h̄
(2π)δ(q1 + q2 + q3) . (4.62)

Next, we consider the one-loop diagram

4

q k

k

k

k

q1 21

2

3 (4.63)

for which we have to write down (including the symmetry factor ! )

∫ dk1

2π

dk2

2π

dk3

2π

dk4

2π

J(q1)

h̄

J(q2)

h̄

× h̄

k1
2 +m2

h̄

k2
2 +m2

h̄

k3
2 +m2

h̄

k4
2 +m2

× 1

2

×(2π) δ(q1 − k1) (2π) δ(q2 − k4)

×
(
−λ3

h̄

)
(2π) δ(k1 − k2 − k3)

(
−λ3

h̄

)
(2π) δ(k2 + k3 − k4)

=
λ3

2

2
J(q1)J(q2)

1

q1
2 +m2

1

q2
2 +m2

(2π) δ(q1 − q2)

×
∫ dk2

2π

1

k2
2 +m2

1

(q1 − k2)2 +m2
(4.64)

In addition to the overall momentum conservation delta, we see here the
other significant fact : every closed loop involves a momentum that is not
fixed by conservation, so an integral over that momentum.E 18
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4.6 More-dimensional theories

4.6.1 Continuum formulation

The choosing a labelling of fields with a single integer index is, of course,
arbitrary. We can consider an alternative in which the fields are labelled by
D integer indices :

ϕn → ϕ~n , ~n = (n1, n2, . . . , nD) .

In the interest of brevity, we introduce the notation

~n± k = (n1, . . . , nk−1, nk ± 1, nk+1, . . . , nD) . (4.65)

An appropriate action for this choice would be

S({f}) =
∑
~n

[
1

2
µϕ~n

2 − γ
D∑
k=1

ϕ~nϕ~n+k +
λ4

4!
ϕ~n

4 − J~nϕ~n
]
. (4.66)

The obvious visualization for this
choice is that of a space rather than a
line, covered with a regular square grid
of fields, each connected to 2D nearest
neighbors: the corresponding contin-
uum picture, therefore, is that of a the-
ory in D equivalent dimensions. Here a
part of the space for the case D = 2 is
shown.

The propagator of this theory obeys, of course, the SDe

Π(~n) =
h̄

µ

D∏
k=1

δnk,0 +
γ

µ

D∑
k=1

(
Π(~n+ k) + Π(~n− k)

)
, (4.67)

with the solution

Π(~n) =
h̄

(2π)D

+π∫
−π

dDz
exp(i(n1z1 + · · ·+ nDzD))

µ− 2γ cos(z1) · · · − 2γ cos(zD)
, (4.68)
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so that, now, µ must exceed 2Dγ. The continuum limit takes a different
form than in the one-dimensional case. We define

~x = (x1, x2, . . . , xD) , xj = nj∆ ,

~k = (k1, k2, . . . , kD) , kj = zj/∆ , (4.69)

The simplest nontrivial choice is then to approach the continuum as follows :

γ → ∆D−2 , µ→ 2Dγ +m2∆D , λ4 → ∆Dλ4 ,

ϕn1,n2,...,nD → ϕ(~x) , Jn1,n2,...,nD → ∆DJ(~x) . (4.70)

The propagator takes the continuum form

Π(~x) =
h̄

(2π)D

∫
dDk

exp
(
i~x · ~k

)
~k · ~k + m2

. (4.71)

The continuum form of the action is

S[ϕ, J ] =
∫ [

1

2
m2ϕ(~x)2 +

1

2
(~∇ϕ(~x))2 +

λ4

4!
ϕ(~x)4 − J(~x)ϕ(~x)

]
dDx ,

(4.72)
The Feynman rules are seen to be

x y

↔ Π(~x− ~y)

↔ −λ4

h̄

x

↔ +
J(~x)

h̄

Feynman rules, version 4.5 (4.73)

and also the SDe is a straightforward generalization of the one-dimensional
case :

φ(~x) =
∫
dDy Π(~x− ~y) ×

{
J(~y)

−λ4

6

(
φ(~y)3 + 3h̄φ(~y)

δ

δJ(~y)
φ(~y) + h̄2 δ2

(δJ(~y))2
φ(~y)

)}
. (4.74)



March 26, 2017 103

The classical field equation for this case,

m2ϕ(~x)− ~∇2ϕ(~x) +
λ4

3!
ϕ(~x)3 = J(~x) , (4.75)

can be obtained directly from the continuum action by the functional Euler-
Lagrange equation

δ

δϕ(~x)
S[ϕ, J ]− ~∇ ·

(
δ

δ~∇ϕ(~x)
S[ϕ, J ]

)
= 0 . (4.76)

It should be noted that the propagator only depends on |~x| and is therefore
rotationally invariant : this is a larger symmetry20 than that of the original
lattice, that only allows rotations over multiples of π/2. The way in which
the relation between field values at two points depends on the coordinates
of these points defines the nature of the space. The ‘real distance’ between
two points with coordinates xj and yj is in this case

|~x− ~y|2 =
D∑
j=1

(xj − yj)2 , (4.77)

the Euclidean distance between the points ; this type of quantum field theory
is therefore said to be Euclidean.

As before, it will turn out to be more useful to go over to a momentum
formulation of the theory. This is performed by a completely straightforward
generalization of what we did in the one-dimensional case, and we can give
the Feynman rules (in D dimensions) without more ado :

20The increase in symmetry depends on an interplay between the lattice action and the
form of the continuum limit ; it is possible to construct actions in which the continuum
symmetry is not larger than that of the lattice theory.
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k
↔ h̄

|~k|2 +m2

4

k
1

k
2

k
3

k

↔ −λ
h̄

(2π)D δ

∑
j

~kj


k q

↔ +
1

h̄
J(q) (2π)D δ

(
~q + ~k

)
∞∫
−∞

dD k

(2π)D
for every momentum k

Feynman rules, version 4.6 (4.78)

4.6.2 The propagator, explicitly

It is possible to express the Euclidean propagator Π(~x) in terms of known
functions, using a Gaussian representation :

Π(~x) =
h̄

(2π)D

∞∫
0

dt
∫
dDk exp

(
i~x · ~k − t~k · ~k − tm2

)

=
h̄

(2π)D

∞∫
0

dt e−m
2t

D∏
j=1

∫
dkj exp

(
−z(kj)2 + ikjxj

)

=
h̄

(2π)D

∞∫
0

dt e−m
2t

D∏
j=1

((
π

t

)1/2

exp

(
−(xj)2

4t

))

=
h̄

(4π)D/2

∞∫
0

dt t−D/2 exp

(
−m2t− |~x|

2

4t

)

=
h̄

2π

(
2π|~x|
m

)1−D/2

K1−D/2(m|~x|) . (4.79)

The function K is the so-called modified Bessel function of the second kind,
defined by the integral representation

Kα(z) = K−α(z) =
1

2

∞∫
0

du uα−1 exp
(
−z

2

(
u+

1

u

))
(z > 0) . (4.80)
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For very large values of z, the integrand is dominated by the region around
u = 1, and we find

Kα(z) ≈ e−z
√
π

2z
, z →∞ . (4.81)

For very small (but positive) z, on the other hand, we may (for positive α)
approximate the factor u+ 1/u in the exponent by just u, and

Kα(z) ≈ 1

2

(
2

z

)α
Γ(α) (α > 0 , z → 0) ,

K0(z) ≈ log
(

1

z

)
(z → 0) . (4.82)

For large m|~x|, the propagator therefore decreases exponentially, while for
small m|~x|, we have

Π(~x) ≈ h̄

2π
log

(
1

m|~x|

)
, D = 2 ,

Π(~x) ≈
h̄Γ

(
D
2
− 1

)
4 πD/2

x2−D , D ≥ 3 . (4.83)

In every dimension, the propagator is normalized in the same way :

∫
Π(~x) dDx =

h̄

(2π)D

∫
dDx

∫
dDk

exp
(
i~k · ~x

)
|~k|2 +m2

=
h̄

(2π)D

∫
dDk

(2π)DδD(~k)

|~k|2 +m2
=

h̄

m2
. (4.84)

4.6.3 Loop integrals : the principle

As stated above, diagrams with loops contain internal wave vectors that have
to be integrated over, and many of these integrals are divergent. Therefore,
we have two face two technical challenges. In the first place, we have to
devise a way to quantify these divergences : this is called regularization.
In the second place, regularizing these divergences does not make them go
away, and therefore we shall have to arrive at a method of including these
divergences into the theory in such a way as to yield finite and unambiguous
answers for physically interesting quantities. This last procedure is called
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renormalization. In this section we shall only address regularization, for the
case of one-loop integrals.

The idea of regularization is to let the theory depend on an arbitrarily
introduced parameter, such that the divergences appear when that parame-
ter takes on a certain value. Different regularization schemes are available,
with different choices for the extra parameter, which may be particle masses,
upper limits on momenta, etcetera. It must be kept in mind, however, that
theories may depend sensitively on such parameters, and therefore it may be
prudent to choose the parameter in such a way that the behaviour of the the-
ory does not depend on it too sensitively. The most popular regularization
scheme is that of dimensional regularization : in this approach the number of
dimensions, D, is chosen as the freely varying parameter. Already anticipat-
ing that we shall study theories in four spacetime dimensions, we therefore
write

D = 4− 2ε ,

with the implication that, at the end of all calculations, we shall take ε down
to zero. Any divergences in the intermediate stages of the computation will
then show up as singularities for ε → 0, and (with any luck) at the end all
these singularities will have cancelled. If not, the theory is simply not very
well defined.

4.6.4 Loop integrals : an example

As an example, we shall consider the loop part of Eq.(4.63), which in four
dimensions reads

T (~k) =
∫ d4k

(2π)4

1

(|~k|2 +m2)(|~k − ~q|2 +m2)
. (4.85)

Dimensional regularization requests us to change the dimensionality of the
integral in T from 4 to D = 4− 2ε. In doing so, however, we also change the
engineering dimension of T , that is, its unit in powers of meters, seconds,
and kilograms. This would make tree-level quantities and their loop correc-
tions have different dimension, which is clearly unacceptable. We therefore
introduce an engineering scale µ with the same dimension as |~q|, and write

T (~k) = µ2ε
∫ d4−2εk

(2π)4−2ε

1

(|~k|2 +m2)(|~k − ~q|2 +m2)
. (4.86)
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The ‘Feynman trick’ of sect.(13.9.1) allows us to write

1

(|~k|2 +m2)(|~k − ~q|2 +m2)

=

1∫
0

dx
1(

x|~k − ~q|)2 + (1− x)|~k|2 +m2
)2

=

1∫
0

dx
1(

|~k − x~q|2 + x(1− x)s+m2
)2 , (4.87)

where s = |~q|2. After shifting the integration variable21 from ~k to ~k−x~q, the
general formula of sect.(13.9.2) then gives, up to terms of order O (ε),

T (~k) =
1

(4π)2

1∫
0

dx
(

1

ε
− γE − log(4π) + log(µ2)− log

(
sx(1− x) +m2

))
.

(4.88)
Since

sx(1−x)+m2 = s(x+−x)(x−x−) , x± =
1

2

1±
√

1 +
4m2

s

 , (4.89)

the integral is easily performed, and we find

T (~k) =
1

(4π)2

(
1

ε
− γE − log(4π)− F (|~k|2)

)
,

F (s) = log

(
s

µ2

)
+ 2x+ log(x+)− 2|x−| log |x−| − 2 . (4.90)

Two limits are of interest. In the first place, when m2/s becomes very small,
x+ goes to 1 and x− goes to −m2/s so that

F (s) ≈ log

(
s

µ2

)
− 2 , s/m2 →∞ . (4.91)

21The assumed convergence of the integral for suitably chosen ε jstifies this kind of shift,
at least for the case we are considering here. This is not always the case : more tricky
situations may lead to so-called anomalies.
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On the other hand, when m2 is very large compared to s, we have that
log(sx(1− x) +m2) approaches log(m2), so that

F (s) ≈ log

(
m2

µ2

)
, s/m2 → 0 . (4.92)

A final remark is in order. One may wonder why we treat loop integrals in
Euclidean space in such detail, since after all our known spacetime may be
(approximately) Minkowskian, but is certainly not Euclidean. The reason is
that, even in Minkowskian spacetime, loop integrals are invariably computed
by transforming the Minkowskian theory into a Euclidean one, and then
performing the integrals as described above. The precise relation between
Euclidean and Minkowskian theories will be discussed in the next chapter.

4.7 Exercises for Chapter 4

Excercise 16 Guessing the correlator
For the ‘one-dimensional discrete model’ we found for the correlator the
recursion relation

Πn =
h̄

µ
δ0,n +

γ

µ

(
Πn+1 + Πn−1

)

Make the following Ansatz:

Πn = A B|n|

and compute A and B. Compare to the correct answers.

Excercise 17 Fourier transformation of the action and the rules
Consider the one-dimensional continuum action

S =
∫
dx

(
1

2
ϕ′(x)2 +

m2

2
ϕ(x)2 +

λ

4!
ϕ(x)4 − ϕ(x)J(x)

)

Here, ϕ(x) and J(x) are real fields.

1. We define the Fourier transformations by

ϕ(x) =
1

2π

∫
dke−ikxϕ(k) ,

J(x) =
1

2π

∫
dke−ikxJ(k)
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For simplicity we employ the same symbol for the transforms. Show
that ϕ(k) = ϕ(−k), and J(k) = J(−k).

2. Compute the transformed form for the action.

3. Determine the Feynman rules in the transformed formulation.

Excercise 18 Being clever in one dimension
In one dimension, loop diagrams can be conveniently computed using Cauchy
integration. We shall do this in the momentum representation.

1. Consider the tadpole diagram in ϕ3/4 theory :

k

where the loop momentum is indicated. We drop the Feynman fac-
tors corresponding to the external line : this is called the amputated
diagram.

(a) Show that the external line carries no momentum.

(b) Write down the expression for the tadpole diagram. By direct in-
tegration over k from −∞ to +∞, show that the result is λ3/(2m).

(c) Redo the above calculation in another way : the integrand has
poles at k = ±im. Close the integration contour in the complex k
plane and contract it around a pole. Show that it does not matter
which pole you choose.

2. Consider the following amputated diagram :

p
k

p−k

where the external momentum and the loop momenta are indicated.
Compute this diagram using the same contour technique as above.
Show that again the choice of the upper or the lower half-plane is
irrelevant.
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3. Apply the same technique twice to compute the amputated diagram

4. Compute also the amputated diagram

3
p

1

p
2

p

where all external momenta are counted ingoing, so that p1+p2+p3 = 0.



Chapter 5

QFT in Minkowski space

5.1 Introduction

Since the known space in which particle physics takes place is not of a Eu-
clidean, but rather of a Minkowskian nature1, it behooves us to make the
transition to this new type of space. Essentially, this involves singling out
one of the coordinate directions in order to allow for time.

5.2 Moving into Minkowski space

5.2.1 Distance in Minkowski space

Whereas the ‘real distance’, that is, the distance measure that actually gov-
erns the relative influence of fields at different points, is given in Eulidean
space by the Euclidean square distance of Eq.(4.77), we know that in the
spacetime in which we actually live and do physics, the real distance is quite
different. In particular, one of the coordinate directions represents time.
That is, events in spacetime taking place at position ~x = (x1, x2, x3) and
time t relative to some freely chosen origin are denoted by four coordinates:

xµ = (x0, x1, x2, x3) , x0 = ct , (5.1)

1We shall not involve ourselves in the horrible complications that arise upon the use
of curved space ; a consistent theory of quantum gravity is not, at present, relevant to
particle physics.

111
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where c is the universal constant providing the exchange rate between units of
distance and units of time2 ; it is the necessary velocity of massless particles3,
and the real distance between two events with coordinates xµ and yµ is given
by

(x− y)2 = (x0 − y0)2 −
3∑
j=1

(xj − yj)2

= gµν (x− y)µ (x− y)ν , (5.2)

(summation over repeated indices implied), where gµν is the covariant metric
tensor4

gµν = diag(1,−1,−1,−1) ≡


1 if µ = µ = 0
-1 if µ = ν ∈ {1, 2, 3}
0 otherwise

(5.3)

We also have the contravariant metric tensor gµν , defined by

gµα gαν = δµν , (5.4)

so that gµν is numerically equal5 to gµν . The metric tensors allow for the
raising or lowering of indices : for instance,

xµ = gµν x
ν : x0 = x0 , xj = −xj (j = 1, 2, 3) . (5.5)

The special rôle of time in physics is evidenced by the relative minus sign in
the metric tensor.

5.2.2 Farewell probability, hello SDe

Up to now, the action of our theory was real-valued, and the path integrand
a real probability density. In de derivation of the SDe, however, and the con-
sequent use of our Feynman diagrams, we have not used that fact anywhere ;

2See section 0.2.1.
3It is customary to add the provision in vacuo here, but since particles inside a medium

with which they interact are no longer massless, this may not be necessary.
4See section 0.2.4.
5By coincidence. Even in the flat Minkowski space, another set of coordinates (spherical

ones, for instance) would lead to a gµν quite different from gµν . However, we shall always
use the sensible (pseudo)Cartesian coordinates in these lectures.
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the only requirement for the validity of the SDe is that the path integrand
go to zero sufficiently fast at the endpoints. As long as this is guaranteed
we may generalize the parameters of the action (including the sources) to
complex values : indeed we shall take them to be purely imaginary, with one
exception.

We can repeat the treatment of chapter 4 in this different setting. In
what follows we shall use the notation ~n = (n0, n1, . . . , nD−1). In addition
we adopt the crazy-looking notation ~n± k to mean

~n = (n0, n1, . . . , nk, . . . , nD−1) ⇒ ~n± k = (n0, n1, . . . , nk ± 1, . . . , nD−1) .
(5.6)

For the action we choose

S({ϕ}) =
∑
~n

[
1

2
µϕ~n

2 − γ0ϕ~nϕ~n+0 − γ
D−1∑
k=1

ϕ~nϕ~n+k +
λ4

4!
ϕ~n

4 − J~nϕ~n
]
,

(5.7)
where the special rôle of the ‘time’ component is evidenced. We ensure the
validity of the Schwinger-Dyson equations by letting µ have a real part. This
can be arbitrarily small, as long as it is positive. The SDe for the propagator
now reads

Π(~n) =
h̄

µ

D−1∏
k=0

δnk,0 +
γ0

µ

(
Π(~n+ 0) + Π(~n− 0)

)

+
γ

µ

D−1∑
=1

(
Π(~n+ k) + Π(~n− k)

)
. (5.8)

For the generating function we choose

R(~z) =
∑
~n

Π(~n) exp
(
in0z0 − i(n1z1 + · · ·nD−1zD−1)

)
. (5.9)

Note again the special rôle of the zeroeth component, which we put in by
hand. Hence Π(~n) is given by

Π(~n) =
h̄

(2π)D

∫
dDz

exp
(
−in0z0 + i(n1z1 + · · ·nD−1zD−1)

)
µ− 2γ0 cos(z0)− 2γ

D−1∑
k=1

cos(zk)
. (5.10)
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We now proceed to the continuum limit ; we choose, as ∆→ 0,

~n =
1

∆
xµ , xµ = (x0, x1, . . . , xD−1) , ~z = ∆ kµ , kµ = (k0, k1, . . . , kD−1) ,

(5.11)
and, in addition to ϕ~n → ϕ(x),

γ = −γ0 = i∆D−2 , µ = 2γ0 + 2(D − 1)γ + im2∆D + ε ,

λ4 → i∆Dλ4 , J~n → i∆DJ(x) . (5.12)

The continuum propagator now has the form

Π(x) =
ih̄

(2π)D

∫
dDk

e−ik·x

k2 −m2 + iε
(5.13)

Here k · x = k0x0 − ~k · ~x and k2 = (k0)2 − |~k|2. By a slight redefinition6, the
path integral can then be written as

Z[J ] = N
∫
Dϕ exp

(
i

h̄
S[ϕ]

)
, (5.14)

with

S[ϕ] =
∫
dDx

[
1

2
∂µϕ(x)∂µϕ(x)− m2 − iε

2
ϕ(x)2 − λ4

4!
ϕ(x)4 + J(x)ϕ(x)

]
.

(5.15)

5.2.3 A closer look at almost nothing: iε and −
In the above, the introduction of the quantity ε deserves some close atten-
tion. We have seen that it is necessary in order to maintain the validity
of the SDe’s by making the path integrand vanish at the endpoints. An-
other issue is the correctness of Eq.(5.10) ; in order to stay well away from
singularities, we would rather have |µ| > 2(D − 1)|γ| + 2|γ0| rather than
|µ| > 2|(D − 1)γ + γ0|. On the other hand, the very presence of ε ensures
that, in the integration over ~z, the singularities are bypassed and the integral
is well-defined. We may also notice that (as can be seen from our treat-
ment of the one-dimensional case in chapter 4) the essential contributions
to the integral come from z ∼ u− ∼ 1. The choice of Eq.(5.11) is therefore

6We take a factor −i out of S.
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justified. But, it may be argued, a new parameter ε appearing in the the-
ory, even if it becomes infinitesimal, must surely have a physical meaning ?
Indeed, and we shall come back to this point later on. In the meantime,
the ε is understood and always never written explicitly in the action ; indeed
‘real’ physics assumes that we take ε→ 0 in the end of any discussion anyway.

As we have seen, the Minkowskian nature of the theory has been imposed,
rather than derived, at two separate moments. First, the distinguishing of
γ0 and γ in Eq.(5.7), and secondly in the definition (5.9). Of course, there
is no a priori reason why the universe would have Minkowskian rather than
Euclidean symmetry7. So the difference between γ and γ0 can be understood
from a phenomenological point of view. It is somewhat surprising, then,
that a second ‘by hand’ intervention is necessary to have position x and
momentum k have the right Minkowskian product.

5.2.4 The need for quantum transition amplitudes

We now find ourselves in a new interpretational situation. Since the ex-
ponent in the path integrand is now no longer real but complex-valued a
straightforward probabilistic picture of the path integral is no longer possi-
ble. Indeed, every path gives a contribution which is a complex phase factor,
with the same absolute value, namely precisely one8. In fact, all possible
dynamics must now arise from interference effects. The leading contribution
still comes from the bundle of paths around the classical solution (that is still
given by the Euler-Lagrange equation), because there the phases are to first
order approximation constant. Further away from the classical solution the
phases of nearby path fluctuate wildly as h̄ → 0 and these paths contribute
very little9.

As mentioned before, the complex-valued character of the action does
not prevent us from keeping the machinery of Green’s functions, connected
Green’s functions and the Feynman diagrams to compute them. But we
shall have to reinterpret them. In accordance with standard quantum me-

7Although you may wonder what the world would look like if time was indistinguishable
from space. But, even in computer simulations of spacetime that attempt to develop a
picture of quantum gravity, some kind of ‘foliation’ that preconceives something like a
special rôle for time, has to be put in essentially by hand.

8In the limit ε→ 0.
9The remarks about instantons remain valid also in Minkowski space.
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chanical practice, we postulate that the (connected) Green’s functions
are related to the quantum-mechanical transition amplitudes. The
squared modulus of such an amplitude is the transition probability, to be used
in the computation of cross sections and decay rates. The precise nature of
the Green’s function-amplitude relation will be elucidated later.

5.2.5 Feynman rules for Minkowskian theories

Having deduced the propagator in four-dimensional Minkowski space, we can
now formulate the provisional Feynman rules for Green’s functions with fixed
external wave vectors :

k ↔ ih̄
1

k · k −m2 + iε

k
3

k
2

k
4

k
1

↔ − i
h̄
λ4(2π)4δ4(k1 + k2 + k3 + k4)

k
1 k

2 ↔ +
i

h̄
J(k2)(2π)4δ4(k1 + k2)

In the wavevector conservation at the vertices, the
wavevectors must be counted either all incoming or al
outgoing.
Each internal wave vector kµ is to be integrated over,
with integration element d4k/(2π)4.

Feynman rules, version 5.1 (5.16)

The vertices also pick up an additional factor i, and all vectors from now on
are assumed to be Minkowskian four-vectors.
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5.2.6 The Klein-Gordon equation

For a free theory, with vanishing interaction vertices, the SDe is again quite
simple. In position, rather than wave vector, representation, we have

φ(x) =
i

h̄

∫
d4y Π(x− y) J(y)

= − 1

(2π)4

∫
d4y d4k

exp(−ik · (x− y))

k · k −m2 + iε
J(y) . (5.17)

The classical equation is immediately seen to be(
∂µ∂µ +m2

)
φ(x) = J(x) , (5.18)

and this is known as the Klein-Gordon equation. In more conventional treat-
ments, this equation is the starting point for a relativistic quantum field the-
ory, being introduced as a direct relativistic adaptation of the nonrelativistic
Schrödinger equation ; for us, it is a fairly unimportant10 result following
from the Feynman rules. What is important, however, is the light it sheds
on the source J : the natural interpretation is, indeed, for J to be a physical
source, generating the field φ via Huygens’ principle. The propagator takes
the rôle of the Green’s function as used in the solution of inhomogeneous
differential equations.

5.3 Particles and sources

5.3.1 Unstable particles, iε and the flow of time

We are now in a position to investigate the physical meaning of the iε pre-
scription. In order to so so, let us assume that ε is not infinitesimal, but
rather of fixed value γ. That is, we shall use a propagator

Πγ(x− y) =
ih̄

(2π)4

∫
d4k

exp(−ik · (x− y))

k2 −m2 + iγ
, γ > 0 . (5.19)

10Unimportant in the sense that we shall not derive any consequences from it. The same
will be seen to hold for the Dirac, Proca and Maxwell equations.
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Moreover, let us choose a source that emits particles simultaneously11 at time
t = 0, all over space : we take12

J(x) ∝ δ(x0) . (5.20)

The response of the field can be written as

φ(x) =
i

h̄

∫
d4y Πγ(x− y) J(y0)

= − 1

(2π)4

∫
d4y d4k

exp
(
−ik · x+ ik0y0 − i~k · ~y

)
δ(y0)

(k0)2 − |~k|2 −m2 + iγ

=
−1

2π

∫
dk0 exp(−ix0k0)

(k0)2 −m2 + iγ
. (5.21)

The integrand has poles in the complex k0 plane at

k0 = ±
√
m2 − iγ ≈ ±

(
m− i γ

2m

)
,

where we have assumed that γ is small compared to m2. For times later than
t = 0, the integration contour can be closed along the lower half complex
plane, and we find

φ(x) ∝ exp
(
−imx0 − γ

2m
x0
)

. (5.22)

Re k0

Im k0

The integration contour
used in Eq.(5.21). The two
poles are indicated. The
contour must be closed
in the lower half plane in
order to make the exponent
exp(−ix0k0) vanish at
infinity.

11Simultaneity is an ambiguous concept in Minkowski space : here, we mean simultane-
ous in our frame.

12We do not worry about normalization issues here.
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In accordance with the quantum-mechanical interpretation of our theory,
|φ(x)|2 must be (related to) the probability of finding particles. In the present
case, we have

|φ(x)|2 ∝ exp
(
− γ
m
x0
)

= exp
(
− t
τ

)
, τ ≡ γc

m
. (5.23)

That is, the probability of finding particles anywhere decreases exponentially
as time goes on. This is what one expects for unstable particles with a mean
lifetime equal to τ . We shall write γ = mΓ, where Γ is called the total
decay width of the particle. We see that a Feynman rule is now available for
unstable particles :

k ↔ ih̄
1

k · k −m2 + imΓ

The propagator for an unstable particle with mean life-
time Γ/c.

Feynman rules, version 5.1 (addendum) (5.24)

The iε prescription is seen to just mean that we should treat stable particles
as the infinitely-long-lifetime limit of unstable particles.

One point to note is that Eq.(5.22) describes particles at rest since there
is no space dependence in the wave function. The lifetime/width is therefore
that of particles at rest, which is indeed the usual definition. For particles in
motion, time dilatation indicates that the lifetime be increased by a factor
p0/m ; we shall encounter this situation in the next chapter.

Another issue that appears resolved is the direction of time flow. Whereas
Minkowski space itself, being essentially static, does not assign any preferred
direction associated with the time coordinate, the direction of time flow is
now defined to be that direction in which unstable particles disappear , rather
than appear13.

13Attractive as the above argument appears, a drawback comes from the case x0 < 0.
In that case, the contour integral must be closed along the upper half plane, so that the
pole k0 = −m+ iγ/(2m) becomes the significant one. We find φ(x) ∝ exp(−|t|/τ), which
is to be interpreted as a particle density that starts out as zero at t = −∞, and grows to a
crescendo at t = 0 ; this lacks an obvious interpretation. We ascribe this to the use of the
simple form (5.20). A better source, needed for a more rigorous treatment, can be simply
constructed. Notice that this really means that the direction of time is governed by the
sources !
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Another point to be noted is the following. The unstable propagator by
itself is seen to lead to a decreasing overall probability, in contradiction to
the normal unitary evolution of quantum mechanics. This, however, is not
the whole story : for a particle to be unstable it must be able to go over
into other particles, that is, there must be interactions. These have been left
out of our discussion. In a more complete treatment, we shall of course see
that, as the unstable particles disappear, the density of other particles will
increase, and total probability will be preserved. In other words, the decay
width must be consistently computable from the interactions present in the
theory.

The assumption that γ is considerably smaller than m2 implies that Γ is
small compared to m. Indeed, if we assume that Γ becomes nonzero due to
interactions, the very spirit of perturbation theory argues that Γ is relatively
small. Rigorous upper limits on the width of any given particle cannot easily
be given ; but let us imagine a particle of mass M (in kilograms, not inverse
meters !). Its natural ‘size’ is given by its Compton wavelength λc = h̄/(Mc).
If Γ (a quantity with the dimension of inverse length) were larger than 1/λc,
this would mean that such a particle would, upon production, decay even
before a lightlike signal could have crossed its diameter : it is as if the par-
ticle would vanish before it was even aware that it existed. In general, the
situation Γ > m is held to signal a breakdown of the concept of a particle as
a more or less identifiable entity.

5.3.2 The Yukawa potential

As another illustration, we can consider a static pointlike source :

J(x) ∝ δ3(~x) . (5.25)

The response of the field is then

φ(x) =
∫
d4y

ih̄

(2π)4

∫
d4k

e−ik·x

k · k −m2 + iε

i

h̄
δ3(~y)

=
1

(2π)3

∫
d3~k

ei
~k·~x

|~k|2 +m2
. (5.26)
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The iε term in the denominator can safely be neglected here. Writing |~x| ≡
r ≥ 0 and k ≡ |~k|, and going over to polar coordinates for ~k, we have

φ(x) =
1

(2π)3

∞∫
0

dk k2

2π∫
0

dϕ

1∫
−1

d cos θ
eikr cos θ

k2 +m2

=
1

4iπ2 r

∞∫
0

dk k

[
eikr

k2 +m2
− e−ikr

k2 +m2

]

=
1

4iπ2 r

∫
dk

k

k2 +m2
eikr . (5.27)

For r > 0 we can close the integration contour in the upper half of the
complex-k plane, and we find

φ(x) =
1

4π

exp(−mr)
r

. (5.28)

This is the so-called Yukawa potential, introduced in the 1930’s as a model for
the strong nucleon-nucleon force, with m the mass of the pion. The Compton
wavelength of the pion is, indeed, roughly the range of the nuclear forces. If
we take m→ 0 we find the Coulomb potential of a static electric source ; the
real propagator of the photon field, responsible for the Coulomb interaction,
is however more complicated, so that the above derivation is more or less
just handwaving for the case of electromagnetism.

5.3.3 Kinematics and Newton’s First Law

Let us see to what extent the picture of the source as an object that, in
a sense, emits particles can be reconciled with standard ideas in classical
relativistic mechanics. That is, we want to measure positions and times, as
well as energies, velocities and momenta, as well as possible. To this end, we
shall choose the source to be

J(x) ∝ exp

(
−|x

0|
σ0

− |~x|
2

4σ2
− i

h̄

(
p0x0 − ~x · ~p

))
. (5.29)

That is, the source is active for a period σ0/c around t = 0, and in a region
of volume σ3 around the spatial origin. Its Fourier transform,

J(k) ∝

 1

σ0
2

+

(
k0 − p0

h̄

)2
−1

exp

−σ2

(
~k − ~p

h̄

)2
 , (5.30)
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shows that it emits particles with all kinds of wave vectors kµ = (k0, ~k),
centered around values pµ/h̄, with pµ = (p0, ~p). For a bridge to non-quantum
physics to be built, both the position and wave representation of the source
should be adequately localized ; σ0 and σ should be neither too large nor too
small. For now, we do not assume any particular relation between p0 and ~p.

Let us now study the response of the field to this source for positive times.
We have

φ(x) ∝
∫
d4k

exp
(
−ik0x0 + i~k · ~x

)
(k0)2 − |~k|2 −m2 + iε

J(k) . (5.31)

Re k

Im k
0

0

We exhibit the k0 integral in the com-
plex plane. For x0 > 0, the contour is
to be closed in the lower half complex-
k0 plane. The integrand displays sim-
ple poles at the loci

k0 = ω(~k)− iε , k0 =
p0

h̄
− i

σ0

,

k0 = −ω(~k) + iε , k0 =
p0

h̄
+

i

σ0

,

the latter two lying outside the contour.
The k0 integral therefore leads to the following expression for φ(x) :

φ(x) ∝
∫

d3~k exp

i~x · ~k − σ2

(
~k − ~p

h̄

)2


×

 1

2ω(~k)

exp
(
−ix0ω(~k)

)
(
p0/h̄− ω(~k)

)2
+ 1/σ0

2

+
iσ0

2

exp(−ix0p0/h̄ − x0/σ0)

(p0/h̄− i/σ0)2 − ω(~k)2 + iε

]
. (5.32)

The second term in the square brackets decays exponentially at the same
rate as the source. Since we are interested in the behaviour of the field
when it is free, i.e. unaffected by any interactions, we can only study that
behaviour once the source has died out, and then so has this term14. The first

14This is comparable with what you would do classically: studying the trajectory of a
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term describes Fourier modes of the field that obey the dispersion relation
k0 = ω(~k), together with the resonance condition that tells us that the field

can only be appreciable if both p0/h̄ ≈ ω(~k) and ~p/h̄ ≈ ~k. We therefore
expect any fruitful resonance in the field, which can allow for the transmission
of signals over macroscopic distances, if

p0

h̄
≈ ω

(
~p

h̄

)
. (5.33)

If we relate the zero component p0 (with dimension kg m/s) to an energy E
by writing

p0 = E/c , (5.34)

we find that the only particle modes emitted by the source that have a chance
of propagating over distances much further than σ must satisfy

E ≈
√
|~p|2c2 +M2c4 , m =

Mc

h̄
. (5.35)

This is the mass shell condition, which prescribes the relation between the
energy E (in Joule), momentum ~p (in kg m/s), and mechanical mass M (in
kg) of a particle moving freely through spacetime. We recognize the quantity
m that we have been using so far as the inverse Compton wavelength of the
particle15. Note the occurrence of h̄ in the denominator : interpreted strictly,
this implies that a truly classical limit leads to m→∞. The Euler-Lagrange
equations are therefore not classical at all except for the Maxwell equations
holding for massless photons.

Given that the particle is emitted on its mass shell, the integral φ(x) is
not yet automatically large. The complex phase in Eq.(5.31) will lead to
extremely rapid oscillatory behaviour of the integrand, and an essentially
vanishing result, except for those regions where the phase of the integrand is

thrown ball to see whether Newton’s laws are obeyed only makes sense once the ball has
definitively left your hand.

15A particle is called on-shell if its momentum pµ satisfies Eq.(5.35) ; if not, it is called
off-shell. Off-shell particles are not exotic or improbable ; they are just not visible as
the result of any experiment since they cannot propagate well. In popular literature,
off-shell particles are often dicussed with a lot of mumbling about ‘uncertainty relations’,
‘borrowing energy from the vacuum’, and so on. Do not allow yourself to be misled !
When a theorist starts invoking the uncertainty principle as a reason for something, keep
your hand on your wallet. The ‘uncertainty principle’ is not a reason but a result.



124 March 26, 2017

stationary. This happens if

∂

∂~k

(
x0k0 − ~x · ~k

)
=

∂

∂~k

(
x0ω(~k)− ~x · ~k

)
=

~k

ω(~k)
x0 − ~x = 0 . (5.36)

That is, φ(x) is appreciable on a line in spacetime given by

~x = t
c ~p

p0
: (5.37)

the particle moves along a straight line, with constant velocity c~p/p0. This
is Newton’s First Law.

One might envisage other time-dependences of the source. Two additional
cases are discussed in Appendix 13.8 ; the conclusions (although based on
slightly different mathematics) are the same.

From this simple investigation we may conclude that (a) motion of free
particles over macroscopic distances follows Newton’s first law; and (b) that
we can effectively assume that the Fourier modes of the fields obey the dis-
persion relation k0 = ω(~k) for positive times large enough for sources to have
died out.

5.3.4 Antimatter

We again consider the free SDe :

φ(x0, ~x) = −
∫ dk0

2π

∫ d3~k

(2π)3

exp(−ik · x)

(k0)2 − ω(~k)2 + iε
J(k0, ~k) ,

ω(~k) =
√
|~k|2 +m2 . (5.38)

If x0 > 0, the integration contour can be closed through the lower half of the
complex k0 plane :

φ(x0, ~x) = i
∫ d3~k

(2π)32ω(~k)
exp

(
−i(x0ω(~k)− ~x · ~k)

)
J(ω(~k), ~k) . (5.39)

If, on the other hand, x0 < 0, the closure must be over the upper half of the
plane, and then

φ(x0, ~x) = i
∫ d3~k

(2π)32ω(~k)
exp

(
−i(−x0ω(~k)− ~x · ~k)

)
J(−ω(~k), ~k) . (5.40)
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We see that the propagator essentially describes plane waves, with the fol-
lowing characteristic: positive energies travel towards the future, and negative
energies travel towards the past.

While the concept of particles with positive energy, moving from past to
future, conforms to our everyday experience, the idea of negative (kinetic)
energies and movement backwards in time is not only æsthetically repellent
but may lead to splitting headaches in the verbal description of physical
processes. When, however, we consider more closely how such a situation
will appear, it becomes clear that negative energies moving backwards in
time are indistinguishable from positive energies moving forward.

E > 0

x

t

A

B

E(A) ↓ , E(B) ↑

E < 0

x

t

A

B

E(A) ↓ , E(B) ↑

Some bookkeeping will easily convince you of this, with the help of the above
two diagrams. Consider two loci in space, denoted by A and B. In the
first diagram a particle moves forward in time, with positive energy, from A
to B. As a result the energy at A decreases, and that at B increases. In
the second diagram, a particle with negative kinetic energy starts at B, and
moves backwards in time to A. The net effect on the energies at A and B is
exactly the same ! The two situations are indistinguishable from the point
of view of the energy balance.
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Q < 0

x

t

A

B

E > 0

E(A) ↓ , E(B) ↑
Q(A) ↑ , Q(B) ↓

Q < 0

x

t

A

B

E < 0

E(A) ↓ , E(B) ↑
Q(A) ↓ , Q(B) ↑

There may still be a difference, of course ; if the particles have additional
properties such as electric charge, the backwards-moving particles will appear
with the opposite charge. For instance, a negatively charged electron moving
backwards will appear as a positively charged positron moving forward, as
can be seen from the two diagrams above. Such re-interpreted time-reversed
particles are called antiparticles . Every particular object whose propagator
contains the denominator of Eq.(5.38) is seen to contain both the regular
particles and their antiparticles. Moreover, we find the fundamental result
that particles and their antiparticles must have exactly the same mass and
lifetime. Particles and their antiparticles may be identical, the photon being
an example. Such particles must, of course, be electrically neutral. On the
other hand, not all neutral particles are their own antiparticles ; neutrons
and antineutrons are distinct from one another16. We have thus found the
following result for free particles : if we (a) replace all particles by their an-
tiparticles and vice versa, the so-called charge conjugation operation C, (b)
inverse all space directions17, the so-called parity transformation P, and (c)
invert the direction of time, the so-called time reversal operation T, then the
world will look exactly the same ! This is (a restricted form of) the CPT
theorem, valid for the propagation of free particles. The more interesting,

16Once the neutron is seen to be a collection of charged quarks, the distinction becomes
obvious. So, in some sense, the realization that the neutron and the antineutron are
distinct is an argument for their compositeness ! On the other hand, neutrinos, while
electrically neutral, are not equal to antineutrinos, and are yet believed to be elementary.

17Since, as can be seen from our diagrams, inverting the direction of the motion through
time will simultaneously change motion towards the left (say) into motion towards the
right, and so on.
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real CPT theorem, valid also for interacting particles, needs more tools than
we have at our disposal right now : its proof is referred to Appendix 13.14.

Let us consider the (classically depicted) path a particle tracks out in
spacetime, as given by the space-time diagram given below. In one descrip-
tion, the

0

x

t

A

B

C

t

particle starts at A and moves
to B, where at time t0 it re-
verses its time direction, and
moves backwards in time to C.
In the alternative description,
a particle starts at A and its
antiparticle starts at C, and
the pair collides at B at time
t0. For times later than t0,
the particle and/or its antipar-
ticle have disappeared ; but be-
cause of momentum conserva-
tion their combined energy has
to be transferred onto one or
more other particles (not de-
picted). The two descriptions

are completely equivalent, but the second one conforms much better to the
way we tend to view the world18. At the ‘collision/reversal-point’ B the par-
ticle coming from A must dump its energy, and even an additional amount
since its energy must become negative for it to start moving backwards to
C. Therefore, particle-antiparticle collisions release energy, often in the form
of photons19. For instance, when positrons meet electrons, the usual result20

18Note that the antiparticle interpretation is just the way we surrender to a prejudice
about motion in time. Physicists from some alien civilization might have less problems
with the other interpretation.

19It is sometimes stated that particles can only annihilate with their own antiparticle.
This is a somewhat restricted point of view, since for instance electrons can annihilate
with anti-neutrinos into W particles, as we shall see. It may be more appropriate to
say that it needs particles with their own antiparticles to annihilate into something that
has quantum numbers (electric charge, fermion number, etcetera) equal to those of the
vacuum. Neutrinos and their antineutrinos cannot easily annihilate into photons, being
electrically neutral : but they can annihilate into one or more Z bosons.

20Note that the simpler-seeming process e− e+ → γ is kinematically impossible if



128 March 26, 2017

is e− e+ → γ γ. We also see that nothing forbids the opposite process, in
which available energy turns into particle-antiparticle pairs : γ γ → e− e+.

5.3.5 Counting states : the phase-space integration el-
ement

The treatment of the previous section is also useful in that it provides a hint
on how to count the wave-vector states. For on-shell particles of mass m we
use the integration element

1

(2π)3

d3~k

ω(~k)
, ω(~k) =

√
~k2 +m2 .

This object has dimension L−2. It is not explicitly Lorentz-covariant, but we
can write it also in the more attractive form

1

(2π)3

d3~k

ω(~k)
=

1

(2π)3
d4k δ

(
k2 −m2

)
θ(k0) . (5.41)

Note that if k0 is positive for an on-shell particle in any given inertial frame,
it is positive in all intertial frames that can be reached by Lorentz transfor-
mations from the first one. This ensures that the step function θ(k0) always
has the same value, irrespective of any Lorentz boosts we may care to make.
Lorentz covariance of the phase space integration element is thus guaran-
teed. We shall use the density of states (5.41) for all on-shell particles in the
calculation of cross sections and lifetimes.

If, for a given scattering process, the final state contains N particles with
masses mj, j = 1, 2, . . . , N , and wavevectors pµ1 , p

µ
2 , . . . , p

µ
N , the combined

phase-space integration element is

dV (P ; p1, p2, . . . , pN) ≡ N∏
j=1

1

(2π)3
d4pj δ(pj

2 −mj
2)

 (2π)4δ4

P − N∑
j=1

pj

 , (5.42)

where P µ is the total wavevector of the scattering system. The four-dimensional
Dirac delta forces the overall conservation of wavevectors21. The condition

the resulting photon is to be on its mass shell. On the other hand, an single off-shell
photon can be produced, but such a photon must immediately decay again, in for instance
a particle-antiparticle pair of some kind.

21Conservation of total energy and momentum.
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θ(p0 > 0) imposing positive energy for the outgoing particles is, here and in
the following, always understood.

5.4 Excercises for chapter 5

Excercise 19 Dangerous ε
Explain why, in Eq.(5.11), it is important that ε > 0.

Excercise 20 Short-range weak forces
From our discussion of the Yukawa potential, estimate the effective range of
the static weak-interaction potential, mediated by particles of masses 80 to
90 GeV/c2.

Excercise 21 Counting states
Prove Eq.(5.41).
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Chapter 6

Scattering processes

6.1 Introduction

In this chapter we turn our attention to the bread-and-butter subject of parti-
cle phenomenology : the description of scattering processes. We shall discuss
the way in which Feynman diagrams and their evaluation are postulated to
predict the probability for finding specified final states given specified initial
states. We also investigate the consequences of the claim that our approach
describes quantum physics and is therefore of a probabilistic nature : that
is, we can only compute probabilities, which are necessarily bounded1. This
leads to the notion of unitarity and the use (and usefulness) of cutting rules.

6.2 Incursion into the scattering process

6.2.1 Diagrammatic picture of scattering

To a large extent, particle phenomenology can be viewed as the study of
scattering processes, in which some initial state is prepared and allowed to
time-evolve, and finally an observation is made in which the system is seen
to have resulted in some final state. A useful example is provided by the
current practice in high-energy colliders : here the initial state is prepared
by machine physicists operating the collider, and it consists of two (beams
of) particles with more or less well-defined momenta coming out of the beam
pipes. The interesting part of the time-evolution of the system is that during

1After all, the probability of a certain scattering process occurring cannot exceed 100%.
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which the initial-state particles approach one another and meet (hopefully2 !)
in the interaction point, where the dynamics takes place. The final state is
observed by the detector operated by the particle physicists.

Since not only the scattering itself but also the initial-state preparation
and the final-state observation are quantum processes, all these parts of the
process must, according to our assumptions, be described by Feynman di-
agrams in a manner still to be established. The diagrammatic form of the
complete process will then look as follows :

Here and in the following we adopt the convention that the initial state
appears on the left-hand side of the diagrams, and the final state on the right-
hand side. This does not imply any spatial or timelike relation between any
of the vertices in the diagram: indeed, they are supposed to be integrated
over all of spacetime3. Another observation on the above diagram is also
relevant : the initial-state preparation and the final-state observation should
contain physics that is better understood than the scattering part, and there
should be a clear notion of precisely which particles constitute the initial
and final states. This is indicated by the identifiable propagators connecting
the various ingredients of the process. We therefore adopt the idealization
that the only relevant part of the scattering should reside in the central, or
scattering part, in this case

2In the sense that particles with perfectly well-defined momenta form plane waves of
infinite spatial extent, they can hardly avoid meeting. In practice, the momenta and
spatial extensions of the particles’ wave packets are of course more limited.

3Of course, if there is any justice the contribution from paths in which a vertex is very
far out ought to be small.
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We now have to confront the two following questions. In the first place,
which Feynman diagrams should occur in the scattering part ? And sec-
ondly, in actual experiments the initial- and final-state particles travel over
many meters between preparation, scattering, and detection. These particles
should therefore be on their mass shell, but isn’t this precisely the case in
which their propagators blow up ? The situation obviously calls for some
reinterpretation and additional Feynman rules, to which we shall come.

Before finishing this section, let us remark that also initial states consist-
ing of only a single particle occur :

In this case, we simply study the decay properties of the particle, such as its
total or partial decay width.

6.2.2 The argument for connectedness

Let us consider the set of all Feynman diagrams describing a decay process.
As discussed before, we omit any vacuum bubbles that do not contain exter-
nal lines. The set can then be split up into its connected pieces, for instance
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+ · · · (6.1)

where as before the shading indicates connected diagrams. Now, recall that
every vertex in any diagram contributes a Dirac delta imposing energy-
momentum conservation. Therefore, every connected diagram has an overall
Dirac delta imposing overall energy conservation. That, however, implies
that a diagram like
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(6.2)

asks for particles carrying positive energy to originate (by some interactions)
from the vacuum. Such contributions therefore vanish by energy conserva-
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tion, and the only contributing diagrams are contained in the totally con-
nected blob. Next, consider two-particle scattering. If we forbid (for the
same reason as above) connected parts where particles are created from the
vacuum, the only possible contributions are given by
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Now, the second term here is in principle possible but only if a) the two
incoming particles are inherently unstable4 and b) the outgoing particles ar-
range themselves in precisely two groups according to the indicated decay
patterns. Leaving aside such special cases, we conclude that the scattering
amplitude is given by the connected Feynman diagrams. Note that
the restriction to connected diagrams only arises here from simple energy
considerations, and not from any deep inherent superiority of connected di-
agrams over disconnected ones : in essentially all cases of interest, the result
of the disconnected diagrams vanish anyway.

In fact, we may conceive of situations where particles can be created
from the vacuum. This is the cases in ‘field theories at high temperature’
where processes take place in a heat bath which can deliver energy to create
particles. In such a picture the heat bath is the ‘vacuum’ of the theory, and
diagrams such as that of Eq.(6.2) are not automatically zero. Another more
delicate situation is that of more incoming particles : for instance, we might
consider four particles scattering into four, in which we might recognize two
groups of two particles scattering into two :
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In this case, the only argument to disregard the disconnected diagrams is an
appeal to the special kinematics.

4This makes the notion of particles ‘coming in from infinity’ conceptually dubious in
this scattering.
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6.3 Building predictions

6.3.1 General formulæ for decay widhts and cross sec-
tions

Consider a ‘slightly unstable’ particle of mass m at rest, with momentum
P µ. We shall adopt the following prescription for its differential decay width
into n particles with momenta pµ1 , p

µ
2 , . . . , p

µ
n :

dΓ = ΦΓ 〈|M|2〉 dV (P ; p1, p2, . . . , pn) Fsymm . (6.3)

Here,M stands for the transition amplitude, which we still have to establish.
The symbol 〈|M|2〉 indicates that in accordance with quantum-mechanical
practice we have to square the absolute value of M in order to arrive at
a probability, and the brackets indicate summation and/or averaging over
degrees of freedom other than the momenta : at present such degrees of
freedom are not in our theory yet, but they will come ! The symbol ΦΓ

denotes the collection of factors that must be included to account for the
density of states for the incoming particle, etcetera. The momentum P µ is
that of the incoming particle at rest. The symmetry factor Fsymm is included
to handle identical particles in the final state. In quantum mechanics, the
statement that two particles are identical means that an interchange of these
particles leads to the physically identical final state, so that an unconstrained
summation over their momenta (and other quantum numbers) would lead to
over-counting. We therefore prescribe that Fsymm contains a factor 1/k! for
every group of precisely k indentical particles in the final state5. For example,
a final state containing precisely 2 photons, 3 electrons and 1 positron leads
to Fsymm = 1/(2!)(3!)(1!) = 1/12.

Note that the decay width is inversely proportional to the particle’s life-
time. This means that for a moving particle the decay width must decrease
by a factor m/P 0 to account for time dilatation.

In the case of two stable incoming particles with momenta pµa and pµb , we
rather talk about the transition rate per unit flux, that is, the cross section
for their scattering. It has dimension L2, and must be given by a formula of

5Some authors choose to include a factor 1/
√
k! in the transition amplitude M. I

am opposed to this since such a prescription introduces a distinction between particles in
the initial and those in the final state, which may destroy the crossing symmetry of the
amplitude.
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the form

dσ = Φσ 〈|M|2〉 dV (pa + pb; p1, p2, . . . , pn) Fsymm . (6.4)

We see that, in order to get the formulae (6.3) and (6.4) to actually work,
we have to establish

• the flux factors ΦΓ and Φσ ;

• the algorithm to derive from the connected Green’s function the am-
plitude. In particular this calls for a special treatment of the external
lines.

We shall solve these issues in the next section.

6.3.2 The truncation bootstrap

We have come to one of the centrally important steps in our treatment of
scattering. Consider the process in which two particles with momenta pa and
pb scatter and yield j + n stable particles in the final state, whose momenta
we label by k1, k2, . . . , kj and q1, q2, . . . , qn. The distinction between these
groups lies in the fact that, whereas the k’s emerge ‘directly’ from the scat-
tering, the q’s are in fact the decay products of an unstable particle that was
‘directly’ produced together with the k’s. Nevertheless, the complete final
state consists of both the k’s and the q’s. The relevant diagrams are given
here :
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}
}

A B

k

q

p

p

a

b

p
1,2,...

1,2,...

Note that the connected blobs may themselves contain many different in-
dividual diagrams. By separating the blobs A and B we indicate that the
unstable particles is actually quite long-lived so that the place where it is
produced and that where it decays tend to be clearly separated.

Now, we shall assume that we have somehow solved the problem of how to
go from connected Green’s function to amplitude, and that we have applied
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this procedure to the above process. We then have for the amplitude the
form

M = [A]
ih̄

p2 −m2 + imΓ
[B] , (6.5)

where p = q1+· · ·+qn is the momentum of the (internal !) line corresponding
to the unstable particle, and p2 = p·p. The unstable particle’s mass is m, and
its total decay width is Γ. The symbols [A] and [B] stand for the processed
connected Green’s functions for the ‘production’ process A and the ‘decay’
process B, but with the Feynman factors for the unstable particle removed.
Assuming, for simplicity, that Fsymm = 1, we then have for the differential
cross section the form

dσ = Φσ |[A]|2 |[B]|2 h̄2

(p2 −m2)2 +m2Γ2
dV (P ; k1, . . . , kj, q1, . . . , qn) ,

(6.6)
where P = pa + pb. In order to emphasize that p is the sum of the q’s, we
may write this also as

dσ = Φσ |[A]|2 |[B]|2 dV (P ; k1, . . . , kj, q1, . . . , qn)

h̄2

(p2 −m2)2 +m2Γ2

d4p

(2π)4
(2π)4δ4(p− Σq) , (6.7)

with obvious notation for the sum over the wavevectors q.
Now, we let the unstable particle approach stability, so that the location

where it decays becomes widely separated from that where it is produced.
That is, we examine the case that Γ becomes very, very small, and we may
approximate6

1

(p2 −m2)2 +m2Γ2
→ π

mΓ
δ(p2 −m2) . (6.8)

We can then use this to rewrite

dV (P ; k1, . . . , kj, q1, . . . , qn)

(p2 −m2)2 +m2Γ2

d4p

(2π)4
(2π)4δ4(p− Σq) (6.9)

6This follows from the well-known representation of the Dirac delta function as

δ(x) = lim
z→0

1

π

z

x2 + z2
,

which has unit integral and vanishes for every x 6= 0.
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as

1

2mΓ
dV (P ; k1, . . . , kj, q1, . . . , qn)

d4p δ(p2 −m2)

(2π)3
(2π)4δ4(p− Σq)

=
1

2mΓ
dV (P ; k1, . . . , kj, p) dV (p; q1, . . . , qn) . (6.10)

Inserting this in Eq.(6.7) we see that the cross section now takes the form

dσ =
(
h̄ |[A]|2

)
dV (P ; k1, . . . , kj, p)

1

Γ

1

2m

(
h̄ |[B]|2

)
dV (p; q1, . . . , qn) . (6.11)

Let us now step back and consider what it is we are actually computing here :
it is the cross section for producing an almost-stable particle p, together with
the k’s in a specified configuration, followed by the decay of the particle p
into a specified configuration of q’s. Under the usual ideas of conditional
probability, this is the same as first computing the cross section for the
production of p and the k’s, followed by the conditional probability that,
given p, we see it decay into the q’s. This conditional probability, called the
(differential) branching ratio, is the partial decay width for p to go into the
q’s (computed in the p rest frame !), divided by the total decay width, in this
case Γ. We conclude that

• h̄ |[A]|2 is 〈|M|2〉 for the process pa + pb → k1 + · · ·+ kj + p ;

• h̄ |[B]|2 is 〈|M|2〉 for the process p→ q1 + · · ·+ qn ;

• ΦΓ must be given by 1/(2m).

In a sense, we have managed to cut through the p line, and interpret the
process rather as it would be given by the diagrams
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pp

A point to be noted here has been somewhat hidden so far. The connected
Green’s functions contain overall factors (2π)4δ4() for overall wavevector con-
servation. This conservation has been imposed already, however, in our choice
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of the phase space integration elements dV . We therefore have to remove
these factors as well in the transition from connected Green’s function toM.

What about the treatment of the external lines ? In the above discussion
we started with p as an internally ocurring unstable particle, carrying its
own propagator. As we let it become stable, the propagator has disappeared
into the phase space counting, leaving only a residue of a factor h̄2. At the
end of the story the particle p has become a stable particle occuring as an
external line in the blob A. This, therefore, must be the prescription for
the external lines ! This is called truncation or amputation of external lines.
An external line must apparently carry, instead of its undefined propagator,
simply a factor

√
h̄. We arrive at the following, expanded set of rules for the

calculation of scattering amplitudes M (as opposed to Green’s functions) :

k ↔ ih̄

k · k −m2 + iε

internal lines
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k ↔
√
h̄

external lines

k
3

k
2

k
4

k
1

↔ − i
h̄
λ4(2π)4δ4(k1 + k2 + k3 + k4)

k
1 k

2 ↔ +
i

h̄
J(k2)(2π)4δ4(k1 + k2)

ε is replaced by mΓ for unstable particles.
In the wavevector conservation at the vertices, the
wavevectors must be counted either all incoming or al
outgoing.
Each internal wave vector kµ is to be integrated over,
with integration element d4k/(2π)4.

Feynman rules, version 6.1 (6.12)

The flux factor ΦΓ for particle decay has been found to be 1/(2m). It
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is related to how we count the density of states of the incoming particle.
We can directly translate to the case of two-particle scattering. Let us work
in the Lorentz frame in which particle b is at rest while particle a impinges
upon it. Keeping in mind the effect of Lorentz transformations on the density
of states we see that whereas mb remains, ma has to be replaced by p0

a, in
accordance with the discussion in section 5.3.1. The density-of-states factor
for the two-body initial state is therefore 1/4p0

amb. Since, however, we are
asking for a cross section rather than a transition rate, we have to divide this
by the velocity of particle a in b’s rest frame, that is, by a factor |~pa|/p0

a. The
flux factor therefore becomes

Φσ =

(
4mb|~pa|

)−1

.

This expression, being given in a specific Lorentz frame, is not very attractive.
We can, however, write it in an explicitly Lorentz-invariant form :

Φσ =
1

2λ
(
(pa + pb)2, p2

a, p
2
b

)1/2
, (6.13)

where we have introduced the Källén function

λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2xz − 2yz = (x− y − z)2 − 4yz . (6.14)

It often happens that the colliding particles have masses that are negligible
compared to their combined invariant mass, the square of which is commonly
denoted by the Mandelstam variable s. In that case, we may write

Φσ ≈
1

2s
, s ≡ (pa + pb)

2 . (6.15)

This finishes our bootstrap treatment of the relation between connected
Green’s functions and scattering amplitudes, or matrix elements.

6.3.3 A check on dimensionalities

It is instructive to check that the widths and cross section expressions that
we have derived do, indeed, have the correct dimensionality. By dim[ ] we
shall denote the dimensionality of objects. In the first place, from the fact
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that the action S must have the same dimension as h̄, we can immediately
derive the dimensionality of the fields7 :

dim

[
ϕ

]
= dim

[
φ

]
= dim

[
h̄1/2

L

]
, (6.16)

where, as before, L denotes a length. Therefore, a connected Green’s function
with n external lines (being nothing much more than the expectation value
of ϕn) has dimension8

dim

[
Cn

]
= dim

[
h̄n/2

Ln

]
. (6.17)

The Dirac delta function imposing wavevector conservation has dimension-
ality

dim
[
δ4(k)

]
= dim

[
k−4

]
= dim

[
L4
]
. (6.18)

To go from the connected Green’s function Cn to the n-point matrix ele-
mentMn, we have to extract the external propagators as well as the overall
wavevector conservation delta function, and assign a factor h̄1/2 to each ex-
ternal line: therefore,

dim

[
Mn

]
= dim

[
Cn

(C2)n δ4(k)
h̄n/2

]
= dim

[
Ln−4

]
. (6.19)

The n-particle phase-space integration element dVn has dimensionality L4−2n

as we have seen. Taking into account that the flux factor ΦΓ = 1/2m must
have the dimensionality of 1/m, that is, L, the dimensionality of the decay
width of a single particle into n particles is given by

dim

[
Γ(1→ n)

]
= dim

[
1

m
(Mn+1)2 dVn

]
= dim

[
L−1

]
, (6.20)

as required. Similarly, for the cross section of two particles going into n
particles we have

dim

[
σ(2→ n)

]
= dim

[(
1

m

)2

(Mn+2)2 dVn

]
= dim

[
L2

]
, (6.21)

7In four spacetime dimensions! In d dimensions it would read dim[ϕ] =

dim
[
h̄1/2L1−d/2

]
.

8Higher-order contributions to Green’s functions contain, of course, additional powers
of h̄: but these must occur only in dimensionless combinations with the coupling constants
of the theory.
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again as required. Note that the above analysis is kept simple because we
have restricted ourselves to the use of wavevectors rather than mechanical
momenta, which would introduce additional factors of h̄ in the calculation.
The other natural constant, c, need not enter here.

6.3.4 Crossing symmetry

In our treatment of antimatter in the previous chapter we have seen that
the production (absorption) of a particle is, in a sense, æquivalent to the
absorption (production) of its antiparticle. We can make this even more
specific as a relation between various scattering amplitudes : this goes by the
name of crossing symmetry. Consider a generic 2→ 2 scattering process :

a(p1) + b(p2)→ c(q1) + d(q2)

where we have indicated the momenta of the particles. Let us write the
corresponding amplitude as M(p1, p2, q1, q2). By moving particles from the
initial to the final state9, or vice versa, we can then find the amplitudes for
the crossing-related processes, for example :

a+ b→ c+ d : M(p1, p2, q1, q2) ,

a+ c̄→ b̄+ d : M(p1,−p2,−q1, q2) ,

a+ d̄→ b̄+ c : M(p1,−p2, q1,−q2) ,

c̄+ d̄→ ā+ b̄ : M(−p1,−p2,−q1,−q2) . (6.22)

Since the momenta of all (anti)particles have positive energy, the minus signs
yield momenta with negative energy. Depending on the type of the particle10,
this may involve an analytic continuation of the amplitude function M.

6.4 Unitarity issues

6.4.1 Unitarity of the S matrix

If M is to be a correct form of the scattering amplitude for a given initial
state to be observed, after time evolution, as a given final state, it must obey

9You can visualize this by taking an outgoing particle, say, and dragging its external
leg from the final to the initial state.

10Especially for Dirac particles.
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the constraints of unitarity which we shall now discuss. In a more traditional
quantum-mechanical parlance, the initial state is given to us at some time
in the far past, where the incoming particles are supposed to be so widely
separated that they are essentially free : the state of the system is then

|in, t = −∞〉

We now let nature take its course : the incoming particles approach one
another, the interaction is ‘switched on’, and the system evolves into some,
possibly very complicated, superposition of free-particle states :

|in, t = −∞〉 → |in, t = +∞〉

Finally, the final state is observed to be a particular free-particle state (as-
suming the final-state particles have been able to move very far away from
one another), that is,

|out, t = +∞〉 .

The probability amplitude for this to happen is of course

M = 〈out, t = +∞|ins, t = +∞〉 ≡ 〈out, t = +∞| S |in, t = −∞〉 ,
(6.23)

where S is the matrix describing the time evolution of the incoming state
from t = −∞ to t = +∞.

An important consideration here is the conservation of probabiity. That
is, any initial state |i〉 must go to some final state |f〉 with 100% probabil-
ity11 ; of course |f〉 = |i〉 may also be one of the possibilities. Writing this
using the S matrix we have

1 =
∑
f

| 〈f |S| i〉 |2 =
∑
f

〈
i
∣∣∣S†∣∣∣ f〉 〈f ∣∣∣S∣∣∣ i〉 =

〈
i
∣∣∣S†S∣∣∣ i〉 . (6.24)

Conversely, any final state |f〉 must have come from some initial state |i〉
with 100% probability, so that

1 =
∑
i

| 〈f |S| i〉 |2 =
∑
i

〈
f
∣∣∣S∣∣∣ i〉 〈i ∣∣∣S†∣∣∣ f〉 =

〈
f
∣∣∣SS†∣∣∣ f〉 . (6.25)

11Try to imagine a world in which this does not hold ! Conservation of probability is a
dogma — but a reasonable one.
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Since this must hold for all states |i, f〉 we have

S†S = SS† = 1 , (6.26)

and the S matrix is unitary. Note that we have had to assume that the set of
initial states |i〉 and final states |f〉 are complete12. The free-particle states
are natural choices for complete orthonormal bases, and we see that M is
simply a matrix element of the S matrix. We shall investigate this in some
more detail.

For simplicity, let us assume that we can label the initial states with a
discrete label i, and the final states by a similar discrete label f . We can
then write the S matrix element as

Sfi = δfi +Mfi , (6.27)

where the Kronecker delta embodies what would happen if there were no in-
teractions : the only possible observed final state would in that case be iden-
tical to the initial state (two particles, say, continuing on their way without
having interacted). The remainderMfi is the object described by Eq.(6.23) ;
it is the result of the interactions of the theory, and is described by the Feyn-
man diagrams. Note that Mii 6= 0 is quite possible ; it corresponds to the
case where the final state happens to reproduce the initial state, so to speak
in spite of the interactions. This is called the forward scattering amplitude.
Now, the unitarity of the S matrix is expressed13 as SS† = S†S = 1, or∑

k

S∗kfSki = δfi , (6.28)

or, in terms of M :

Mfi +M∗
if +

∑
k

M∗
kfMki = 0 . (6.29)

As a special case, we can consider f = i : we then have the optical theorem,

2 Re (Mii) +
∑
k

|Mki|2 = 0 , (6.30)

12Again, try to imagine what things would look like if that were not the case.
13Since S may be an infinite matrix, both conditions are necessary, whereas for a finite

matrix one would suffice.
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which immediately shows that the forward scattering amplitude must have
negative real part14. Another simple result is the well-known property of
unitarity matrices : by putting f = i in Eq.(6.28) we see that for every
S-matrix element we have

|Sfi| ≤ 1 ∀ i, f (6.31)

which implies that Mfi can not be arbitrarily large. We shall employ this
idea extensively later on.

6.4.2 An elementary illustration of the optical theorem

We consider the following physical process. We start with an empty initial
state i (that is, a state containing no particles). At some moment a source
kicks in, producing an unstable particle with wavevector p, mass m and total
width Γ. Sometime later, the same source absorbs the particle, and at the
end the final state f is empty again. The simple Feynman diagram describing
this is

J
Jp

Since the initial and final state coincide, f = i and this is a forward scattering
amplitude ; it must obey the optical theorem. We shall now verify this. The
matrix element is given by

Mii =
(
i
J

h̄

)
ih̄

p2 −m2 + imΓ

(
i
J

h̄

)
, (6.32)

so that

Re (Mii) = −J
2

h̄

mΓ

(p2 −m2)2 +m2Γ2
, (6.33)

which is indeed negative. Now, we consider the matrix elementsMki as used
in Eq.(6.30). These describe the initial state i going over in any final state
k, that is, they describe the decay of the particle after it has been produced
by the source :

���
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���
���J

p

14A word of caution : in much of the literature, the statement reads that the amplitude
must have positive imaginary part. This is simply due to the fact that in those texts, the
S matrix element is written not δ +M but δ + iM. I do not see any particular virtue in
this.
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and we shall denote them by

Mki = −iJ
h̄

h̄

p2 −m2 + imΓ
D , (6.34)

where iD is the contribution of the ‘decay blob’. We then have∑
k

|Mki|2 =
J2

(p2 −m2)2 +m2Γ2

∑
k

|D|2 . (6.35)

The optical theorem (6.30) will therefore be satisfied if

Γ =
1

2m

∑
k

h̄ |D|2 . (6.36)

But this is, of course, precisely the prescription for the decay width of the
particle, if we realize that the final state k indicates not only all possible
final states, but also that the summation over k should include the phase-
space integration. This short excercise illustrates both the optical theorem
and the computational prescriptions arrived at before. Note that the factor
h̄ corresponds precisely with the Feynman rule that an external line should
carry a factor

√
h̄.

6.4.3 The cutting rules

We shall now consider how the unitarity relation (6.29) can be made useful
in the language of Feynman diagrams. To start, we realize that this equation
contains, in addition to the ‘standard’ matrix elementMfi for initial state i
and final state f , also M∗

if which describes the (complex conjugate) matrix
element for initial state f going over into final state i, that is, the time-
reversed process. We shall embody this in a useful manner by introducing a
cutting line. A cutting line cuts across diagrams separating them into a ‘left’
and ‘right’ piece. Any diagram to the left of a cutting line is interpreted in
the usual manner ; any diagram to the right of a cutting line is interpreted to
be the complex conjugate of the time-reversed version of the diagram. That
is,
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If the diagram contains oriented lines, the time-reversal also inverts the ori-
entation of those lines (if the orientation is indicated by an arrow, we reverse
the arrow). We can write Eq.(6.29) diagrammatically as
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i
k fk

= 0 . (6.37)

It is possible to sharpen this equation to make it more useful. In the first
place, Eq.(6.37) holds for whole matrix elements, evaluated to all orders
in perturbation theory. This implies that it must also hold for each or-
der separately15. However, even at some fixed order, Mfi can contain very
many diagrams. Consider a somewhat-complicated Feynman diagram in ϕ3

theory :

(6.38)

The corresponding Lagrangian reads

L =
1

2
(∂µϕ)(∂µϕ)− 1

2
m2ϕ2 − 1

6
λϕ3 . (6.39)

The unitarity structure of the above Feynman diagram is not immediately
obvious since there are, at this order of perturbation theory, quite a few
diagrams that contribute to this amplitude (57, in fact). We can, however,
employ the following trick. Let us assign a different label to each line in the
diagram, in an arbitrary manner, for instance

1

2

3

4

5

6

7

89

(6.40)

and let us pretend that each line corresponds to a different field. This diagram
can then be interpreted as coming from a theory with 9 distinct fields (with

15If Eq.(6.37) were not to hold order-by-order, this would imply subtle relations between
coupling constants, h̄, and the like. We would then be in a position to actually compute
coupling constants from first principles, which would be good — too good to be true, in
fact.
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identical mass) and Lagrangian

L =
9∑

n=1

(
1

2
(∂µϕn)(∂µϕn)− 1

2
m2ϕ2

n

)
− V ,

V = λ123ϕ1ϕ2ϕ3 + λ245ϕ2ϕ4ϕ5 + λ349ϕ3ϕ4ϕ9

+λ567ϕ5ϕ6ϕ7 + λ789ϕ7ϕ8ϕ9 . (6.41)

Nothing forbids us to assign to the various ϕϕϕ couplings precisely the value
λ. Now, it is easily seen that, in order λ123λ245λ349λ567λ789, the diagram
(6.40) is the only diagram that can contribute in this theory16 ! We can
do even more : by inspection of all possibilities, we can simply realize that
the only final states k in the unitarity condition (6.37) must be precisely
k = {2, 3}, {5, 9}, {2, 4, 9} or {3, 4, 5}, if we want to end up with the right
order in perturbation theory17. In other words,

+ +

+ + + = 0 , (6.42)

where we have omitted the line labellings : indeed, the same identity must
hold for the original diagram (6.38) ! This establishes the so-called cutting
rules (also called the Cutkosky rules), which can be most simply expressed
in words : take a diagram and move the cutting line through it from right
to left in all possible manners, making sure that the two halves in which the
diagram is cut remain connected and that neither the inital state or the final
state is dissected. The particles described by internal lines through which
the cut runs must be assumed to be on their mass shell18. The sum of all
the possible contributions then vanishes19.

16The secret resides in the fact that in V the external fields 1,6 and 8 occur precisely
once, and the other fields precisely twice.

17Note that, for instance, the choice k = {5, 7, 8} would result in the right-hand half of
the diagram being disconnected ; the choice k = {2, 4, 7} is inconsistent since both 6 and
8 are in the final state.

18This may mean that the situation thus described fails to meet the restrictions of
momentum/energy conservation ; then, that contribution vanishes.

19You might object that in a theory with many different fields the symmetry factors of
the diagrams will, in general, be different from those of a theory with only a single field,
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6.4.4 Infrared cancellations in QED

As an illustration of how the cutting rules may be applied we shall make a
slight jump ahead and consider quantum electrodynamics, that is the theory
of photons and electrons. Their Feynman rules will be dicussed later ; for
now it is sufficient to know that the only interaction vertex in the theory is
the three-point vertex

where the oriented lines stand for electrons and positrons, and the wavy
line denotes the photon. Let us consider the 1PI two-loop corrections to the
photon propagator. These are given by
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By applying the cutting rules we can investigate the real part of this two-loop
contribution:
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)∗
↔

↔ + + + +

+ + +

+ + . (6.43)

This set of 10 cut diagrams is, as we can see, equal to(
+ +

)( )∗
+ (c.c.)

+

∣∣∣∣∣ +

∣∣∣∣∣
2

, (6.44)

and this is true : however, in the summation over the ‘intermediate states’ k we must of
course also include the ‘indentical-particle’ symmetry factor Fsymm, which precisely repairs
the correspondence — another illustration of the crucial rôle of the symmetry factors !
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where integration over the final state is implied. As we shall see, the presence
of a photon in the final state leads to a so-called infrared (IR) divergence
arising from the fact that the probability of emitting an on-shell photon goes
to infinity as the photon energy goes to zero. The process described by the
last two diagrams has therefore an infrared divergence. This divergence is
neatly cancelled by a compensating divergence in the diagrams with a virtual
photon in the first line. This is a well-known fact20 ; but it is instructive to
see that the statement about the cancellation of the infrared divergences can
be replaced by the simpler statement that the photon propagator is free from
infrared divergences21. This is one example of a useful rule of thumb : when
you encounter loop diagrams, try to envisage the physics that is described by
cutting them. In fact, the cancellation can be pinpointed further ; the single
statement that the single diagram

is IR-finite means that the IR divergences in

∣∣∣∣∣∣
∣∣∣∣∣∣
2

and

  ∗ + (c.c.)

must cancel between them.

6.5 Some example calculations

6.5.1 The FEE model

As an example of an application of what we have learned so far, we shall
investigate at theory that contains two particle types, one of mass m, denoted

20And a fortunate one.
21Two remarks are in order here. In the first place, the virtual-photon diagrams do

contain divergences related to the loop momentum going to infinity : these are ultraviolet
(UV) divergences. The photon propagator is therefore still ultraviolet divegrent, and this
is cured in the usual manner by renormalization. In the second place, the cancellation of
IR divergences takes place even when we restrict the phase space for the outgoing particles,
provided that zero-energy photons are admitted.
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by E, and another denoted by F , of mass M . The Lagrangian density of this
theory is given by

L =
1

2
(∂µϕE) (∂µϕE)− m2

2
ϕE

2

+
1

2
(∂µϕF ) (∂µϕF )− M2

2
ϕF

2 − mλ

2
ϕFϕE

2 . (6.45)

There exists a single coupling between two E’s and one F . Note that the
Feynman rule for the vertex is given22 by −imλ/h̄ ; we have introduced a
factor m in order to ensure that

dim[λ] = dim
[

1

h̄1/2

]
with no length scale.

6.5.2 Two-body phase space

Since we shall consider processes ending in a two-body final state, it is ex-
pedient first to work out the corresponding two-body phase space. For the
sake of generality we shall do this for a final state containing two momenta
q1,2

µ with general masses m1,2. Furthermore we shall write

P µ = q1
µ + q2

µ , s = P µPµ . (6.46)

The phase space (and with it widths and cross sections) is often most easily
evaluated in the rest frame of P µ, in which ~q1 = −~q2. The phase space
integration element is given by23

dV (P ; q1, q2) =
1

(2π)2
d4q1 δ(q1

2 −m1
2) d4q2 δ(q2

2 −m2
2) δ4(P − q1 − q2) .

(6.47)
As a first step, we cancel d4q2 against the four-dimensional Dirac delta, and
write the q1 integration in its not-explicitly-covariant form :

dV (P ; q1, q2) =
1

(2π)2

d3~q1

2q1
0
δ
(
(P − q1)2 −m2

2
)
. (6.48)

22It is customary to leave out the (2π)4δ4() of momentum conservation, since it is present
in all vertex Feynman rules for translation-invariant interactions.

23It is usual not to include the step functions that require the energies to be positive.
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Now, the q1 integration element can be expressed in polar coordinates as

d3~q1

2q1
0

=
|~q1|2 d|~q1| dΩ

2q1
0

=
1

2
|~q1| dq1

0 dΩ , (6.49)

where we denote the ~q1 solid angle by

dΩ = d cos θ dφ (6.50)

with a polar angle θ running from 0 to π and an azimuthal angle φ running
from 0 to 2π, and use the fact that

|~q1| d|~q1| = q1
0 dq1

0 . (6.51)

The Dirac delta imposing the mass shell condition on q2 can be written as

δ
(
(P − q1)2 −m2

2
)

= δ
(
s+m1

2 −m2
2 − 2q1

0
√
s
)

=
1

2
√
s
δ

(
s+m1

2 −m2
2

2
√
s

− q1
0

)
, (6.52)

where the rest frame of P has been used. We immediately find that

q1
0 =

s+m1
2 −m2

2

2
√
s

, q2
0 =

s+m2
2 −m1

2

2
√
s

, (6.53)

and

|~q1| = |~q2| =
1

2
√
s
λ(s,m1

2,m2
2)1/2 , (6.54)

where the Källén function crops up again. In the P µ rest frame, the phase
space integration element is therefore given by

dV (P ; q1, q2) =
1

32π2
λ

(
1,
m1

2

s
,
m2

2

s

)1/2

dΩ . (6.55)

6.5.3 A decay process

As a first application, we shall assume that M > 2m so that the F particle
can decay into a pair of E’s:

F (P ) → E(q1) E(q2) .
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In lowest order, its single Feynman graph is given by

P

q

q

1

2

The corresponding matrix element is quite simple :

M = −imλ
h̄

(√
h̄
)3

= −imλ
√
h̄ , (6.56)

so that it has dimensionality dim[1/L] as it should. The decay width is
therefore

dΓ(F → EE) =
1

2M
|M|2 dV (P ; q1, q2)

1

2!

=
m2λ2h̄

128π2M

√
1− 4m2

M2
dΩ . (6.57)

Note the occurrence of the symmetry factor 1/2! arising from the fact that
the two final-state E particles are indistinguishable. The angular integration
is of course trivial in this simple case, and we immediately find the total
width

Γ(F → EE) =
m2λ2h̄

32πM

√
1− 4m2

M2
, (6.58)

with the correct dimensionality dim[Γ] = dim[1/L].

6.5.4 A scattering process

As a second application, we take the mass M of the F particle to be zero. We
now have an extremely primitive picture of the electron-photon system, where
E is the electron and F the photon. We consider the process of ‘Compton
scattering’ :

E(p1) F (p2) → E(q1) F (q2)

which, to lowest order, is given by two Feynman diagrams:

p
1

q
1p

2

q
2

p
1

q
1p

2

q
2
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The total momentum involved is now

P µ = p1
µ + p2

µ = q1
µ + q2

µ , (6.59)

and we shall use the invariant products

s = (p1 + p2)2 , u = (p1 − q2)2 . (6.60)

Again applying the rules for the construction of the matrix element, we find

M = iλ2m2h̄
(

1

s−m2
+

1

u−m2

)
. (6.61)

We shall also introduce the quantity

K ≡ λ(s,m2, 0)1/2 = s−m2 , (6.62)

which allows us to write

u−m2 = −2(p1 · q2) = −K
2

2s
(B + cos θ) , B =

s+m2

s−m2
. (6.63)

Here, θ is the angle between ~p1 and ~q1 in the centre-of-mass frame, that is, the
angle over which the E particle is scattered in the collision. The differential
cross section is now written as

dσ =
λ4 m4 h̄2

64 π2 s

(
1

K2
− 4s

K3(B + cos θ)
+

4s2

K4(B + cos θ)2

)
dΩ . (6.64)

At high energies, where B ≈ 1, the cross section is strongly peaked in the
backward direction. At low collision energy, where s ≈ m2, B is very large
and the angular distribution is flat. The total cross section is found, after
some straightforward algebra, to be

σ =
λ4 m4 h̄2

32 π s

(
2

K2
+

2s

K2m2
− 4s

K3
log

(
1 +

K

m2

))
. (6.65)

At first sight the cross section might appear to diverge at the very lowest
energies, since K vanishes there. However, by carefully expanding the loga-
rithmic term to third order we find that the poles in K cancel, and

lim
s→m2

σ(EF → EF ) =
λ4 h̄2

48 π m2
. (6.66)
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A remark is in order here. In the first place, the factor λ4 and consequently
the factor h̄2 could have been foreseen from the start. The fact that the cross
section must have dim[σ] = dim[L2] implies that at the threshold, where
m is the only length scale in the problem, there must also be an overall
factor 1/m2. Moreover, n body phase space contains a power π4−3n from its
definition ; and also it contains n− 1 solid angles to be integrated over, each
giving rise to24 a factor π. This means that the total cross section for an
n-body final state will contain a factor π3−2n. In this way, almost the whole
cross section formula is determined, and all the calculational effort is only
used to find the numerical factor 1/48.

6.6 Excercises for Chapter 6

Excercise 22 Dirac is the limit
Consider the function

fε(x) =
ε

π

1

x2 + ε2

Show the following :

1.
∞∫
−∞

fε(x) dx = 1

2. limε→0 fε(x) = 0 if x 6= 0, and limε→0 fε(0) =∞.

This proves that fε(x) approaches the Dirac delta function δ(x) as ε→ 0.

Excercise 23 Stability implies safety
Consider a process in which two stable particles collide and produce a number
of final-state particles. One possible diagram is

p

24This is to say that the angular integral does not necessarily evaluate to π, but rather
that a factor π invariably arises in the result of a solid-angle integral.
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The propagator indicated with ‘p’ reads, of course,

ih̄

p2 −m2 + iε

and this would blow up if p2 = m2, making the cross section infinite. Show
that this cannot happen.

Excercise 24 A real calculation ?
We shall now do a simple calculation, again using the FEE model, with the
mass of the E particles equal to zero, and everything at the tree level. We
make use of the formula for massless two-body phase space:

d4p1 δ(p1
2) d4p2 δ(p2

2) δ4(P − p1 − p2) =
1

32π2
dΩ

where Ω is the solid angle in the rest frame of P . There is one vertex :

E 

E
F ↔ −imλ

h̄

Here λ is a dimensionless coupling constant.

1. Compute the decay width Γ(F → EE).

2. Give the three tree-level diagrams for E(q1)E(q2)→ E(p1)E(p2).

3. Write the scattering matrix element M. NB 1: The F partile is un-
stable, as we have just proven ! NB 2: do not square it, because that
becomes ugly.

4. Show that, if we write M = iT , then =(T ) is positive, as required by
unitarity.

5. Assume λ to be a quite small number. For s (the centre-of-mass energy
squared) equal to m2, find the approximate form of |M|2, and compute
the cross section.

Excercise 25 Yet another one
Compute the total cross section for the process EE → FF in the FEE model,
again assuming the E particles to be massless.
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Excercise 26 Infrared divergence
We consider again the FEE theory containing but now with massive E and
massless F. This is a very crude example of QED (Quantum Electrodynam-
ics), the theory of charged spin-1/2 particles and photons.

1. Consider a general process (perhaps involving other particles) in which
an E with momentum p is emitted. Draw its blob.

2. Conider he same process but now with the additional emission of also
an F of momentum k. Consider the diagram where the F comes from
the external E line, and draw it.

3. Show that, if we neglect the iε term, the resulting amplitude contains
a factor 1/(p · k) .

4. Show that the cross section is proportional to 1/(k0)2.

5. Show that the phase space integration element is proportional to k0 dk0.

6. Show that the total cross section for this process of F emission must
be divergent.
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Chapter 7

Dirac particles

7.1 Pimp my propagator

7.1.1 Extension of the propagator and external lines

So far we have been studying particles that can carry only a limited amount of
information : such a particle is completely specified once we have determined
its identity and its momentum. In this chapter we shall start increasing the
number of properties that particles can carry, by examining how the Feynman
propagator can be modified. Since the pole structure of the propagator is
closely connected with the causality of the theory, and must be used to derive
Newton’s first law in the approximation of propagation over macroscopic
distances, we will not mess around with the denominator of the propagator.
The generalizations we shall propose therefore concern themselves with the
numerator, and are of the form

ih̄
1

p2 −m2 + iε
→ ih̄

T
p2 −m2 + iε

, (7.1)

where T is some object that informs us that the particle propagating is not
as simple as we have seen so far, but has additional properties. What those
properties are depends, of course, on the choice of T .

7.1.2 Down with dyads !

One very important observation is in order here. The particle propagator
never occurs in isolation, but always between two vertices, where the particle
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is ‘produced’ and where it is ‘absorbed’1. This implies that, as long as we have
not committed ourselves to particular vertices, a change in the propagator
may be compensated to some extent by a change in the vertices. For instance,
suppose that T is a simple number: then the predictions of the theory will
remain unchanged if we opt to multiply the vertices by T −1/2. Therefore,
T must be more complicated than a single number, i.e. it must have some
matrix form. In which kind of space such matrices live is at the moment of
course not yet determined, we just assume that the matrix has some indices.
Now, consider the case where the matrix is actually a dyad, that is, a tensor
product of a column ‘vector’ and a row ‘vector’ : for instance, if the matrix
space is three-dimensional, it might read

T =

 a1

a2

a3

 (b1 b2 b3) =

 a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

 .

In such a case, the row ‘vector’ could be assigned to one of the vertices, and
the column ‘vector’ to the other vertex, and the remaining propagator would
again be trivial.

We therefore assume that

T ab =
∑
n

(
U(p)(n)

)a (
W(p)(n)

)
b
, (7.2)

where a, b are some indices living in some linear space. They may be Lorentz
indices2, but not necessarily. The sum over n must contain at least two terms.
The vertices of the theory must, of course, contain corresponding indices a, b
with which those of the propagator are contracted, otherwise the matrix el-
ement could not be a simple number. The objects U are column ‘vectors’
indicated by upper indices, and the W are row ‘vectors’ indicated by lower
indices. It is tempting to think of the W as ‘hermitean conjugates’ of the U
but this is not necessarily true3.

If we now reappraise the truncation argument of the previous chapter, we
see that we can redo it with the more complicated propagator. Again the

1It may be realized that this statement holds true also in the case of external lines, if
it is kept in mind that these are defined in the square of the matrix element.

2As in the case of spin-1 particles, see later on.
3For Dirac particles, the W are the Dirac conjugates of the U . More about this later.
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denominator contribution will end up in the phase space, but the numerator
will be left. We can remedy this for instance by assigning the factor Wb

to the production matrix element, and Ua to the decay amplitude, with the
understanding that this only holds if the particle is on-shell4. We see that
an extension of the propagator naturally leads to new Feynman rules for the
external lines as well. In the following we shall investigate several such ex-
tensions.

7.1.3 The spin interpretation

As we have seen, particles with generalized propagators will carry factors U
or W when they occur as external lines in Feynman diagrams. Such parti-
cles therefore carry, by definition, additional information which is somehow
embodied in the label (n). Adhering to good quantum practice, we shall
assume that particles with different values of (n) are physically distinct from
one another even if their momentum is the same. That is, for p2 = m2 we
require ∑

a

(
W(n)

)
a

(
U (n′)

)a
= K δn,n′ , (7.3)

with K some constant (that is, the external-line factors are (multiples of)
the elements of an orthonormal set). This implies that

T 2 ∝ T , (7.4)

In other words, T must have properties of a projection operator. Later on,
we shall see that the ‘additional property’ can be interpreted as the spin of
the particle. By simple counting arguments, it would seem reasonable to
interpret the external factors U (n) as members of a (k − 1)/2-spin multiplet
if the label (n) runs over k values : however, the more careful treatment is
to first see how the U transform under rotations in the rest frame of pµ, and
only then to assign them a spin interpretation5. We shall do this explicitly
for various particle types.

Another point of importance is the following. We have noted that the
sum over dyads is actually a sum over distinct additional properties of the

4Where the U and the W are assigned depends, of course, on which vertex their re-
spective indices are coupled to.

5This becomes particularly important in the case of massless particles.
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particle that propagates. Now, we should like the different ‘versions’ of the
particle to propagate in the same manner, otherwise by just sitting and
waiting we would see the ‘additional’ properties of the particle change6. We
shall therefore require that T only depends on the momentum (and possibly
on the mass) of the particle :

T = T (p,m) .

Before closing this section, we point out that the particles we have studied
in the previous chapter, whose propagator has the trivial numerator T = 1,
of course transform trivially (i.e. not at all) under rotations : such particles
are therefore scalars, or spin-0 particles.

7.2 The Dirac algebra

7.2.1 The Dirac matrices

Probably the simplest nontrivial choice for T is to let it depend linearly on
the momentum. At this point, an immediate objection may be raised ; for
the momentum carries a Lorentz index. Now we do not want to contract
this index with a corresponding index in one of the vertices since this would
simply amount to a redefinition of the vertices. On the other hand, we
cannot afford to have the Lorentz index floating loose, which would destroy
the Lorentz invariance of the theory. We therefore choose

T (p) = pµγµ +K m 1 . (7.5)

Here, γµ (µ = 0, 1, 2, 3) is a set of four matrices since as we have argued
the propagator’s numerator must be of matrix form7. The symbol 1 stands
for the unit matrix of whatever space the γ matrices live in, and the term
Km1 has been added since there is no clear reason to forbid it from the
start. Of course, simply prescribing the γ matrices would again destroy the

6Suppose an electron with ‘spin-up’ propagates less than an electron with ‘spin-down’ ;
after some time, we would see almost exclusively ‘spin-down’ electrons coming by. This,
apparently, is not how nature works.

7Another argument against the γ’s being simple numbers is that, in that case, they
would define a preferential vector γµ. This would destroy the assumed isotropy of
Minkowski space, and a frame in which ~γ vanishes would deserve to be equated with
Newton’s absolute reference frame.
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Lorentz invariance of the theory since any matrix element would have γ’s
all over the place. We therefore require that, in the final form of the matrix
element, all reference to the specific choice of these matrices can be removed
in a Lorentz-invariance-respecting manner. That is, the γ matrices must
be endowed with a property that allows us to remove them from the final
answer. The momenta with which they are contracted should then end up in
ordinary Minkowski products. That is, there must be a requirement of the
form

Q(γµ, γν , γρ, . . . , γσ) = (some tensor)µνρ···σ , (7.6)

where Q is some algebraic combination of Dirac matrices. This had better be
a simple as possible, otherwise we might not be able to eliminate the Dirac
matrices from very simple amplitudes. A moment’s reflection will tell us that
essentially the only possible such property is8

γµγν + γνγµ = 2gµν1 . (7.7)

Note that this is a matrix equation: in its full glory it would read

∑
c

{
(γµ)ac(γ

ν)cb + (γν)ac(γ
µ)cb

}
= 2 gµν δab ,

but, as is conventional, we shall not explicitly write out the Dirac indices
unless it is unavoidable. Note also that Eq.(7.7) immediately confirms that
the Dirac objects γ cannot be simple numbers9. Dirac matrices with different
indices anticommute, while

(γ0)2 = 1 , (γk)2 = −1 (k = 1, 2, 3) . (7.8)

We also find immediately that10

γµ γµ = 4 . (7.9)

8The anticommutation is necessary because of the symmetry of gµν in its indices.
Another possibility might read something like γµγνγαγβ = εµναβ1 but this woud not
allow us to remove fewer than 4 Dirac matrices in any matrix element. The factor 2 in
Eq.(7.7) is simply conventional.

9Because in that case the fact that g01 = 0 would imply that γ0 or γ1, or both, vanish:
and that would clash with g00 = −g11 = 1.

10At least in precisely four spacetime dimensions. In so-called dimensional regularization
this may change.
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From Eq.(7.8) we see that the eigenvalues of γ0 are either 1 or -1 ; and
those of γ1,2,3 are either i or −i. We therefore have the following Hermiticity
properties for the Dirac matrices :

γ0† = γ0 , γk
†

= −γk (k = 1, 2, 3) . (7.10)

For the rest of these notes, the eigenvalues of the Dirac matrices are actually
unimportant. Any choice of Dirac matrices satisfying Eqs.(7.7) is acceptable.
Many possible choices have been proposed in the literature. That none of
them possesses a physical advantage over the others follows from the ‘funda-
mental theorem of Dirac matrices’ which shows that any two representations
of the Dirac algebra (7.7) can be transformed into each other11. This again
strengthens our conviction that any result involving Dirac particles should
be deriveable without any reference whatsoever to their particular form, and
we shall endeavour to adhere to this. Note that, at this point, we have not
specified the dimensionality of the Dirac matrices. In order to avoid confu-
sion with Lorentz indices, the Dirac indices will be called spinor indices , and
the objects U andW for this propagator will be called spinors. Spinors carry
only a single spinor index.

Before finishing this section, let us introduce the Feynman ‘slash’ notation :
if aµ is a Lorentz vector, we shall mean by /a its contraction with Dirac ma-
trices:

/a ≡ aµ γµ . (7.11)

The Dirac equation (7.7) can therefore also be written as12

/a/b+ /b/a = 2 (a · b) ∀ aµ, bν , (7.12)

with the corollary that
/a/a = a2 . (7.13)

We stress that the vector object aµ and the matrix /a encode exactly the same
information ; further on we shall see how the vector can be recovered once
the matrix is given. A few simple results, which can be checked by repeated
application of the anticommutation rule, are13

γµ /a γµ = −2 /a ,

11We defer the proof of this theorem to Appendix 13.10.
12It is customary to leave the unit matrix 1 out of the notation. Its presence can always

be inferred where necessary.
13Again, in four spacetime dimensions.
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γµ /a /b γµ = 4(a · b) ,

γµ /a /b /c γµ = −2 /c /b /a . (7.14)

E 27

7.2.2 The Clifford algebra

By the anticommutation relation (7.7), any product of more than four Dirac
matrices can be reduced to a smaller number. Let us define the enormously
useful object14

γ5 ≡ i γ0 γ1 γ2 γ3 , (7.15)

for which we can immediately derive that

γ5γµ = −γµγ5 , (γ5)2 = 1 . (7.16)

Also we can define the commutator of Dirac matrices as E 28

σµν ≡ i

2
[γµ, γν ] =

i

2
(γµγν − γνγµ) , (7.17)

whence

γαγβ = gαβ − i σαβ . (7.18)

Obviously there are 6 independent σ matrices. The most general object that E 29
can be constructed using Dirac matrices is therefore

Γ = S 1 + Vµγ
µ + Tµνσ

µν + Aµ γ
5γµ + P γ5 , (7.19)

and these objects form the Clifford algebra. We see that T (p) must be an ele-
ment of the Clifford algebra. The various coefficients are called, respectively,
the scalar (S), vector (Vµ), tensor (Tµν), axial-vector (Aµ) and pseudo-scalar
(P ) coefficients. Since the tensor coefficient may be taken antisymmetric,
there are in total 1+4+6+4+1=16 coefficients. This suggests (but does not
prove) that the Dirac matrices are 4×4 matrices. Given an element Γ in the

14In some texts the definition of γ5 is slightly different, for instance it may lack the
factor i. Some care is necessary in comparing results between different texts. The reason
why it is called γ5 and not γ4 is that in some older treatments the Minkowski indices were
assumed to run from 1 to 4, with the 4th index playing the rôle of our 0th one.
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Clifford algebra, we can recover its coefficients using the trace identities that
we shall discuss below. Finally, we can define the two Clifford elements

ω± =
1

2

(
1 ± γ5

)
. (7.20)

They are mutually exclusive projection operators ; that is,

ω2
± = ω± , ω+ω− = ω−ω+ = 0 , ω+ + ω− = 1 . (7.21)

These operators are widely used.

7.2.3 Trace identities

A very important rôle is played by traces of Dirac matrices or Clifford ele-
ments. To start, we have of course

Tr (1) = N , (7.22)

where N is the (as yet unknown) dimensionality of the Dirac matrices15.
Using γ5 and the cyclicity property of the trace operation, we see that

Tr (γµ) = Tr
(
γµγ5γ5

)
= Tr

(
γ5γµγ5

)
= −Tr

(
γµγ5γ5

)
= −Tr (γµ) (7.23)

so that the trace of a single Dirac matrix vanishes ; and by the same method
we see that the trace of a product of an odd number of Dirac matrices is also
zero, in particular

Tr
(
γ5γµ

)
= 0 . (7.24)

For two matrices we have

Tr (γµγν) =
1

2
Tr (γµγν + γνγµ) = N gµν , (7.25)

from which we see that the trace of a σ matrix must vanish16. To continue,

Tr
(
γ5
)

= Tr
(
γ5γ0γ0

)
= Tr

(
γ0γ5γ0

)
= −Tr

(
γ5γ0γ0

)
= −Tr

(
γ5
)
,

(7.26)

15We shall prove later on that N = 4.
16Generally, all commutators are always traceless, by the cyclicity property of traces.
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so that also this trace evaluates to zero. The trace of 4 Dirac matrices requires
a bit more anticommutation :

Tr
(
γµγνγαγβ

)
= Tr

(
2gµνγαγβ − 2gµαγνγβ + 2gµβγνγα − γνγαγβγµ

)
,

(7.27)
so that, by cyclicity,

Tr
(
γµγνγαγβ

)
= N

(
gµνgαβ − gµαgνβ + gµβgνα

)
; (7.28)

and the same method may be used to arrive at the 15 terms for a trace
of 6 Dirac matices, the 105 terms for a trace of 8 matrices, and so on17.
Furthermore, since the anticommutation operations used in Eq.(7.27) might
as well have moved to the left inside the trace instead of to the right, we
immediately find that18

Tr (γµ1 γµ2 γµ3 · · · γµn−1 γµn) = Tr (γµn γµn−1 · · · γµ3 γµ2 γµ1) . (7.29)

Since γ5 is the product of all four different Dirac matrices, the product γ5γµγν

(with µ 6= ν) is actually a product of two different Dirac matrices, and
therefore

Tr
(
γ5γµγν

)
= 0 . (7.30)

Finally, it is immediately seen that

Tr
(
γ5γµγνγαγβ

)
= iNεµναβ . (7.31)

Returning to the general Clifford algebra element Γ, we can straightforwardly
derive the following results :

Tr (Γ) = N S ,

Tr (Γ γµ) = N V µ ,

Tr (Γ σµν) = 2N T µν ,

Tr
(
Γ γ5γµ

)
= −N Aµ ,

Tr
(
Γ γ5

)
= N P . (7.32)

This shows that we can indeed recover all coefficients from a given Γ. It
also leads to the following useful insight : if all the above five traces vanish,

17It is clear that such trace evaluations are best performed by computer algebra.
18For even n, we have the proof here ; for odd n it is trivial since 0 = 0.
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then Γ itself must be identically zero. The above method of computing the
Clifford coefficients from the algebra element is also called Fierzing.

A final, important remark : we have shown that the trace identities,
which have been obtained using only Eq.(7.7), evaluate to expressions con-
taining only the metric and the Levi-Civita symbol, which are Lorentz ten-
sors. Therefore, if we can show that all matrix elements (or, at a pinch, their
absolute squares) can be written as traces, we have realized our goal : the
particular representation of the Dirac matrices is irrelevant, and all possible
choices will lead unambiguously to a unique result.E 30

Below, we shall prove that we may take N = 4 : for this choice, we here
summarize the more important trace identities.

Tr (1) = 4

Tr (γα1 γα2 · · · γα2n+1) = 0

Tr
(
γα γβ

)
= 4 gαβ

Tr
(
γα γβ γµ γν

)
= 4

(
gαβgµν − gαµgβν + gανgβµ

)
Tr
(
γ5
)

= 0

Tr
(
γ5 γα γβ

)
= 0

Tr
(
γ5 γα γβ γµ γν

)
= 4i εαβµν

Tr (γα1 γα2 · · · γαn) = Tr (γαn · · · γα2 γα1)

(7.33)

7.2.4 Dirac conjugation

The linear space in which the Dirac matrices operate can be endowed with
an attractive notion of conjugation, called Dirac conjugation, which we shall
now construct. Denoting the Dirac conjugation by an over-bar, we require
that the Dirac matrices be all self-conjugate :

γµ = γµ , µ = 0, 1, 2, 3 . (7.34)
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Obviously, then, Dirac conjugation cannot be simple Hermitean conjugation,
and we look for a definition of the form

Γ = Ω Γ† Ω−1 (7.35)

for any Clifford element Γ ; such a form ensures the reasonable property

Γ1Γ2 = Γ2 Γ1 (7.36)

for two Clifford elements. Double conjugation should be equal to the identity :

Γ =
(

Γ
)

= Ω
(
Ω−1

)†
Γ Ω†Ω−1 = B−1Γ B , B = Ω†Ω−1 . (7.37)

The element B must therefore commute with any Clifford element, which
implies that B is a multiple of the unit element (this is a variant of Schur’s
lemma, see excercise ??). Without loss of generality we may therefore take
B = 1, so that Ω is Hermitean. The straightforward choice (in fact the only
one, see excercise ??) is therefore to take Ω = γ0, and the Dirac conjugate is
then defined as

Γ = γ0 Γ† γ0 . (7.38)

For a spinor ξ (which carries an upper spinor index) we have

ξ = ξ† γ0 , (7.39)

which is seen to carry a lower spinor index. A conjugate spinor η, which
carries a lower index, obeys

η = η , (7.40)

which has an upper index. A spinor sandwich19 is an object of the form

η Γ ξ ,

and it carries no spinor indices as can be seen ; reasonably, we have

η Γ ξ = ξ Γ η =

(
η Γ ξ

)∗
. (7.41)

Further conjugacy properties follow immediately from Eq.(7.34) :

σµν = σµν , γ5γµ = γ5γµ , γ5 = −γ5 , ω± = ω∓ . (7.42)

19Named after John Montagu, 4th Earl of Sandwich, PC, FRS (13 November 1718 - 30
April 1792).
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In order for a general Clifford element of the form (7.19) to be self-conjugate,
the coefficients S, V µ, T µν and Aµ must be real, and P imaginary.

The standard Dirac spinors which we shall investigate are defined such
that W = U , although as we have already mentioned this is not an unavoid-
able choice to make. Note that the Dirac choice implies that

T (p) = T (p) . (7.43)

7.2.5 Sandwiches as traces

Consider a spinor sandwich:
η Γ ξ .

In terms of explicit indices, this reads

η Γ ξ =
∑
a,b

(η)a (Γ)ab ξ
b . (7.44)

Once we realize that the individual terms in this double sum are, in fact,
simple numbers, it is clear that we may also write

η Γ ξ =
∑
a,b

ξb (η)a (Γ)ab = Tr (ξ η Γ) , (7.45)

where ξη is seen as a (dyadic) matrix. This ‘mental flip’, whereby we may
suddenly interpret the combination spinor-conjugate spinor as a matrix, fre-
quently turns out to be extremely useful in the evaluation of objects involving
Dirac matrices.

7.2.6 A Fierz identity

As an application of what we have learned of the Clifford algebra, we shall
prove the Fierz identity. This deals with the object

F (1, 2, 3, 4) = ξ1ω+γ
µξ2 ξ3ω+γµξ4 , (7.46)

where the ξ’s are arbitrary spinors. Obviously, F (1, 2, 3, 4) = F (3, 4, 1, 2).
Now, as F stands denoted above, it appears to be the (Minkowski) product
of two spinor sandwiches, but we may also (by the ‘mental flip’ mentioned
above) see it as the single sandwich

F (1, 2, 3, 4) = ξ1ω+γ
µ
(
ξ2ξ3

)
ω+γµξ4 , (7.47)
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since ξ2ξ3 is an element of the Clifford algebra. We therefore have coefficients
such that

ξ2ξ3 = S + Vαγ
α + Tαβσ

αβ + Aaγ
5γα + Pγ5 . (7.48)

The contraction over the indices µ is then possible :

ω+γ
µξ2ξ3ω+γ

µ =

= ω+γ
µ
(
Vαγ

α + Aαγ
5γα

)
ω+γµ

= ω+γ
µ
(
Vαγ

α + Aαγ
5γα

)
γµ

= −2ω+ (Vαγ
α − Aαγα) , (7.49)

where we have used the fact that ω+Γω+ = ω+ω−Γ = 0 if Γ contains an odd
number of Dirac matrices20. We can therefore write

F (1, 2, 3, 4) = −2ξ1ω+ (Vα − Aα) γαξ4 . (7.50)

Now, we also know that, whatever the spinors ξ2 and ξ3 are,

Vα =
1

N
Tr
(
ξ2ξ3γα

)
=

1

N
ξ3γαξ2 ,

Aα = − 1

N
Tr
(
ξ2ξ3γ

5γα
)

= − 1

N
ξ3γ

5γαξ2 . (7.51)

This leads us to the alternative form

F (1, 2, 3, 4) = − 2

N
ξ1ω+

(
ξ3

(
1 + γ5

)
γαξ3

)
γαξ4

F (1, 2, 3, 4) = − 2

N
ξ1ω+γ

αξ4 ξ3

(
1 + γ5

)
γαξ3

= − 4

N
F (1, 4, 3, 2) . (7.52)

As we have already mentioned, we shall show that N = 4 and the Fierz
identity then becomes

F (1, 2, 3, 4) = −F (1, 4, 3, 2) . (7.53)

In words, the spinors ξ2 and ξ4 may be interchanged at the price of a minus
sign21.

20So that S, T , and P drop out.
21This is very suggestive, once we are convinced that the Dirac system describes

fermions. However, the Fierz identity holds only for this particular sandwich, and re-
lies heavily on the presence of the ω±. On the other hand again, it is eminently suited
to resolve a potential problem in the Fermi model of muon decay, which we shall discuss
later on.
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7.2.7 The Chisholm identity

Consider a Clifford algebra element Γ that consists of only an odd number
of γ matrices (that is, one or three). In that case it has the decomposition

Γ = Vµ γ
µ + Aµ γ

5γµ . (7.54)

Let us define the reverse ΓR as the result of writing all the Dirac matrices
involved in the reverse order22. By the reflection property of Eq.(7.29), this
means that

Tr
(
ΓR
)

= Tr (Γ) , (7.55)

for all elements of the Clifford algebra. In the present case, we have

ΓR = Vµ γ
µ − Aµ γ5γµ . (7.56)

Therefore,

ΓR + Γ = 2Vµ γ
µ . (7.57)

We immediately arrive at the so-called Chisholm identity :

γµ Tr (Γ γµ) =
N

2

(
Γ + ΓR

)
. (7.58)

This identity is quite be useful in the evaluation of spinor sandwiches that
contain a free Lorentz index.

7.3 Dirac particles

7.3.1 Dirac spinors

The requirements on the object T (p) that we have gathered so far are that
it be a member of the Clifford algebra, and that

T (p)2 = T (p) , T (p) = T (p) , (7.59)

although by a renormalization we may relax the first requirement into a
proportionality. Now, it must be remembered that any modification of the

22Note that, fortunately, (γ5)R = γ5, so that (γ5γµ)R = −γ5γµ.
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propagator may be compensated for by a transformation of the vertices : so,
if there is a Clifford-algebra object Σ such that

ΣΣ = ΣΣ = 1 ,

then, effectively, the propagator

Σ T (p) Σ

is equivalent to T (p) itself. We may then perform a search23 through all
inequivalent possibilities for T . The upshot is that there are precisely four
projection operators, for a choice of two Minkowski vectors kµ and sµ such
that

k · k = 1 , s · s = −1 , k · s = 0 , (7.60)

and they read

Π(λ1, λ2) =
1

4

(
1 + λ1/k

)(
1 + λ2γ

5/s

)
, (7.61)

where λ1,2 = ±1. We have

Π(λ1, λ2) = Π(λ1, λ2) (7.62)

and
Π(λ1, λ2)Π(λ′1, λ

′
2) = δλ1,λ′1 δλ2,λ′2 Π(λ1, λ2) (7.63)

and also we conclude that, since there are precisely 4 projection operators,
we can settle for N = 4 for the Dirac matrices24. Since for on-shell particles

23This is a quite tedious task, in particular the unearthing of the necessary Σ matrices.
This is relegated to Appendix 8, based on the efforts of J. de Groot.

24This presupposes that a four-dimensional choice of dirac matrices is actually possible.
This is the case, witness the so-called Pauli representation :

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ,

γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 , γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 . (7.64)

Any other representation will do as well: that is the whole point of it !



174 March 26, 2017

p2 = m2 we can settle on kµ = pµ/m, and then the new degree of freedom is
the choice of the vector sµ which we shall call the spin vector. We are, then,
naturally led to define two Dirac spinors, depending on momentum and spin
vector, by

u(p, s)u(p, s) =
1

2

(
/p+m

)(
1 + γ5/s

)
,

v(p, s)v(p, s) =
1

2

(
/p−m

)(
1 + γ5/s

)
. (7.65)

These are defined for momenta pµ that are on-shell, and have positive energy
p0. To see this last property, inspect

2p0 = Tr
(
u(p, s)u(p, s)γ0

)
= u(p, s)γ0u(p, s) = u(p, s)†u(p, s) , (7.66)

which is cleary positive ; and the same goes for the spinor v. Spinors for
negative-energy particles can be defined, but then they will not be Dirac
spinors and the relation W = U does not hold. The following properties are
easily ascertained :

(/p±m)2 = ± 2m(/p±m) , (/p+m)(/p−m) = 0 ,

(1± γ5/s)2 = 2(1± γ5/s) , (1 + γ5/s)(1− γ5/s) = 0 ,

(/p±m) and (1± γ5/s) commute , (7.67)

provided that p · p = m2, s · s = −1 and p · s = 0. We can immediatelyE 31
conclude that

u(p, s)u(p, s) = 2m , v(p, s)v(p, s) = −2m ,

u(p, s)v(p, s′) = 0 , u(p, s)u(p,−s) = 0 . (7.68)

Another point to be made here, and used later, is that the Dirac spinorsE 32
contain all the information about their momentum and spin vectors. That
is, if we are told that ξ is some Dirac spinor, then we can at once deter-
mine whether it is of the form u(p, s) or v(p, s) by computing ξ̄ξ and using
Eq.(7.68) ; this will also tell us the value of m, and the sign will reveal
whether we are dealing with a u or a v. If ξ = u(p, s), we can recover pµ and
sµ from

ξ̄ γµ ξ = 2pµ , ξ̄ γ5γµ ξ = −2msµ ; (7.69)

if, on the other hand ξ = v(p, s) we use

ξ̄ γµ ξ = 2pµ , ξ̄ γ5γµ ξ = +2msµ . (7.70)

E 33
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7.3.2 Example of the Casimir trick

In the last section we saw that u-spinors with the same momentum p and
opposite spin vectors are orthogonal. Could there be other spin vector choices
also yielding an orthogonal state ? To this end we can consider u(p, s)u(p, s′)
where sµ and s′µ are spin vectors. If the spinors refer to orthogonal quantum
states, then the absolute square of the spinor product must vanish. We shall
now compute this exactly, by turning the product into a trace using the so-
called Casimir trick. It helps to write the Dirac indices explicitly for once :

|u(p, s)u(p, s′)|2 =

=
∑
a,b

(
u(p, s)

)
a

(
u(p, s′)

)a (
u(p, s′)

)
b

(
u(p, s)

)b
=

∑
a,b

(
u(p, s)

)b (
u(p, s)

)
a

(
u(p, s′)

)a (
u(p, s′)

)
b

=
∑
a,b

(
u(p, s)u(p, s)

)b
a

(
u(p, s′)u(p, s′)

)a
b

=
∑
b

(
u(p, s)u(p, s)u(p, s′)u(p, s′)

)b
b

= Tr
(
u(p, s)u(p, s) u(p, s′)u(p, s′)

)
. (7.71)

For any correctly constructed amplitude involving Dirac particles, its abso-
lute square is always amenable to the Casimir trick : traditionally, therefore,
the evaluation of such amplitudes is done in this way25. This establishes the
last requirement for the uniqueness (up to a phase) of matrix elements involv-
ing Dirac particles (cf. section 7.2.3). We can evaluate the trace by standard
operations. For didactical purposes we give them here in excruciating detail :

Tr
(
u(p, s)u(p, s) u(p, s′)u(p, s′)

)
=

=
1

4
Tr
(
(/p+m)(1 + γ5/s)(/p+m)(1 + γ5/s′)

)
25Note that there is a price: the length of the expressions is doubled by the squaring, and

if the amplitude contains many diagrams the algebra can become very cumbersome indeed.
A lot of computational shortcuts have been proposed, the most useful of which appears to
be not to bother with squaring at all but rather to evaluate the spinor products themselves
directly as complex numbers, by so-called spinor techniques. On the other hand, the
existence of the Casimir trick ensures that, as required, one can completely get rid of
the Dirac matrices in the prediction of cross sections using only their anticommutation
properties.
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=
1

4
Tr
(
(/p+m)2(1 + γ5/s)(1 + γ5/s′)

)
=

m

2
Tr
(
(/p+m)(1 + γ5/s)(1 + γ5/s′)

)
=

m

2
Tr
(
/p+m+ /pγ5/s+mγ5/s+ /pγ5/s′ +mγ5/s′ + /pγ5/sγ5/s′ +mγ5/sγ5/s′

)
=

m

2
Tr
(
m+mγ5/sγ5/s′

)
=
m

2
Tr (m−m/s/s′) = 2m2

(
1− (s · s′)

)
.(7.72)

Note that only two out of the eight terms contain the right number of Dirac
matrices to survive the trace. Since we can work in the pµ rest frame, where
the spin vectors must be spatial unit vectors, we conclude that, in that frame

|u(p, s)u(p, s′)|2 = 2m2
(
1 + ~s · ~s′

)
. (7.73)

The states are only strictly orthogonal if ~s′ = −~s.E 34

E 35

E 36
7.3.3 The Dirac propagator, and a convention

We have now arrived at a possible choice for the Dirac propagator. Since the
two spin states described by uu should propagate in the same manner26, we
shall use the projection operator

T (p) = /p+m , (7.74)

and adopt this choice also off the mass shell (where it is actually used). The
Dirac propagator therefore takes the form

ih̄
/p+m

p2 −m2 + iε
.

The fact that the numerator is linear in p means that the propagator is ori-
ented, in contrast to what we have used so far. To indicate this we define the
orientation with an arrow, and adhere to the convention that the momentum
is counted in the direction of the arrow, irrespective of the sign of the energy
component. The first Dirac Feynman rule therefore becomes

k

↔ ih̄
/k +m

k · k −m2 + iε

Feynman rules, version 7.1

(7.75)

26Otherwise we would not consider them to be states of the same particle
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In writing out Feynman diagrams containing Dirac particles, we of course
have to keep track of the Dirac indices resident in propagator and vertices.
This may lead to incredibly cumbersome notation, that may however be
greatly simplified if we adopt the following writing convention : write out
the Dirac-index carrying factors in order, moving against the ori-
entation of the line. Then, all these factors are contracted together using
the usual rules for matrix multiplication, and one hardly ever needs to write
the Dirac indices explicitly. This convention is really to be urged on anyone
contemplating any calculation involving Dirac particles27 !

A final word on notation : since(
/p+m

) (
/p−m

)
= p2 −m2 , (7.76)

the Dirac propagator might be written as

ih̄
/p+m

p2 −m2 + iε
=

ih̄

/p−m+ iε
. (7.77)

In instances were the iε can be neglected, this is certainly allowed ; however in
more delicate situations (such as inside loops) the first alternative is probably
to be preferred. Nevertheless we shall occasionally also use Eq.(7.77).

7.3.4 Truncating Dirac particles : external Dirac lines

Let us now return to the truncation argument that gave us the Feynman rule
for external lines in chapter 6. We shall redo this for Dirac particles moving
between production and decay. As a first case, let the ‘p’-line connecting
production and decay be oriented from production to decay, as indicated in
the following diagram :
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k
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p

a
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1,2,...

p

According to the convention described above we then have for the amplitude

M = [B]
ih̄(/p+m)

p2 −m2 + imΓ
[A] . (7.78)

27Try it out for yourself ; after at most ten minutes you will be convinced.
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Note that, in this amplitude, the factor [A] must carry the upper Dirac index
of a spinor, and [B] the lower index of a conjugate spinor. pµ, obviously,
carries positive energy. As we let Γ vanish and pµ approaches the mass shell,
we may then write

/p+m =
∑
s

u(p, s) u(p, s) , (7.79)

where the sum over s runs over two values, sµ and −sµ. Following the
truncation argument, we readily see that the spinor u(p, s) must then be
included in the decay amplitude, and u(p, s) in the production amplitude.

In the alternative case, where the line is oriented against the flow of
energy, the amplitude is given by
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and reads (again with our convention !)

M = [A]
ih̄(−/p+m)

p2 −m2 + imΓ
[B] . (7.80)

Note that it is now [A] that is the conjugate spinor, and [B] the regular one.
Of course, they describe a physical process different from the first case ! We
are now forced by the negativity of the energy to write

−/p+m = −
∑
s

v(p, s) v(p, s) . (7.81)

The sign flip in the projection operator is of course precisely that which
turns a particle description (with negative energy, moving backwards in time
along the orientation of the propagator) into the antiparticle description, with
positive energy. The truncation argument then tells us that v(p, s) must be
the factor associated with the production, and v(p, s) must be associated with
the annihilation, of the antiparticle. There remains the question of where to
put the left-over Fermi minus sign. Consistently, we may decide to keep it
with the v, in which case we arrive at the following Dirac Feynman rules :
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k

↔ ih̄
/k +m

k · k −m2 + iε

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

p,s
↔

√
h̄ u(p, s)
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p,s

↔ −
√
h̄ v(p, s)

Feynman rules, version 7.2

(7.82)

The awkward-looking minus sign is usually subjected to the argument that
any matrix element containing an incoming antiparticle will have the factor
−v in each of its diagrams, and since we are interested in absolute values
squared anyway, there would appear to be little harm in deleting this overall
minus sign from the Feynman rules : and this is what is commonly done. A
little reflexion, though, will remind us that the sign of the amplitude’s real
part is fixed by unitarity, and now we have changed it ! Clearly, the minus
sign will be back to haunt us later on.

7.3.5 The spin of Dirac particles

We shall now determine the spin of Dirac particles. Although the fact that
they have two orthonormal spin states strongly suggests that they have spin-
1/2, a real proof must rest on the way they form a representation of the
rotation group. The rotation group is, of course, a subgroup of the Lorentz
group. Now, we have argued that the vector pµ and the matrix /p contain
exactly the same information, for any vector pµ. Therefore, we must be able
to find how /p transforms under a Lorentz transformation. Let us define by
Λ(p; q) the minimal Lorentz transformation, that is it makes pµ go over in qµ

while keeping any vector rµ unchanged for which p · r = q · r = 0. Rotations
are an example : in that case p0 = q0 = 0, |~p| = |~q|, and ~r ·~p = ~r ·~q = 0. Since
/p is a matrix, the effect of a Lorentz transformation must be represented by
a matrix transformation, that is

Λ(p; q) : /p → Σ1 /p Σ2 . (7.83)
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Since we must ensure that Dirac conjugation commutes with Lorentz trans-
formation, we must have Σ2 = Σ1 ; and in order to have matrix multiplication
commute with Lorentz transformations as well28 we must have Σ2Σ1 = 1. We
conlude that

Λ(p; q) : /p → Σ /p Σ , Σ Σ = 1 . (7.84)

The explicit form of Σ reads29

Σ = C

(
1 +

/q/p

p2

)
, |C|2 =

p2

(p+ q)2
. (7.85)

You can simply check that this is indeed correct :

Σ Σ = |C|2
(

1 +
/q/p+ /p/q

p2
+
/q/p/p/q

p4

)

= |C|2
(

1 +
2(pq)

p2
+
p2q2

p4

)
= 1 , (7.86)

and

Σ /pΣ = |C|2
(
/p+

/q/p/p+ /p/p/q

p2
+
/q/p/p/p/q

p4

)

= |C|2
(
/p+ 2/q +

/q/p/q

p2

)
= /q , (7.87)

where we have used the anticommutation result /q/p/q = 2(pq)/q − /pq2. The
other requirements, Σ/qΣ = /p and Σ/rΣ = /r, are proven trivially. For general
Clifford elements Γ, we have now also ensured that

Γ → Σ Γ Σ (7.88)

under Lorentz transformations. It is somewhat surprising to see that the
form of the Lorentz transformation in Clifford space is quite simple. Since
all spinorial dyads ξη are Clifford elements, we find from the above that the
transformation rules are

ξ → Σ ξ , ξ → ξ Σ . (7.89)

28So that we can either first mutiply /p1 and /p2, and then Lorentz-transform them, or
do the Lorentz transform first and the multiplication afterwards.

29This form tacitly assumes that under minimal Lorentz transforms the sign of p2 and
(p + q)2 are the same. This is not obvious ; however, for boosts and spatial rotations it
does hold.
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Let us now select the spinor of a particle in its rest frame, and consider rota-
tions of the space axes. By xµ, yµ and zµ we shall mean the four-dimensional
extensions of the spatial unit vectors in the x-, y- and z-directions, respec-
tively. A rotation Σz over an infintesimal angle θ from x towards y around
the z axis30 is then determined by choosing

pµ = xµ , qµ = cos(θ)xµ + sin(θ)yµ ≈ xµ + θyµ , (7.90)

if we restrict ourselves to first order in θ. To this order, we find that |C| =
1/2, and so

Σz ≈
1

2
(1− (/x+ θ/y)/x) = 1 +

θ

2
/x/y . (7.91)

(realize that x2 = y2 = z2 = −1). The generators of the rotation group must
therefore be31

Tx = β/y/z , Ty = β/z/x , Tz = β/x/y , (7.92)

where we have used cyclicity, but not specified the constant β. This constant
can be determined from the rotation group algebra requirement:

[Tx, Ty] = TxTy − TyTx = ih̄Tz , (7.93)

which for the Dirac system is seen to read

[Tx, Ty] = β2
(
/y/z/z/x− /z/x/y/z

)
= 2β2/x/y = 2β Tz , (7.94)

from which we see that β = ih̄/2. Noticing also that32

Tz
2 = β2/x/y/x/y = −β2x2y2 =

h̄2

4
= Tx

2 = Ty
2 , (7.95)

we conclude that the total-spin operator comes to

~T 2 = Tx
2 + Ty

2 + Tz
2 =

3

4
h̄2 . (7.96)

The spinors are, therefore, representatives of a spin-1/2 system.

30Here the confusing active-passive distinction rears its ugly head. We shall not worry
about it since the rotation algebra is the same in each case.

31By inserting the Pauli representation of the Dirac matrices, one may figure out that
these generators are nothing but the Pauli matrices in disguise. The present treatment
aims at a more relativistic description.

32The fact that the square of any of the generators is proportional to the unit matrix is
more or less a coincidence ; for systems with higher spins it no longer holds.
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7.3.6 Full rotations in Dirac space

It is instructive to see how Dirac particles behave under certain non-infini-
tesimal rotations. To this end, consider the action of a rotation over π/2 in
the x− y plane ; we denote this by

Σ(π/2) =
1√
2

(
1− /y/x

)
. (7.97)

Taking powers of this rotation operator, we obtain, successively,

Σ(π) = Σ(π/2)2 = −/y/x ,

Σ(2π) = Σ(π/2)4 = −1 ,

Σ(4π) = Σ(π/2)8 = 1 . (7.98)

We see that a full rotation over 2π changes the sign of any spinor state ; toE 37
obtain the identically original state we have to rotate, instead, over 4π. In
standard quantum-mechanical parlance, we say that the wave function for
spin-1/2 particles is two-valued. Of course, under a rotation over just 2π any
spinor sandwich is again transformed into itself.

7.3.7 Massless Dirac particles ; helicity states

In the projection operators u(p, s)u(p, s) and v(p, s)v(p, s) as we have defined
them, the limit m→ 0 appears unproblematic. There is, however, a subtlety.
Let us take a Dirac particle with definite helicity : in that case, the spin vector
is parallel to the direction of motion33. Let us take ~p along the z axis for
simplicity. Then, the requirements s2 = −1, (ps) = 0 determine that

pµ =


p0

0
0
p

 , sµ = sµ‖ ≡


p/m

0
0

p0/m

 , (7.99)

where p = |~p|. As m→ 0, the spin vector diverges, and the massless limit is
not so obvious. We may, however, write for this case

sµ‖ =


p0/m

0
0

p/m

+
p0 − p
m


−1
0
0
1

 =
1

m
pµ +O

(
m/p0

)
, (7.100)

33This is, obviously, not a Lorentz-invariant notion. As the particle’s velocity approaches
c, however, it becomes Lorentz-invariant.
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since (p0−p)/m = m/(p0+p). The projection operator can then be evaluated
by

u(p, s)u(p, s) =
1

2

(
1 + γ5/s‖

)
(/p+m)

=
1

2

(
1 +

1

m
γ5/p+O

(
m

p0

))
(/p+m)

=
1

2
(1 + γ5)(/p+m) +O

(
m

p0

)
≈ ω+/p , (7.101)

which is well-defined. Of course, for sµ antiparallel to the velocity, we find

u(p, s)u(p, s) ≈ ω−/p . (7.102)

These are the so-called helicity states for massless Dirac particles, which can
also be written as34

uλ(p)uλ(p) = vλ(p)vλ(p) = ωλ/p , λ = ± . (7.103)

Because of their simplicity, massless helicity states are very popular in high-
energy calculations where fermion masses may be neglected ; but we should
not forget that states without pure helicity are also possible. Indeed, we can
consider the case where ~p and ~s make a fixed angle θ. In that case the spin
vector reads

sµ =
m cos θ sµ‖ + p0 sin θ sµ⊥√

(p0)2 − p2 cos2 θ
, (7.104)

where

sµ⊥ =


0

sinφ
cosφ

0

 . (7.105)

Here φ denotes the azimuthal angle of ~s around ~p. If we now let m → 0 so
that p→ p0, then the limit of the projection operator becomes

u(p, s)u(p, s) ≈ 1

2
(1 + γ5/s⊥)/p , (7.106)

34Strictly speaking, the antiparticle of the right-handed particle is left-handed, whereas
the above definition does not respect this. In practice this does not usually lead to confu-
sion.
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and we see that this limit is indistinguishable from a masless, transversely
polarized Dirac particle. The message is that the massless limit is always
defined, but must be taken with some care35.

7.3.8 The parity transform

An interesting excercise is the following. Let ξ be an arbitrary spinor. The
object

u(p, s) = C (/p+m)(1 + γ5/s)ξ (7.107)

is then exactly the spinor for a Dirac particle with momentum pµ an spin
vector sµ, provided that C is chosen appropriately36. Now, let us consider

γ0u(p, s) = C γ0(/p+m)(1 + γ5/s)ξ . (7.108)

By anticommuting the γ0 to the right, we can arrive at

γ0u(p, s) = C (/̂p+m)(1 + γ5/̂s) γ0ξ . (7.109)

Here, the vectors with and without hats are related as follows :

pµ =

(
p0

~p

)
, p̂µ =

(
p0

−~p

)
; sµ =

(
s0

~s

)
, ŝµ =

(
−s0

~s

)
.

(7.110)
Since γ0ξ is also an arbitrary spinor, the object γ0u(p, s) is exactly the spinor
u(p̂, ŝ) for a Dirac particle with momentum p̂µ and spin vector ŝµ. What is
this, precisely ? The spatial momentum of the particle has been reversed :
this is called the parity transform. The spin vector, however, retains its
spatial part while its time-part has now been flipped. The spin vector is,
therefore, a four-vector of a different type from the more regular vector pµ :
such four-vectors are called axial vectors37. We conclude that multiplying a
spinor by γ0 induces its parity transform. For antiparticle spinors, as well as
for the conjugate spinors, the treatment is completely identical.

35It is also clear that to produce, say, beams of ultrahigh-energy electrons with given
helicity, one needs to be able to align the spin vector very precisely with the momentum, to
angles of order m/p0. Nevertheless, this is feasible in practice, as the LEP/SLC colliders
have proven.

36This idea lies at the basis of the spinor techniques, to be discussed below.
37This explains the term ‘axial-vector’ coefficient we used in the Clifford algebra.
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7.4 The Feynman rules for Dirac particles

7.4.1 Dirac loops. . .

As mentioned above, there is a natural tendency in formulating the Feynman
rules to leave out the Fermi minus sign in the rules for external particles. Let
us suppose that we choose to do that. Now, consider the following cutting
rule :

p

q

+

p

q

+

p

q

= 0

Here, a scalar particle has a three-point coupling to a pair of Dirac particles38.
We shall not evaluate the whole diagram, but rather concentrate on the two
Dirac propagators. In the third, cut-through diagram, they occur as external
lines, giving rise to a factor

u(p)Γ1v(q) v(q)Γ2u(p) ,

where Γ1,2 represent the rest of the diagrams. The momenta p and q are
assumed to run from left to right. We have not indicated the spins since
anyway we have to sum over them. Therefore we would have to evaluate the
trace

Tr

(
(/p+mp)Γ1(/q −mq)Γ2

)
,

where we have indicated that the two Dirac particles are not necessarily of
the same type. Let us now shift our attention to the first diagram, say. A
closed loop of Dirac particles is automatically also a trace: this diagram,
then, requires the analogous trace

Tr

(
(/p+mp)Γ1(−/q +mq)Γ2

)
,

38The requirement that amplitudes do not contain uncontracted indices essentially forces
us to use Feynman rules in which the orientation of Dirac lines is conserved at every vertex.
For so-called Majorana fermions this is not true : Majorana fermions, therefore, have no
distinction between particle and antiparticle.
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since the momentum q is running against the orientation39. The second
trace has the opposite sign of the first one ! To solve this problem (and save
unitarity of the S matrix !) we therefore have to introduce an additional
Feynman rule for Dirac particles :

k

↔ ih̄
/k +m

k · k −m2 + iε
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p,s

↔
√
h̄ v(p, s)

-1 for every closed Dirac loop

Feynman rules, version 7.3

(7.111)

7.4.2 . . . and Dirac loops only

In the above we have not yet explained why the minus sign must be assigned
only to those closed loops that contain only Dirac particles. The reason for
this is based on crossing symmetry. Consider a (cut) diagram like this one :

The lines without arrows have no Dirac propagators but just the ‘original’
ones40. The cut crosses two Dirac lines, and we might conclude that a minus

39We disregard the denominators of the Dirac propagators since they do not influence
our argument.

40i.e. ih̄/(p2 −m2 + iε) for momentum p and mass m.
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sign is called for. However, by crossing symmetry this diagram is related to

where now the cut crosses one Dirac line and one line without an arrow.
Since the propagator in that line is even in its momentum, we can always
choose the loop momentum to run in the ‘correct’ direction for the Dirac line,
and no minus sign is needed. Therefore, the first diagram also takes no extra
minus sign, since crossing symmetry forbids for an amplitude to suddenly
pick up an extra minus sign under crossing. It is only when a closed loop
consists of only Dirac particles that no crossing can be found for which the
loop momentum can be chosen to run in the ‘correct’ direction. Therefore,
only for such loops is a minus sign unavoidable41.

7.4.3 Interchange signs

Consider the following two diagrams, that can both contribute to the decay
of a scalar into a Dirac-antiDirac pair at the one-loop level :

The first diagram contains a fermion loop and hence carries an overall minus
sign ; the second one does not. Now consider the cut versions of these
diagrams :

The left-hand sides of the cut-through diagrams are identical. The right-
hand sides differ in the way that the in-going fermions are connected to the
out-going ones ; the ingoing ones are interchanged in in the second diagram
with respect to the first one. This, then, must correspond to a minus sign

41This holds true later on, where we also introduce vector particles, the propagator of
which is also even in the momentum.
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associated with the interchange of external lines in a diagram, and we arrive
at the final form of the Feynman rules for Dirac particles :

k

↔ ih̄
/k +m

k · k −m2 + iε
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p,s

↔
√
h̄ v(p, s)

-1 for every closed Dirac loop

-1 for every Dirac particle interchange

Feynman rules, version 7.4

(7.112)

Note that the interchange rule only determines the relative sign between two
Feynman diagrams. How the interchange sign can be determined is best
illustrated by an example. Consider, for instance, a process with 6 external
fermions. Three of them must then be oriented outward from the diagram,
carrying a u of v, and the other three must be oriented inward and carry a u
or a v. Let us assume that there are three Feynman diagrams, schematically
given by42

diagram 1 : u1Γ1u2 v3Γ2u4 u5Γ3v6

diagram 2 : u1Γ4u2 v3Γ5v6 u5Γ6u4

diagram 3 : u1Γ7u4 v3Γ8v6 u5Γ9u2 ,

Clearly, we have left out an enormous amount of detail here, and the Γ’s
can be anything. Note that we have written the three diagrams in such a
way that the conjugate spinors u1, v3 and u5 are in the same order in each
diagram : this is always possible. Now, we see that to go from diagram 1 to
diagram 2, the positions of u4 and v6 must be interhanged, whereas one can

42The process e−e−e+ → e−e−e+ is an example.
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go from diagram 1 to diagram 3 by, say, interchanging first u2 and u4, and
then u2 and v6. Therefore, diagram 1 and 3 have no relative minus sign, and
diagram 2 has a minus sign with respect to 1 and 3. In actual practice, the
determination of the relative signs can be made even easier ; simply decide
on some preferred ordering of all your u’s, v’s, u’s and v’s , and compare
the ordering in your given diagram with your preferred one. Note that, since
spinor sandwiches always contain two spinors, spinor sandwiches may be in-
terchanged at will without destroying this simple rule.

Before finishing this section we want to make an important observation.
The loop and interchange minus signs as we have discussed them depend on
the structure of the diagrams, and not on the type of the Dirac particles ; even
if a neutrino and a top quark were interchanged, the minus sign would crop
up43. The minus signs depend only on the fact that they are Dirac particles,
that is, spin-1/2 fermions. No notion of ‘identical particles’ is relevant here. E 38

E 39

7.4.4 The Pauli principle

Let us consider a possible experiment in which we attempt to produce two
Dirac particles of the same type (two electrons, say), with exactly the same
momentum and spin. Any such process is, in principle, described by Feynman
diagrams. We can say immediately that the number of diagrams must be
even, since for every diagram there must be a corresponding one in which the
two electons are interchanged. Now, if the momenta and the spins of the two
electrons are precisely the same, they will be described by identical conjugate
spinors, and in fact the two diagrams of the pair will have exactly the same
value — apart from the relative minus sign ! The total amplitude is therefore
identically zero. We conclude that it is not possible two produce two Dirac
particles in exactly the same state. By considering incoming electrons, we
can also conclude that it is not possible to observe two Dirac particles if they
are in exactly the same state, since the observation process is also describable
(presumaby !) by Feynman diagrams. This is the Pauli exclusion principle44.

43Of course, the interactions in the theory may be such that no such interchange is
possible : but this is beside the point.

44Note that I do not comment on the possibility that electrons in identical states might
simply exist : they would not be observable by any process describable by Feynman dia-
grams. Their only influence could arise through some non-diagrammatic process, involving
possibly gravity since that appears not to be amenable to diagrammatics. Of course, classi-
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7.5 The Dirac equation

7.5.1 The classical limit

So far we have not mentioned the Dirac equation, nor have we had need for
it. As an illustration, we shall show how it can be obtained. To this end, we
need to provide a few Feynman rules in position, rather than in momentum
space. The Dirac propagator, oriented from spacetime point x to spacetime
point y, is

x y
↔ ih̄

(2π)4

∫
d4 e−ik·(y−x) /k +m

k2 −m2
, (7.113)

where we have dropped the iε for simplicity. The Dirac particles are created
by a spinorial source J(x), and absorbed by a conjugate-spinorial source
J̄(x), with the rules

↔ − i
h̄
J(x) ,

↔ − i
h̄
J̄(x) . (7.114)

If we forget about any other couplings, the Dirac field is free, and its SDe is
exactly its own classical limit. Now, consider the following form of it :
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x = x . (7.115)

With the field function of the Dirac field denoted by ψ(x), this SDe reads

ψ(x) =
1

(2π)4

∫
d4y d4k e−ik·(x−y) /k +m

k2 −m2
J(y) , (7.116)

where matrix multiplication is implied as usual. We can now study the object(
i/∂ −m

)
ψ(x) =

=
1

(2π)4

∫
d4y d4k e−ik·(x−y)(/k −m)

/k +m

k2 −m2
J(y)

cal quantum mechanics finds that the combined wave function for identical-state electrons
vanishes identically, but again quantum and gravity do not see completely eye to eye.
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=
1

(2π)4

∫
d4y d4k e−ik·(x−y)J(y)

=
∫
d4y δ4(x− y) J(y) = J(x) , (7.117)

which is the classical Dirac equation :(
i/∂ −m

)
ψ(x) = J(x) . (7.118)

We can also consider the ‘Dirac-conjugate’ SDe :
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x = x , (7.119)

which is written as

ψ̄(x) =
1

(2π)4

∫
d4y d4k J̄(y)

/k +m

k2 −m2
e−ik·(y−x) . (7.120)

By the same simple manipulation as above, we can then show that the con-
jugate Dirac equation reads

ψ̄(x)

(
− i

←
/∂ −m

)
= J̄(x) , (7.121)

where the leftward arrow indicates that the derivative must be taken towards
the left45.

7.5.2 The free Dirac action

We can cast the above in the form of the – possibly more familiar – La-
grangian treatment. The action for the free Dirac field including sources is
then given by

S[ψ, ψ̄, J, J̄ ] =
∫
d4x L(x) , (7.122)

where the Dirac Lagrangian is given by

L(x) = ψ̄(x) (i/∂ −m)ψ(x)− J̄(x)ψ(x)− ψ̄(x)J(x) . (7.123)

45A word of caution is in order here. The operator i/∂ is self-conjugate and does not
change under Hermitian conjugation. The minus sign in front of it comes from the fact
that the direction of the derivative is now also reversed.
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This Lagrangian does not contain a derivative of ψ̄: the Euler-Lagrange
equation is therefore simply

δS

δψ̄(x)
=
∫
d4y

δL(y)

δψ̄(x)
= 0 , (7.124)

which is seen to be exactly Eq.(7.118). By partial integration we can see that
the same action can also be obtained from the Lagrangian

L̂(x) = ψ̄(x)
(
−i
←
/∂ −m

)
ψ(x)− J̄(x)ψ(x)− ψ̄(x)J(x) , (7.125)

which is now independent of any derivative of ψ. The Euler-Lagrange equa-
tion for ψ,

δS

δψ(x)
=
∫
d4y

δL̂(y)

δψ(x)
= 0 , (7.126)

gives us precisely Eq.(7.121). Finally, it is easily seen that the dimensionality
of the field ψ is given by

dim

[
ψ

]
= dim

[
h̄1/2

L3/2

]
. (7.127)

7.6 The standard form for spinors

7.6.1 Definition of the standard form for massless par-
ticles

In the special case where the momentum is massless, a very handy form for
the spinors may be chosen, which we shall call the standard form. Let pµ

be the momentum of the spinor, so that p2 = 0. We now choose two basis
vectors kµ0 and kµ1 , which satisfy

k0 · k0 = k0 · k1 = 0 , k1 · k1 = −1 . (7.128)

Furthermore we require that k0 · p 6= 0 for any massless momentum pµ en-
countered in the problem at hand ; this is usually not difficult to arrange.
Since k0 is massless, it may serve to define the basis spinor

u0 ≡ u−(k0) ⇒ u0u0 = ω−/k0 . (7.129)
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The reversal of this object gives us

(u0u0)R = (ω−/k)R = ω+/k0 = u+(k0)u+(k0) = /k1 u0u0 /k1 . (7.130)

Using the basis spinor, we now define all other massless spinors by

u+(p) =
1√

2p · k0

/pu0 , u−(p) =
1√

2p · k0

/p/k1u0 . (7.131)

We can immediately check that u±(p)u±(p) = ω±/p, so that these spinorial
objects are indeed admissible choices ; in fact, the standard form is nothing
more than a (very useful) phase convention of all occurring spinors. This
choice is at the basis of the so-called spinor techniques : the above definition
will be applied to good effect in what follows.

7.6.2 Some useful identities

At this point we prove a few results that often turn out to be useful. In the
first place, from the property Tr (Γ) = Tr

(
ΓR
)
, we can see that

u+(p1) γµ u+(p2) = K u0 /p1 γ
µ /p2u0

= K Tr (u0u0 /p1 γ
µ /p2)

= K Tr
(
/p2 γ

µ /p1(u0u0)R
)

= K Tr (/p2 γ
µ /p1 /k1 u0u0 /k1)

= K u0 /k1 /p2 γ
µ /p1 /k1 u0 , (7.132)

with K = (4p1 · k0 p2 · k0)−1/2, which leads to the useful spinor reversal :

u+(p1)γµu+(p2) = u−(p2)γµu−(p1) . (7.133)

In fact this can easily be generalized to

uλ1 Γuλ2(q) = λ1λ2 u−λ2(q) ΓR u−λ1(p) (7.134)

In the second place, the standard form for the spinors allows us to relate +
and – helicities, for instance, for massless p and q, and with K−2 = 4(p ·
k0)(q · k0) :

γα u±(p) u±(q) γα = K γα /p ω∓ /k0 /q γ
α

= −2K /q ω± /k0 /p = −2 u∓(q) u∓(p) (7.135)
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Since the standard form of spinors is just a phase convention, a relation like
Eq.(7.135) holds in other conventions as well ; only the factor -2 may pick up
a complex phase that is elegantly absent here. In the last place, the Chisholm
identity of Eq.(7.58) can be applied to simple spinor sandwiches so as to yield(

u±(p1)γµu±(p2)

)
γµ = 2

{
u±(p2)u±(p1) + u∓(p1)u∓(p2)

}
. (7.136)

7.6.3 Spinor products

We may compute an explicit expression for the product of two spinors for
massless momenta : we shall define

s±(p, q) ≡ u±(p) u∓(q) . (7.137)

For standard spinors, this can be evaluated using the Casimir trick

s+(p, q) = (4(p · k0)(q · k0))−1/2 u0 /p /q /k1 u0

= (4(p · k0)(q · k0))−1/2 Tr (ω−/k0/p/q/k1)

=
1√

(p · k0)(q · k0)

(
(p · k0)(q · k1)− (p · k1)(q · k0)

− iεµναβk0
µk1

νpαqβ
)

. (7.138)

This is antisymmetric in p ↔ q, and moreover

s−(p, q) = − s+(p, q)∗ . (7.139)

In addition, it is easily seen that

s+(p, q)s−(q, p) = |s+(p, q)|2 = u+(p) /q u+(p) = 2(p · q) . (7.140)

Spinor products are therefore somewhat like ‘square roots’ of vector products.

Finally, we may consider an explicit choice for the vectors kµ0,1 :

k0
µ = (1, 1, 0, 0) , k1

µ = (0, 0, 1, 0) : (7.141)

this gives the explicit form for the spinor product

s+(p, q) =
(
p2 + ip3

)√q0 − q1

p0 − p1
−

(
q2 + iq3

)√p0 − p1

q0 − q1
, (7.142)
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which is very useful for actual numerical applications. Note that this choice
presupposes that none of the light-like vectors in the problem is oriented
exactly along the x-axis. Since the ‘special’ direction in many problems is
traditionally chosen to be the z-axis, this is usually safe. E 40

7.6.4 The Schouten identity

There exists a useful identity for massless-momentum spinors in the standard
representation. For massless p1,2,3,4, there is the truism

u+(p1)/p2/p3u−(p4)+u+(p1)/p3/p2u−(p4)−2(p2 ·p3) u+(p1)u−(p4) = 0 . (7.143)

Writing this out in terms of spinor products, we have

s+(p1, p2)s−(p2, p3)s+(p3, p4) + s+(p1, p3)s−(p3, p2)s+(p2, p4)

−s+(p2, p3)s−(p3, p2)s+(p1, p4) = 0 . (7.144)

Using the antisymmetry property of s, and dividing out the factor s−(p2, p3),
we obtain the so-called Schouten identity :

s+(p1, p2)s+(p3, p4)+s+(p1, p3)s+(p4, p2)+s+(p1, p4)s+(p2, p3) = 0 . (7.145)

Note the cyclicity in p2,3,4. Obviously, the identity holds for s− as well.



196 March 26, 2017

7.6.5 Summary of relations for the standard form

Here we briefly summarize the relations and tricks that can be used in calcu-
lations with helicity states for massless fermions in the standard formulation.
All momenta are massless here, and the symbols λ take on the values + or
–. It is allowable to only use the u spinors and not the v antispinors, and in
fact that is what is done in most calculations.E 41

E 42
• Dirac equations :

/p uλ(p) = 0 , ωλ uλ(p) = uλ(p) , ω−λ uλ(p) = 0

• Projection operator :
uλ(p)uλ(p) = ωλ /p

• Spinor products :

uλ(p)uλ(q) = 0

sλ(p, q) = uλ(p)u−λ(q) = −sλ(q, p) = −s−λ(p, q)∗

|sλ(p, q)|2 = sλ(p, q) s−λ(q, p) = 2(p · q)

• Elimination of repeated indices :

γα uλ(p)uλ(q) γ
α = −2u−λ(q)u−λ(p)

• Chisholm identity :[
uλ(p) γα uλ(q)

]
γα = 2

[
uλ(q)uλ(p) + u−λ(p)u−λ(q)

]
• Reversal :

uλ1(p) Γuλ2(q) = λ1λ2 u−λ2(q) ΓR u−λ1(p)

• Schouten identity :

sλ(q, p1) sλ(p2, p3) + sλ(q, p2) sλ(p3, p1) + sλ(q, p3) sλ(p1, p2) = 0

E 43
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7.6.6 The standard form for massive particles

The standard form for Dirac spinors given in Eq.(7.131) can be simply ex-
panded to the case of massive particles. Let pµ be the momentum of such a
particle, and let m be its mass. We then define

u±(p) =
1√

2p · k0

(/p+m)u∓(k0) ,

v±(p) =
1√

2p · k0

(/p−m)u∓(k0) . (7.146)

From Eqns.(7.69, 7.70) we can find out the spin vector for these two cases :
writing u±(p) = u(p,±s0) we obtain

s0
µ = − 1

2m
u+(p) γ5γµ u+(p)

= − 1

4mp · k0

Tr
(
ω−/k0(/p+m)γ5γµ(/p+m)

)
=

1

m
pµ − m

(pk0)
k0
µ , (7.147)

which is indeed the only vector built from p and k0 that can have the right
properties s0

2 = −1 and (ps0) = 0. Note that for small(ish) m and generally
positioned k0, ~s0 points in the general direction of ~p. Therefore we call u+(p)
a right-handed spinor, and u−(p) a left-handed spinor. In addition, from the
fact that, for the antispinor v±(p),

1

2m
v+(p) γ5γµ v+(p) = −s0

µ , (7.148)

we see that v+(p) is a left-handed antispinor and v−(p) is a right-handed
antispinor.

The standard spinors suffice to build up other spinors as well. To see this,
consider a general superposition of u+(p) and u−(p) :

ξ = αu+(p) + β u−(p) , |α|2 + |β|2 = 1 . (7.149)

Without loss of generality we may take

α = sin

(
θ

2

)
e−iϕ , β = cos

(
θ

2

)
. (7.150)
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The spin vector hidden inside the general spinor ξ is seen to be

− 1

2m
ξ̄ γ5γµξ = cos(θ)s0

µ + sin(θ) cos(ϕ)s//
µ + sin(θ) sin(ϕ)s⊥

µ ,

s//
µ = k1

µ − (pk1)

(pk0)
k0
µ ,

s⊥
µ =

1

(pk0)
εµνρσk1

νk0
ρpσ . (7.151)

Since

p · s0 = p · s// = p · s⊥ = s0 · s// = s0 · s⊥ = s// · s⊥ = 0 (7.152)

and
s//

2 = s⊥
2 = −1 , (7.153)

we see that every allowed spin vector is, in fact, accessible by taking a super-
position of two standard forms : the vectors pµ/m, s0

µ, s//
µ and s⊥

µ form
an orthonormal basis.

7.7 Muon decay in the Fermi model

7.7.1 The amplitude

An example of an actually occurring process involving only Dirac particles
is provided by muon decay in the Fermi model. The process is46

µ−(p) → e−(q) νµ(k1) νe(k2)

and is pictured by the single Feynman diagram

k1

k2

p

q

Here, a muon at rest undergoes a three-particle decay into an electron, a
muon neutrino and an electron antineutrino. We shall assume the neutrinos

46In this section, the vector k1 is a momentum, and has nothing to do with the auxiliary
vector of section 7.6.
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to be massless. The Fermi amplitude introduced to describe the phenomenol-
ogy of this process contains only a single pointlike vertex where four fermions
meet with a coupling constant called GF/

√
2, and is given by

M = i
GF h̄√

2
u(q) (1 + γ5)γα v(k2) u(k1) (1 + γ5)γα u(p) . (7.154)

The decision to ‘hook up’ the muon and the muon neutrino is in principle
arbitrary47, but as we have seen in section 7.2.6 we may easily interchange
the muon neutrino and the electron, and end up with the matrix element in
the ‘charge retention form’ :

M = −iGF h̄√
2

u(q) (1 + γ5)γα u(p) u(k1) (1 + γ5)γα v(k2) .

The amplitude (7.154) implies that the neutrinos must have negative helic-
ity48 : we can write

M = i
4GF h̄√

2
u(q) γα v−(k2) u−(k1) γα u(p) . (7.155)

We can now apply the result (7.135) to arrive at the very compact form

M = −i8GF h̄√
2

u(q) u+(k1) v+(k2) u(p) . (7.156)

The transition rate can now easily computed with a few simple traces :〈
|M|2

〉
=

1

2

∑
spins of µ, e

|M|2

= 16 GF
2 h̄2 Tr ((/q +me)ω+/k1) Tr ((/q +mµ)ω+/k2)

= 64 G2
F h̄

2 (q · k1) (p · k2) . (7.157)

It is practical to evaluate this in the muon rest frame. We shall write E1,2

for k1,2
0 in this frame. Then (p · k2) is equal to mµE2, and by momentum

conservation we find

(q · k1) =
1

2

(
(q + k1)2 −me

2
)

=
1

2

(
(P − k2)2 −me

2
)

= mµ(K − E2) ,

(7.158)

47Unless lepton flavour number is invoked.
48In the standard form of spinors, the helicity for antispinors is reversed. The antineu-

trino therefore actually has positive handedness.
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where

K =
mµ

2 −me
2

2mµ

. (7.159)

The transition rate then takes the form〈
|M|2

〉
= 64 GF

2 h̄2 mµ
2 E2(K − E2) , (7.160)

and for the partial decay width we find

dΓ(µ→ eνµνe) = 32 GF
2 h̄2 mµE2(K − E2) dV (p; q, k1, k2) . (7.161)

7.7.2 Three-body phase space

The phase space for the muon decay process reads

dV (p; q, k1, k2) =
1

(2π)5
d4q d4k1 d

4k2 δ
4(p− q − k1 − k2)

δ(q2 −me
2) δ(k1

2) δ(k2
2) . (7.162)

Since the rate depends only on E2, we shall implicitly integrate over all other
phase space variables. By cancelling the q integration against the Dirac delta
for momentum conservation, we arrive at

dV (p; q, k1, k2) =
1

(2π)5

E1E2

4
dE1 dE2 dΩ1 dΩ2

δ((p− k1 − k2)2 −me
2) . (7.163)

The Dirac delta function can be written as

δ
(
mµ

2 −me
2 − 2mµE1 − 2mµE2 + 2E1E2 − 2E1E2 cos θ

)
,

where θ is the angle between the neutrino momenta. Hence we can integrate
trivially over the other polar and the two azimuthal angles (leading to a
factor 8π2), and the integral over θ is resolved by the delta function. The
result is

dV (p; q, k1, k2) =
π2

(2π)5
dE1 dE2 . (7.164)
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In terms of these variables, the phase space is perfectly flat49. Since |cos θ|
cannot exceed unity, we also have the restrictions

mµ
2 −me

2 − 2mµE1 − 2mµE2 ≤ 0 ,

mµ
2 −me

2 − 2mµE1 − 2mµE2 + 4E1E2 ≥ 0 , (7.165)

which we can work into bounds on E1 :

K − E2 ≤ E1 ≤ K̂(E2) ≡ mµ
2 −me

2 − 2mµE2

2(mµ − 2E2)
, (7.166)

while E2 is seen to run from 0 to K.

7.7.3 The muon decay width

After the simple integration over E1, we have the muon partial decay width

d

dE2

Γ(µ→ eνµνe) = π2 GF
2 h̄2 mµ E2(K−E2)(K̂(E2)+E2−K) . (7.167)

The remaining integral over E2 can now be performed, and the final result is

Γ(µ→ eνµνe) =
GF

2 h̄2 mµ
5

192 π3
F (me

2/mµ
2) ,

F (x) = 1− 8x+ 8x3 − x4 − 12x2 log(x) . (7.168)

This displays the function
F (x). It is strictly de-
creasing since with increas-
ing me/mµ the available phase
space shrinks. For the re-
alistic values of me and mµ

F (x) is smaller than 1 by
about 2 × 10−4. The ef-
fects of nonzero electron mass
are therefore completely neg-
ligible, certainly if we realize
that we have not included any
loop diagrams, the contribu-
tion of which is very consider-

49This flatness does not depend on the masslessness of the neutrinos. For massive
neutrinos the same phase space density s found, only the boundaries of the phase space
become (horriby) complicated.
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ably larger than this. Before finishing, it is instructive to inspect the muon
width formula

Γ(µ→ eνµνe) =
GF

2 h̄2 mµ
5

192 π3

from the point of view of dimensional analysis. In the first place, the matrix
elementM, being of 2→ 2 type, must be strictly dimensionless. Since every
spinor carries half a power of momentum50, the Fermi coupling constant GF

must carry dimension momentum−2. Since decay widths carry the dimension
of momentum, as do masses like mµ, and the only mass scale in the problem
is mµ if we neglect the electron mass, the width is necessarily proportional
to GF

2mµ
5. The discussion at the end of section 6.5.4 shows that the factor

1/π3 was also to be expected. It is a somewhat sobering thought that all theE 44
work of this section amounts to no more than computing the number 1/192 !

7.7.4 Observable distributions in muon decay

We can look more closely into the behavior of the electron in muon decay,
in particular its angular and energy distribution : in fact, these are the only
quantities of interest since the neutrinos can essentially never be detected.
If the sample of decaying muons is unpolarized, no particular direction is fa-
vored in its rest frame, and the electrons may be expected to emerge isotrop-
ically. Let us therefore assume that the muons are fully polarized, with
polarization vector sµ = (0, ~s) in their rest frame. Since we are interested in
distributions rather than the overall decay rate, we can afford to be sloppy
with pre-factors in this computation. Additionally we shall assume me = 0.
The matrix element is now given by

M ∝ u−(q) γµ v−(k2) u−(k1) γµ u(p, s)

∝ u−(q)u+(k1) u+(k2)u(p, s) , (7.169)

where we have used Eq.(7.135). Squaring this, we obtain

|M|2 ∝ Tr (ω−/q/k1) Tr
(
ω+/k2(1 + γ5/s)(/p+mµ)

)
∝ (q · k1)

(
(k2 · p)−mµ(k2 · s)

)
∝ k0

2 (mµ − 2k0
2) (1 + cos(θ) cos(θ2) + sin(θ) sin(θ2) cos(φ2)) ,

(7.170)

50Since the spin sum of uu contains /p.
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where θ is the angle between ~q and ~s, and θ2, φ2 are the polar and azimuthal
angles of ~k2 with respect to ~q. As we have seen above, the phase space
integration element is, up to overall factors,

dq0 dk0
2 d cos(θ) dφ dφ2 ,

where φ is ~q ’s azimuthal angle around ~s, while

cos(θ2) = 1− mµ(q0 + k0
2 −mµ/2)

q0 k0
2

. (7.171)

Performing the integral over the (unobservable) angle φ2, and disregarding
the trivial φ dependence, we therefore have

dΓ ∝ k0
2 (mµ−2k0

2)

(
1 + cos(θ)

(
1− mµ(q0 + k0

2 −mµ/2)

q0 k0
2

))
dq0 dk0

2 d cos(θ) .

(7.172)
The integral over k0

2 from mµ/2 − q0 to mµ/2 is straightforward, leading to
the following, properly normalised distribution :

1

Γ

d2Γ

dy d cos(θ)
= y2

(
3− 2y + cos(θ)(1− 2y)

)
, y =

2q0

mµ

. (7.173)

The overall angular distribution is

1

Γ

dΓ

d cos(θ)
=

1

6

(
3− cos(θ)

)
, (7.174)

and the overall distribution of the electron energy reads

1

Γ

dΓ

dy
= 2y2(3− 2y) . (7.175)

Let us now consider the parity properties of the decay. Under the parity
transform, Eq.(7.110) tells us that ~q → −~q and ~s → ~s, so that effectively
cos(θ) → − cos(θ). We see that the muon decay amplitude, which is not
symmetric in cos(θ), displays parity violation. This is most prominent when
the electron has maximal energy :

1

Γ

d2Γ

dy d cos(θ)

⌋
y=1

= 1− cos(θ) . (7.176)
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Qualitatively, we can understand this as follows. At y = 1, the two neutrinos
recoil in parallel against the electron. Since νµ is left-handed and ν̄e is right-
handed (because of the factors 1+γ5 in the coupling), their spins cancel, and
the spin of the electron must therefore be in the direction of the muon spin
by conservation of angular momentum. If the electron were to be emitted
in the direction of the muon spin, it would therefore be right-handed, which
is again forbidden by the coupling51. Hence the amplitude must vanish at
θ = 0.

7.8 Excercises for chapter 7

Excercise 27 Lorentz-contracted gamma matrices
Prove the results given in Eq.(7.14).

Excercise 28 Five spacetime dimensions
Let γ4 be defined as γ4 = iγ5. Show that this γ4 has just the right properties
so that the relations

γµγν + γνγµ = 2 gµν , γµ = γµ

are valid in a five-dimensional spacetime (µ, ν = 0, 1, 2, 3, 4) with metric
γµν = diag(+1,−1,−1,−1,−1).

Excercise 29 Cyclic sigmas
Prove, by explicit calculation, that

γ5γ0γj = σkn , γ5γjγk = σn0

where (j, k, n) is a cyclic permutation of (1, 2, 3).

Excercise 30 Another relation between σ’s
Use trace identities and Fierzing to prove that

γ5 σαβ = − i
2
εαβµν σµν

Excercise 31 Projections playing around
Prove the results given in Eq.(7.67).

51Remember that we took me = 0.
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Excercise 32 Some spinor products
Prove the results in Eq.(7.68).

Excercise 33 Finding mass, spin and momentum
Prove Eq.(7.69) and Eq.(7.70)

Excercise 34 Dirac spinors: positive energy, on the mass shell
Let u = u(p, s). Using the results from the previous exercises about finding
mass, momentum and spin from given spinors, prove that p0 > 0, p · p = m2,
p · s = 0 and s · s = −1.

Excercise 35 Building a Dirac spinor
Let ξ be an arbitrary spinorial object (i.e. a four-component column). Show
that

(/p+m)(1 + γ5/s)ξ

is proportional to u(p, s).

Excercise 36 Spin basis for given momentum
Consider the two spinors u(p, s) and u(p,−s). Show that any other spinor
with momentum p can be written as

u(p, s′) = a+ u(p, s) + a− u(p,−s)

for some coefficients a±, and write a± as spinor products.

Excercise 37 Rotating over 60 degrees and so on

pµ = xµ , qµ = cos(θ)xµ + sin(θ) yµ

Compute Σ(p → q) for θ = π/3, and from there, by taking powers, for
θ = 2π/3 and finally for θ = 2π.

Excercise 38 Dirac FEE model
We reconsider the FEE model,but this time the E are Dirac particles. This
means that we have not only E particles but also Ē particles. There is one
vertex :

F

E

E

↔ i

h̄
λ

where λ is a dimensionless coupling constant. As before, F has mass M and
E has mass m.
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1. There are now 3 diagrammatic SDe’s for this model. Write them out.

2. Assume M > 2m. Compute the decay width Γ(F → EE) at the tree
level.

3. Assume 0 < M < 2m.

(a) Write the tree diagrams for the process E(p1) Ē(p2) → E(q1) Ē(q2)
by F exchange. We have indicated the momenta of the E parti-
cles.

(b) Compute 〈|M|2〉 for this process, where we sum over the final-
state spins and average over the initial-state spins of the E’s.

(c) Compute the total cross section σ(EĒ → EĒ), as a function of
the total invariant mass-squared s ≡ (p1 + p2)2. This is best done
in the centre-of-mass frame.

4. In the above process, assume now M = m = 0 (and still Γ = 0).
Determine 〈|M|2〉, using momentum conservation to simplify the result
as much as possible.

5. Assume M = 0 and m > 0.

(a) Write down the 2 diagrams for E(p1)F (k1) → E(p2)F (k2) at
the tree level.

(b) Work out 〈|M|2〉 for this process.

(c) Compute the total cross section as a function of s = (p1 + k1)2.
This is best done in the centre-of-mass frame.

(d) Compute the total cross section in the limit s→ m2.

6. Make no assumption on m or M .

(a) Write down the 24 diagrams for EF → EF at one loop.

(b) Assume that there are also FFF and FFFF vertices.

i. Write the 3 diagrams for EF → EF at the tree level.

ii. Write the 13 diagrams for F → EE at the one-loop level.

iii. Determine the number of Feynman diagrams at the tree level
for the following processes:

A. EĒ → EĒF
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B. EĒ → EĒFF

C. EĒ → EEĒĒ

D. EĒ → EEEĒĒĒ

Excercise 39 Dirac FED model
We consider a variation on the FEE model: there are now 2 types of Dirac
particles, E and D, with masses mE and mD, respectively. The F particle is
massless. There are now 2 vertices :

E

F
E

D

F
E

D

F
D

where both vertices have Feynman rule iλ/h̄ as before. We shall assume
mE > mD.

1. Compute the decay width Γ(E → FD) at the tree level.

2. Compute the cross section σ(FF → EĒ) at the tree level, as a function
of the total invariant mass-squared s.

Excercise 40 Spinor products and vector products
Using the form of Eq.(7.142) for s+(p, q), prove that

|s+(p, q)|2 = 2(p · q)

Excercise 41 Long Dirac strings
Let pµj , (j = 1, 2, 3, . . .) be massless momenta. Write the expression

A = u+(p1)/p2/p3/p4/p5u−(p6)

in terms of spinor products, and compute |A|2.

Excercise 42 Why is it zero ?
for massless momenta (as in the previous exercise), let

A1 = u(p1)/p2/p3u(p7) , A2 = u(p1)/p4/p5/p6u(p7)

where you can chooce the helicities of p1,7 yourself. Show that in all cases

A1A2
∗ = 0
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Excercise 43 Towards a real theory prediction
We consider the process

e+(p1) e−(p2) → e+(q1) e−(q2)

where the electrons/positrons are massless spin-1/2 particles. In Quantum
Electrodynamics (QED), the amplitude for this process is given by

M(λ1, λ2, ρ1, ρ2) =

ih̄Qe
2

(
1

(p1 + p2)2
uλ1(p1)γµuλ2(p2) uρ2(q2)γµuρ1(q1)

− 1

(p1 − q1)2
uλ1(p1)γµuρ1(q1) uρ2(q2)γµuλ2(p2)

)

where (as usual for massless fermions) we have disregarded the distinction
between spinors and antispinors. The quantity Qe is a fixed coupling con-
stant. The helicities λ1,2 and ρ1,2 are explicitly indicated. There are, in total,
16 helicity combinations.

1. Using spinor techniques, compute M for the sixteen helicity cases.

2. Assume that we are in the centre-of-mass frame, where ~p1 + ~p2 = 0.
Let θ be the angle between ~p1 and ~q1, and E = p1

0. Give the simplest
form you can find for 〈|M|2〉.

3. Show that 〈|M|2〉 is really divergent for θ = 0, and that this has nothing
to do with neglecting the electron mass.

Excercise 44 Muon decay revisited
We reconsider muon decay, again with vanishing neutrino and electron mass.
We shall investigate the result of leaving out the factors (1 + γ5) in the
amplitude, so that we take it to have the form

M = u(k1) γα u(p) u(q) γα v(k2)

and the massless fermions can take on either helicity. The muon can, of
course, also be in two spin states, to be summed over.

1. Compute 〈|M|2〉 for all the helicity configurations, summed over the
muon spins. Note : there are 2 different forms only.
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2. Use the results n three-body kinematics of section 7.7.2 to write the
above expressions in terms of q0, k2

0, and mµ.

3. After the angular integrations, as explained in section 7.7.2 there re-
mains the energy integral

mµ/2∫
0

dq0

mµ/2∫
mµ/2−q0

dk2
0

The electron energy q0 is observable, but the antineutrino energy k2
0 is

not. Compute the two integrals over k2
0 to get the two electron energy

spectra.

4. Show that the two spectra give the same result when integrated over
q0.

5. Investigate the two normalized spectra,

1

Γ

dΓ

d q0

to show how one can experimentally infer the presence of the 1 + γ5 .
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Chapter 8

Vectors particles

8.1 Massive vector particles

8.1.1 The propagator

In the last chapter we have studied the consequences of embellishing the
scalar propagator by endowing it with a numerator linear in the momentum.
The next obvious generalization is to let T (p) depend on two powers of the
momentum. That is, we assume it to be of the form

T (p)→ T (p)µν = Agµν +Bpµpν , B 6= 0 ,

for some A and B that may depend on p2. The numerator now carries two
Lorentz indices, one of each to be contracted with a corresponding index in
the vertices between which the propagator runs. The discussion of the last
chapter leads us to require that for momenta on the mass shell T (p) must
be proportional to a projection operator :

T (p)µαT (p)α
ν = kT (p)µν if p2 = m2 , (8.1)

for some k 6= 0, in other words

A2 = kA , B2m2 + 2AB = kB . (8.2)

We might choose the solution A = 0, but then the resulting form T (p)µν ∼
pµpν would be immediately absorbable into the vertices at either side, and a

211
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scalar propagator would result again. It follows that A must equal −m2B,
and therefore we shall use

T (p)µν = −gµν +
1

m2
pµpν , (8.3)

as before also (and mostly) using this form for off-shell momenta. The first
Feynman rule for these particles, that we call vector particles since they carry
a Lorentz index, is therefore established :

p
νµ ↔ ih̄

−gµν + pµpν/m2

p2 −m2 + iε

internal lines

Feynman rules, version 8.1 (8.4)

Note that this propagator is even in p and therefore has no orientation1.

8.1.2 The Feynman rules for external vector particles

From the form of T (p) we must be able to derive the form of the external-line
factors. Indeed, let us assume pµ to be in its rest frame. There, we have

T (p)µν = −gµν + g0µg0ν = diag(0, 1, 1, 1) , (8.5)

that is, the unit tensor in the spatial sector of Minkowski space. We see that
we can write

T (p)µν = −
(
xµxν + yµyν + zµzν

)
, (8.6)

which means that, for the objects U ,W three mutually orthogonal choices
can be made, for instance U (1) = x, U (2) = y, and U (3) = z. Of course,
complex linear combinations of these are also possible : in general, we can
say that there can be found three polarization vectors εµλ, with λ = −1, 0, 1,
such that

(ελ)
µ(ελ′)µ = −δλ,λ′ , T (p)µν =

1∑
λ=−1

(ελ)
µ(ελ)

ν
. (8.7)

We can now go once more through the truncation argument of chapter 6,E 45

1That is, its spacetime part is unoriented. There may of course be other properties
such as charge that do impose a distinction between production and decay of the particle.
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with the obvious result that the polarization vectors are to be assigned to
the external lines, and we immediately arrive at the full set of Feynman rules
for massive vector particles :

p
νµ ↔ ih̄

−gµν + pµpν/m2

p2 −m2 + iε

internal lines

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

↔
√
h̄ ελ

µ
incoming lines

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

↔
√
h̄ ελ

µ
outgoing lines

Feynman rules, version 8.2 (8.8)

Owing to the lack of orientation, the rules for the external lines are quite
simple, and fortunately no Dirac indices appear, nor do any curious and
cumbersome minus signs.

8.1.3 The spin of vector particles

To ascertain the spin of vector particles2, we need to establish the form
of the Lorentz transformation in the space of the polarization vectors, i.e.
Minkowski space. We can do this conveniently using the transform in Clifford
space, as follows. Let us denote by Λ(p; q)µν the representation of the minimal
Lorentz transformation between pµ and qµ in Minkowski space : that is, if
an arbitrary vector aµ is transformed into bµ, we have

Λ(p; q)µν a
ν = bµ . (8.9)

Since /a and /b encode exactly the same information as do aµ and bµ, consis-
tency requires that

/b = Λ(p; q)µν a
ν γµ = Σ/aΣ = Σ aν γν Σ , (8.10)

2The fact that there are three polarization vectors of course suggests that the spin is 1.
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with Σ as defined in section 7.3.5 ; since this must hold for arbitrary a, we
have the relation

Λ(p; q)µν γµ = Σ γν Σ , (8.11)

By multiplying with γα on both sides and taking the trace, we immediately
find the form of Λ(p; q) in Minkowski space :

Λ(p; q)αν =
1

4
Tr (Λ(p; q)µν γµ γ

α) =
1

4
Tr
(
Σ γν Σ γα

)
=

p2

4(p+ q)2
Tr

((
1 +

/q/p

p2

)
γν

(
1 +

/p/q

p2

)
γα
)

= δαν −
2

(p+ q)2
(p+ q)α(p+ q)ν +

2

p2
qαpν . (8.12)

Let us now specialize to the case of infinitesimal rotations, as in sectionE 46
7.3.5: again, we take pµ = xµ and qµ = xµ + θyµ (θ infinitesimal), and then
find to first order in θ :

Λ(p; q)µν ≈ δµν +
1

2
(2x+ θy)µ(2x+ θy)ν − 2(x+ θy)µxν

≈ δµν − θ (xµyν − yµxν) , (8.13)

so that the generators of the rotation group must in this case have the form

(Tx)
µ
ν = β(yµzν − zµyν) , (Ty)

µ
ν = β(zµxν − xµzν) ,

(Tz)
µ
ν = β(xµyν − yµxν) , (8.14)

with the constant β again to be determined from the commutation algebra :

[Tx, Ty]
µ
ν = (Tx)

µ
α(Ty)

α
ν − (Ty)

µ
α(Tx)

α
ν

= β2 (xµyν − yµxν) = β(Tz)
µ
ν . (8.15)

We conclude that β = ih̄ in the Minkowski space. We find

(Tx
2)µν = −h̄2 (yµyν + zµzν) , (8.16)

etcetera, so that the total-spin operator takes the form

(~L2)µν = −2h̄2 (xµxν + yµyν + zµzν) = 2h̄2
(
−δµν +

1

m2
pµpν

)
. (8.17)
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we conclude that the spin is indeed unity. The total spin operator contains,
as it must, the projection of all vectors on the spatial subspace. In words: to
be a good polarization vector, εµ must satisfy the Lorenz condition3 :

ε · p = 0 . (8.18)

Any part of a polarization vector that is parallel to pµ does, of course, not
transform under rotations in the space orthogonal to pµ (in our case, the
spatial part of Minkowski space since pµ is at rest). That part, therefore,
corresponds to a scalar degree of freedom. Returning to T (p) we may inter-
pret the form

T (p)µν = −gµν +
1

m2
pµpν (8.19)

as a propagator in which a priori four degrees of freedom propagate (the gµν

part), and where the scalar part (the pµpν term) is carefully excised. The pµpν

term is sometimes loosely called the ‘longitudinal part’ of the propagator, but
this is wrong ; we should do better by calling it the ‘scalar part’.

8.1.4 Full rotations in vector space

In analogy with the rotations over 90 degrees that we studied in section 7.3.6,
we may cast a quick look at the behaviour of states under the transformation
(??) when applied to a 90-degree rotation in the x − y plane. The minimal
Lorentz transformation then reads

Λ(π/2)µν = δµν + xµxν + yµyν + xµyν − yµxν . (8.20)

Taking powers, we obtain

Λ(π)µν = δµν + 2xµxν + 2yµyν ,

Λ(2π)µν = δµν . (8.21)

In contrast to the Dirac case, it now only needs a rotation over 2π to restore
any state of a vector particle to its original form ; a conclusion which was
already reached in section 7.3.6. There are, of course, polarization vectors
that are not affected by the rotation at all, namely those that point in the
z direction : the point is that a rotation over 2π restores any polarization
vector.

3Note the spelling ! This does not refer to the famous Dutchman Hendrik Antoon
Lorentz (1853-1928) of transformation fame, but to the Dane Ludvig Valentin Lorenz
(1829-1891), quite another person. A relation between the density and the refractive
index of a medium goes by the funky name of the Lorentz-Lorenz equation.
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8.1.5 Polarization vectors for helicity states

As usual, the helicity of a state refers to its spin as measured along the direc-
tion of its motion. For definitiveness, let us assume that our massive vector
particle moves along the z direction. If we boost carefully (and minimally ! )
back to the rest frame, ~p of course vanishes, but we shall remember that
to go back to the original situation we must boost along the z direction.
The operator for the helicity is therefore Tz in this case. Good polarization
vectors for helicity 1,0 and -1 are then

ε+
µ =

1√
2

(xµ + iyµ) , ε0
µ = zµ , ε−

µ = − 1√
2

(xµ − iyµ) , (8.22)

which is easily checked by verifying that

(Tz)
µ
νε+

ν = h̄ε+
µ , (Tz)

µ
νε0

ν = 0 , (Tz)
µ
νε−

ν = −h̄ε−µ . (8.23)

The vectors ε±1 are said to describe transverse polarization, and the vector ε0
is called longitudinal. If we now perform the boost back to the original system
in which pµ is moving along the z direction, the transverse polarizations
remain unaffected, while the longitudinal one takes the form4

ε0
µ →

(
|~p|
mp0

)
pµ +

(
m

p0

)
zµ . (8.24)

Very fast-moving particles, for which m� p0 ≈ |~p|, have longitudinal polar-
ization vector

ε0
µ → 1

m
pµ +O

(
m

p0

)
. (8.25)

8.1.6 The Proca equation

Massive vector particles have their own ‘classical’ equation, which we shall
now uncover. The coupling of a massive vector particle to a source is given
by the following Feynman rule for position space :

µ ↔ − i
h̄
Jµ(x) (8.26)

4In a somewhat simpler notation, if pµ = (p0, ~p), with p = |~p| and ~e = ~p/p, then the
longitudinal polarization vector reads ε0

µ = (p, p0~e)/m.
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The SDe for a free vector particle’s field function V µ is then again very
simple :
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x = x , (8.27)

or, more explicitly,

V µ(x) =
1

(2π)4

∫
d4y d4k

e−ik·(x−y)

k2 −m2

(
−gµν +

1

m2
kµkν

)
Jν(y) . (8.28)

We can then form the following derivative operator acting on V µ :

∂α∂α V
µ(x)− ∂µ∂α V α(x) +m2V µ(x) =

=
1

(2π)4

∫
d4y d4k

e−ik·(x−y)

k2 −m2
W µν Jν(y) , (8.29)

where W µν can be evaluated as

W µν = (−k2 +m2)
(
−gµν +

1

m2
kµkν

)
+ kµkα

(
−gαν +

1

m2
kαkν

)
= (k2 −m2)gµν . (8.30)

The remaining integrals over y and k now lead immediately to the so-called
Proca equation for V µ :

∂ · ∂ V µ − ∂µ ∂ · V +m2V µ = J . (8.31)

This is the ‘Maxwell equation’ for massive vector fields. It is instructive to
examine this equation in empty space, that is, for J = 0. Multipying it by ∂µ,
we find that the first two terms cancel, and we are left the Lorenz condition
∂ · V = 0 : all physical polarizations must be orthogonal to the momentum,
as we had already found. Reinserting this condition in Eq.(8.31), we are left
with the Klein-Gordon equation (∂ ·∂+m2)V µ = 0, which essentially requires
the particles to be on the mass shell. Note that this nicely compact way of
enforcing the Lorenz condition only works for m 6= 0 : for massless vector
particles, it must be put in by hand.

We can also write down the Lagrangian corresponding to the Proca equa-
tion, that is, that Lagrangian that has the Proca equation as its Euler-
Lagrange equation. It reads

L =
1

2
(∂µVν)(∂

µV ν)− 1

2
(∂µVν)(∂

νV µ) +
1

2
m2V µVµ

=
1

4
F µνFµν +

1

2
m2V µVµ , (8.32)
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where the field strength tensor is defined as

F µν = ∂µV ν − ∂νV µ . (8.33)

8.2 The spin-statistics theorem

8.2.1 Spinorial form of vector polarizations

Although there is no special need for it, we can define the polarization vectors
for a massive vector particle using Dirac spinors. Let the momentum of the
vector particle be qµ and its mass m. We can find two massless momenta pµ1
and pµ2 whose spatial parts are parallel (or antiparallel) to ~q and that sum to
qµ :

qµ = pµ1 + pµ2 , p1,2
2 = 0 , 2 (p1 · p2) = m2 . (8.34)

The helicity states can now be constructed by standard-form spinors as
follows :

ε+
µ =

1

m
√

2
u+(p1)γµu+(p2) ,

ε0
µ =

1

2m

(
u+(p1)γµu+(p1)− u+(p2)γµu+(p2)

)
,

ε−
µ =

1

m
√

2
u−(p1)γµu−(p2) . (8.35)

In fact, the longitudinal polarization ε0
µ can (by the Casimir trick, as usual)

be seen to be nothing else than

ε0
µ =

1

m
(p1 − p2)µ . (8.36)

This polarization, then, is properly normalized and orthogonal to ε±
µ. Fur-

thermore, we have

ε+ · ε− =
1

2m2
u+(p1)γµu+(p2) u−(p2)γµu−(p1) . (8.37)

By virtue of the standard choice of the spinors, we can see that

γµu+(p2) u−(p2)γµ ∝ γµ /p2 /k0 /k1 /p2 γµ

= −/p2 γ
µ /k0 /k1 /p2 γµ

= 2/p2 /p2 /k1 /k0 = 0 , (8.38)
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where we have used twice that p2
2 = 0. The vectors are therefore all orthog-

onal to each other. To check the normalization of ε+, we write

ε+ · ε+ =
1

2m2
u+(p1)γµu+(p2) u+(p2)γµu(p1)

=
1

2m2
u(p1)γµ/p2γµu+(p1)

= − 1

m2
u+(p1)/p2u+(p1) = −2(p1 · p2)

m2
= −1 . (8.39)

It remains to ascertain that these states are, indeed, pure helicity states.
To this end, let us assume that ~p1 and ~p2 are aligned with the z axis. The
helicity operator is then (Tz)

µ
ν = ih̄(xµyν − yµxν), so that ε0 trivially has

helicity zero. We have

(Tz)
µ
νε+

ν =
1

m
√

2

(
xµ u+(p1)/yu+(p2)− (x ↔ y)

)
. (8.40)

Again employing the properties of the standard form, we can show that this
is orthogonal to ε− :

((Tz)
µ
νε+

ν) ε− =
1

2m2

(
u+(p1)/yu+(p2) u−(p2)/xu−(p1)− (x ↔ y)

)
=

1

2m2

(
u+(p1)/yu+(p2) u+(p1)/xu+(p2)− (x ↔ y)

)
= 0 . (8.41)

Finally, we can examine

((Tz)
µ
νε+

ν) ε+ =
1

2m2

(
u+(p1)/yu+(p2) u+(p2)/xu+(p1)− (x ↔ y)

)
.

(8.42)
The first term in brackets can be evaluated by trace techniques :

u+(p1)/yu+(p2) u+(p2)/xu+(p1) = Tr (ω+ /p1 /y /p2 /x) = 2iA , (8.43)

so that

((Tz)
µ
νε+

ν) ε+ = − 2h̄

m2
A , (8.44)

where
A = εµναβ p

µ
1 y

ν pα1 x
β , (8.45)

which is real ; moreover,

A2 = (p1 · p2)2 = m4/4 . (8.46)
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We conclude that
((Tz)

µ
νε+

ν) ε+ = −h̄ sign(A) . (8.47)

The chosen form do therefore indeed represent correct helicity states5.
Before finishing this sector, we point out that also the (trivial) external-

line Feynman factor for scalar particles can be written in terms of spinors.
For a massive scalar with momentum qµ, the same choice of pµ1,2 is of course
possible. We simply note that

|u+(p1)u−(p2)|2 = Tr (ω+ /p1 /p2) = 2(p1 · p2) , (8.48)

so that we can always find a complex phase eiϕ such that the external-line
factor

√
h can be cast in a form containing two spinors :

√
h̄ →

√
h̄

eiϕ√
2 p1 · p2

u+(p1)u−(p2) . (8.49)

It should not come as a surprise that an external integer-spin particle can
conventiently be represented by a spinor-antispinor pair. After all, this is
precisely the way in which particles like the W and Z are most often seen in
experiment : namely, through their decay into a fermion-antifermion pair.

8.2.2 Proof of the spin-statistics theorem

The treatment of the previous section may appear somewhat academic, but
it has an interesting consequence. Integer-spin particles (scalars and vectors)
can be represented in their external lines with an even number of spinors,
that is an even number of Dirac particles. Particles with half-integer spin
are represented by an odd number of Dirac particles. This persists : spin-3/2
particles can be formulated using 3 spinors, spin-2 particles by 4 spinors,
and so on. This implies that the interchange of two external half-integer-
spin particles involves the interchange of an odd number of Dirac particles,
and will therefore lead to a minus sign. The interchange of two external
integer-spin particles involves the interchange of an even number of Dirac
particles, and hence no minus sign. These particles, therefore, obey opposite
statistics : integer-spin particles are bosons, half-integer spin parti-
cles are fermions6.

5We have not established that ε+ is ε+1; it is actually ε−1 if A is negative. This is
easily remedied if necessary, by interchanging p1 and p2.

6Traditionally, the spin-statistics theorem, like the CPT theorem, is considered to be
very deep and difficult. Make up your mind.
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8.3 Massless vector particles

8.3.1 Polarizations of massless vector particles

Let us reconsider the helicity states of Eq.(8.22). These are defined in the
rest frame of the particle, with the understanding that we have to boost
back to the frame in which the particle moves, in our case along the z axis.
Under this boost the longitudinal polarization takes the form of Eq.(8.24).
Let us now imagine that the particle approaches masslessness, that is, we
let m/p0 decrease towards zero. The boost necessary to reach the original
frame then becomes enormous, and the longitudinal polarization will go to
infinity when the particle becomes massless. The only way to avoid matrix
elements becoming arbitrarily large, and hence violating unitarity sooner or
later, is to arrange the interactions of the theory in such a way that the effect
of longitudinal polarization are suppressed by a factor of order O (m/p0) :
we shall use this extensively later on. In the strictly massless case, the
longitudinal polarization vector must decouple completely, and we arrive at
the result that for massless particles, only the two states of maximal
helicity are physical7.

8.3.2 Current conservation from the polarization

A photon is a vector particle ; as far as we know it is massless. Its polarization
vectors must therefore be transverse. For a photon moving in the z direction,
any possible polarization vector must be a superposition of (x+ iy)µ/

√
2 and

(x − iy)µ/
√

2. If kµ is the photon momentum, and εµ its polarization, we
must therefore have not only k · ε but also

ε0 = 0 , ~k · ~ε = 0 . (8.50)

However, a problem immediately arises: for the above equations are not
invariant under Lorentz boosts. If we boost kµ and εµ to a generically other
frame, they no longer hold. Let us assume that we are in such a frame ; there
we have the Lorentz-invariant conditions

(k0)2 = |~k|2 , (ε0)2 − |~ε|2 = −1 , k0ε0 = ~k · ~ε . (8.51)

7This can also be proven for particles of higher spin, see Appendix 13.12.
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We can decompose ~ε into a parallel and a perpendicular part :

~ε = ~ε‖ + ~ε⊥ , ~ε‖ // ~k , ~ε⊥ · ~k = 0 . (8.52)

Inserting this into the last equation of Eq.(8.51), we find immediately that
ε0 = |~ε‖|, and the second equation then gives |~ε⊥| = 1. We see that, whatever
the value of εµ, we can always write

εµ = ε⊥
µ +

ε0

k0
kµ , (8.53)

where ε⊥
µ does satisfy Eq.(8.50). We can therefore have a consistent and uni-

tary theory of massless vector particles, provided that the kµ term decouples
from the physics. Now, any matrix element involving an external massless
vector particle with momentum kµ and polarization vector εµ will be of the
form

M = J (k)µ εµ , (8.54)

where J µ(k) stands for the rest of the amplitude. Note that J µ does not
carry any information about εµ, but it does know what kµ is, by momentum
conservation. Our requirement then is that the interactions of the theory be
such that

J µ(k) kµ = 0 . (8.55)

That is, if we replace the polarization vector by the momentum, the ampli-
tude must vanish.

Diagrammatically, we may indicate the replacing of polarization by mo-
mentum by attaching a ‘handlebar’ to the external line, so that we may
write
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= Mcε→k . (8.56)

We shall use the convention that the momentum under the handlebar is
counted outgoing. The requirement for strictly massless external vector par-
ticles then becomes
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= 0 . (8.57)

What, finally, is the physical content of the requirement ? This is simply
answered if we let our massless vector particle be a photon. The object J µ
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is then seen as a source of photons, that is, an electromagnetic current8. If
we now briefly return from a momentum-language formulation to a position-
language one, we see that the Fourier transform of the requirement (8.55) is
written as

∂µ J (x)µ = 0 . (8.58)

We see that our requirement is nothing but current conservation in the case
of electromagnetism ! The fact that electric charge is conserved ensures that
longitudinally polarized photons are safely absent from our experience9.

8.3.3 Current conservation from the propagator

A message similar to that of the previous section can be gotten from the
propagator. After all, the massive-vector propagator

ih̄
−gµν + kµkν/m2

k2 −m2

clearly becomes horribly singular at m = 0. The solution, as before, is to
require that in our theory the kµkν term should drop out. There is a catch,
however: whereas external vector particles must be on the mass shell, the
momentum of internal lines is off the mass shell. We therefore arrive at the
sharper requirement that Eq.(8.57) must hold even if the particle is off-shell.

8.3.4 Handlebar condition for massive vector particles

Let us examine the situation where a vector particle does have a mass, but
the mass m is very small compared to the vector particle’s energy E or its
momentum. Clearly, it would be unacceptable10 if the limit m→ 0 would be
singular while the case m = 0 is not11. We shall therefore require that, for

8One may for instance have the source J represent a charge whose momentum changes,
thereby emitting radiation.

9Whether they exist is another question ; at any rate we cannot produce them, not
observe them.

10Or at least embarassing — after all, we do not know for certain if the mass of the
photon is strictly zero or just a measly 10−137 kilograms. The most trustworthy current
limit is mγc

2 < 10−18eV, or mγ < 2× 10−54 kg.
11Note that we do not even insist that m→ 0 gives the same result as m = 0, only that

the limit is nonsingular.
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massive vector particles partaking in a process at high energy, the handlebar
condition (8.57) holds in a milder form :
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= O (m) . (8.59)

The meaning of this condition is the following. The longitudinal polarization
vector of a massive vector boson has energy behaviour different from its two
transverse ones : it grows at high energy E � m with an extra power of E.
If for transverse polarization the amplitude is well-behaved at high energy it
may not be so for longitudinal polarization. The requirement implied by the
handlebar condition is that the extra power E inserted into the expression
because of longitudinal polarization is softened, by cancellations over at least
one order of magnitude in terms of E/m. We shall presently see that this
condtion is sufficiently severe to determine, to a large extent, the possible
couplings of a theory containing such particles.

8.3.5 Helicity states for massless vectors

The spinor-based helicity states for massive vector particles of section 8.2.1
are apparently not well suited to the massless case. Note, however, that we
may generalize the method of Eq.(8.34) as follows :

qµ = p1 + α p2 , p1,2
2 = 0 , m2 = 2α (p1 · p2) . (8.60)

Using the fact that the spinors of massless particles are homogeneous of
degree 1/2 in the argument :

u±(αp2) =
√
α u±(p2) , (8.61)

we see that (for instance) the polarization vector ε+ can be written, in analogy
to Eq.(8.35), as

ε+
µ =

1

2
√
p1 · p2

u+(p1) γµ u+(p2) . (8.62)

Since α does not occur in the polarization vector, we may consider the limit
α → 0. In that case, q = p1 is massless, and the only condition on the
massless vector p2 is that (p1 · p2) must not vanish. By a judicious choice of
overall complex phase, this leads us to propose, for a massless vector particle
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with momentum kµ, states of definite helicity as follows, where the spinors
are again in the standard form :

ελ
µ =

λ

s−λ(k, r)
√

2
uλ(k)γµuλ(r) , λ = ± . (8.63)

Here, the vector rµ is an arbitrarily chosen massless vector not parallel to
kµ ; it is called the gauge vector. We can ascertain that

ε+ · ε− =
1

4k · r
u+(k)γµu+(r) u−(r)γµu−(k) = 0 , (8.64)

in the same manner we employed in Eq.(8.38). Furthermore,

ε+ · ε+ =
1

4k · r
u+(k)γµu+(r) u+(r)γµu+(k) =

−1

2k · r
u+(k)/ru+(k) = −1 .

(8.65)
These, then, are acceptable helicity states.

A few useful properties of these polarization vectors are

ωλ /ελ =
λ
√

2

s−λ(k, r)
uλ(r)uλ(k) , ω−λ /ελ =

λ
√

2

s−λ(k, r)
u−λ(r)u−λ(k) (8.66)

and
/k /ελ = λ

√
2 u−λ(k) uλ(k) , (8.67)

and this object is explicitly gauge-invariant.

8.3.6 The massless propagator : the axial gauge

We can perform the sum over the physical polarization states of a massless
vector from the helicity states :∑

λ=±
ελ
µελ

ν =
∑
λ=±

1

4k · r
uλ(k)γµuλ(r) uλ(r)γ

νuλ(k)

=
∑
λ=±

1

4k · r
uλ(k)γµ/rγνuλ(k)

=
1

4k · r
Tr (/k γµ /r γν)

= −gµν +
1

k · r
(
kµrν + rµkν

)
. (8.68)

The form of the massless vector propagator in which only physical degrees of
freedom propagate is therefore given by the following Feynman rule :
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νµ k ↔ ih̄
−gµν + (kµrν + rµkν)/(k · r)

k2 + iε

massless internal lines

Feynman rules, version 8.3 (8.69)

Note the appearance of the arbitrary vector r. This way of writing the
propagator is called the axial gauge. The propagator is constructed to be
orthogonal to rµ whatever the value of k. The vector r acts as an ‘axis’
with respect to which the field is always orthogonal, hence the name. The
fact that the vector r is arbitrary is of course bothersome, in the same way
that the arbitrariness of the representation chosen for the Dirac matrices in
the case of Dirac particles is bothersome. We solve it in the same way, by
insisting that we ought to be able to remove r from the final expressions
for matrix elements. This can of course not be by virtue of any property
of r itself, but must come from the handlebar condition, since every term
containing r also contains k. Two things are worthy of remark here. In the
first place, the propagator is homogeneous of degree zero in r, so any result
cannot depend on the length of r anyway. In the second place, in contrast to
the propagator proposed before, with pµpν/m2, the propagator in the axial
gauge does not diverge. We are therefore freed from the requirement that
the handlebar condition must also hold off-shell.

8.3.7 Gauge vector shift

Let us consider helicity states for massless vector particles as defined in
sect.8.3.5. We shall denote these by ελ

µ(k, r). If we change the gauge vector r
from one value into another, another perfectly acceptable helicity state is ob-
tained. What is the relation between these states ? To answer this we simply
compute the difference between the states with different gauge vector :

ελ
µ(k, r1)− ελµ(k, r2) =

λ√
2

(
uλ(k)γµuλ(r1)

s−λ(k, r1)
− uλ(k)γµuλ(r2)

s−λ(k, r2)

)

= − λ√
2

(
u−λ(r1)γµu−λ(k)

s−λ(r1, k)
+
uλ(k)γµuλ(r2)

s−λ(k, r2)

)
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= − λ√
2

(
u−λ(r1)γµu−λ(k)u−λ(k)uλ(r2) + u−λ(r1)uλ(k)uλ(k)γµuλ(r2)

)
s−λ(r1, k)s−λ(k, r2)

=
λ√
2

u−λ(r1)(γµ/k + /kγµ)uλ(r2)

s−λ(k, r1) s−λ(k, r2)

= λ
√

2
s−λ(r1, r2)

s−λ(k, r1) s−λ(k, r2)
kµ . (8.70)

we see that the two states differ only by the vector particle’s momentum.
In any current-conserving set of diagrams we may therfore choose the gauge
vector at will ; there is no risk of picking up a phase difference if two different
gauge vectors are used for two different current-conserving sets of diagrams.

As an illustration of how the gauge vector can disappear from a current-
conserving object, let us consider

ελ ·
(

p

2k · p
− q

2k · q

)
,

with p and q two massless momenta. The form of section 8.3.5 turns this
into

λ√
2 s−λ(k, r)

(
sλ(k, p)s−λ(p, r)

2k · p
− sλ(k, q)s−λ(q, r)

2k · q

)

=
λ√

2 s−λ(k, r)

(
s−λ(p, r)

s−λ(p, k)
− s−λ(q, r)

s−λ(q, k)

)

=
λ√
2

s−λ(p, r)s−λ(q, k)− s−λ(q, r)s−λ(p, k)

s−λ(k, r)s−λ(p, k)s−λ(q, k)
(8.71)

Now, the Schouten identity tells us that

s−λ(p, r)s−λ(q, k) + s−λ(p, k)s−λ(r, q) = −s−λ(p, q)s−λ(k, r) (8.72)

so that the gauge vector indeed drops out, and

ελ ·
(

p

2k · p
− q

2k · q

)
= − λ√

2

s−λ(p, q)

s−λ(k, p)s−λ(k, q)
. (8.73)

One can easily check that the same form is obtained without using the
Schouten identity if we choose either r = p or r = q. E 47
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8.4 Exercises for chapter 8

Excercise 45 Polarization averages
If, for vector particles, we take not a spin sum but a spin average, we find

1

3

3∑
j=1

εj
µε̄νj =

1

3

(
−gµν +

pµpν

m2

)

for an on-shell vector particle of momentum p and mass m. We can also
consider it classically , in the rest frame where ~p = 0. In that case there is
a polarization vector εµ = (0,~ε) (we only consider real polarizations). Show
that, if we also average the polarization vector over all possible orientations,
we find

1

4π

∫
dΩ εµ εν =

1

3

(
−gµν +

pµpν

m2

)
as well.

Excercise 46 A character-building calculation
Let bµ = Λ(p; q)µν a

ν for some arbitrary vector a. Use the explicit form
(8.12) of the minimal Lorentz transform to prove by explicit calculation that
b · b = a · a.

Excercise 47 A check
Do this.



Chapter 9

Quantum Electrodynamics

9.1 Introduction

In this chapter we shall start to work our way to realistic theories about the
actual elementary particles encountered in nature1. All elementary particles
seen so far have nonzero spin, apart from the newly-discovered Higgs boson.
We shall defer the discussion of charged spin-1 particles to a later chapter ; at
this point we shall only discuss how to set up a consistent theory of spin-1/2
particles (charged leptons and/or quarks) and photons. This is the theory of
quantum electro-dynamics, or QED.

9.2 Setting up QED

9.2.1 The QED vertex

Since the propagators of spin-1/2 particles and of the massless spin-1 photon
have already been fixed, the only ingredient which we still have to determine
is the coupling between them ; and on this coupling rests the burden of
ensuring the current-conservation requirement as embodied in Eq.(8.57). The
vertex coupling Dirac particles must have one upper, and one lower Dirac
index : and since the photon is involved, it must also carry a Lorentz index.

1It may of course be possible that the elementary particles discussed in this text are
not truly elementary and that a yet deeper level of substructure will be discovered. In
that case, please insert in whatever follows the addendum (as of March 26, 2017).
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The simplest, and – as we shall see – indeed the correct form of the vertex is
that of a Dirac matrix. We therefore propose the following Feynman rule :

µ
↔ i

Q

h̄
γµ QED vertex

Feynman rules, version 9.1 (9.1)

Here Q is the strength of the fermion-photon coupling : the charge of the
fermion2. By dimensional analysis, we see that is has dimension

dim
[
Q
]

= dim
[
h̄−1/2

]
. (9.2)

The Dirac delta function imposing momentum conservation is implied. As
is conventional, we shall employ wavy lines to indicate photons. As stressed
in the previous chapter, this choice of vertex can only been argued to be
reasonable if the photon current is conserved ; this we shall show in what
follows.

9.2.2 Handlebars : a first look

Let us now start to investigate the requirements of current conservation for
our theory. One of the simplest possible processes is the decay of a photon
into a fermion-antifermion pair, shown below :

q

1
p

p
2

Of course the photon has to be off-shell here, but that is no problem since also
off-shell photons must obey current conservation. The part of the amplitude
depicted is given by

M = −Qu(p1)γµv(p2) , (9.3)

2Or, rather, it is related to the charge. The precise form of this relation must, of course,
be established by investigating the coupling in a well-defined physical situation.
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where the index µ of the photon is coupled to a corresponding index some-
where else in the larger Feynman diagram. Let us now attach the handlebar,
so that we get

q

1
p

p
2

With the convention, to which we shall try to adhere, that the momentum
assigned in the handlebar must be counted outgoing from the vertex, so in
this case should read −q, the handlebarred M becomes

Mc = Qu(p1) /q v(p2) . (9.4)

Note that we indicate the handlebar algebraically by the symbol c. Now we
apply momentum conservation that tells us that q = p1 + p2 :

Mc = Qu(p1)
(
/p1 + /p2

)
v(p2) . (9.5)

To the expression in the middle we add zero in a clever way :

Mc = Qu(p1)
(
/p1 −m+ /p2 +m

)
v(p2) , (9.6)

where m is the mass of the fermion. Now, we know that the spinors u and v
satisfy the Dirac equations

(/p1 −m)u(p1) = 0 and (/p2 +m)v(p2) = 0 (9.7)

for on-shell momenta, so that half of the expression 9.6 ‘cancels to the left’
and the other half ‘cancels to the right’, and we end up with

Mc = 0 . (9.8)

We shall see that this is the general mechanism by which unitarity and cur-
rent conservation are ensured.

The above is of course only the simplest example of current conservation
in QED, and in the following we shall in fact study all conceivable QED
process at once, but already we can learn a few useful things. In the first
place, a possible alternative coupling, with γ5γµ instead of γµ, is ruled out
since we cannot obtain two Dirac equations :

γ5 /q = −/p1γ
5 + γ5/p2 = −(/p1 ±m)γ5 + γ5(/p2 ±m) , (9.9)
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so that either the cancellation to the left would be spoiled, or that to the
right. In the second place, it is necessary that both fermions have pre-
cisely the same mass. Since all known different fermion types have different
masses, this means that the QED interaction must conserve fermion type, or
‘flavour’. Electromagnetic muon decay, µ → eγ, is therefore forbidden, not
by conservation of the electric charge (which is indeed the same for muons
and electrons) but by conservation of the whole electromagnetic current 3.E 49

9.2.3 Handlebar diagrammatics

The argument for current conservation in the previous section went through
because both fermions were on their mass shell. Since fermions in internal
lines in Feynman diagrams are not on the mass shell, we have to extend our
approach to off-shell fermions. Consider an arbitrary diagram in which a
fermion of mass m propagates and couples to a photon, as depicted below.

k

qp

The fermion momenta p and q are indicated and for the photon momentum k
we have kµ = (p− q)µ. The momenta p and q may be on-shell (in which case
the corresponding blob is left out), but any of them may be off-shell, and
hence leads into a further piece of Feynman diagram. In that case the blobs
stand for the other vertices, where the fermion is created and absorbed4. The
part of the diagram between the blobs is of course given by(

ih̄
/q +m

q2 −m2

) (
i
Qγµ

h̄

)(
ih̄

/p+m

p2 −m2

)
,

where µ is the index belonging to the photon line ; in an actual process, µ
may be coupled to the photon’s polarization vector if the photon is external,
or to the photon’s propagator if the photon happens to be an internal line.
In case p, say, is on-shell we have to write(

ih̄
/q +m

q2 −m2

) (
i
Qγµ

h̄

) (
u(p)

√
h̄
)
.

3Fortunately, the decay µ → eγ has never been observed, and the branching ratio is
smaller than about 10−11.

4Actually, the p and q lines are attached to a semi-connected graph rather than two
separate connected ones, but here the distinction is irrelevant.
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Let us now put the handlebar on the photon leg :

k

qp

Algebraically, we must multiply the above expression by kµ, and then

(
iQ

h̄

)
(ih̄)2

(
/q +m

q2 −m2
γµ

/p+m

p2 −m2

)
kµ =

=
(
iQ

h̄

)
(ih̄)2 /q +m

q2 −m2
(/p− /q) /p+m

p2 −m2

=
(
iQ

h̄

)
(ih̄)2 /q +m

q2 −m2

(
(/p−m)− (/q −m)

)
/p+m

p2 −m2

=
(
iQ

h̄

)
(ih̄)2

(
/q +m

q2 −m2
− /p+m

p2 −m2

)
. (9.10)

We see that under the handlebar the double propagator splits up into two
single ones. Note that, for this to be possible, it is again essential that
the mass of the fermion does not change at the vertex. We may write this
operation diagrammatically as

k

qp = − , (9.11)

where we have introduced two new diagrammatic ingredients: a slashed
fermion line, with a trivial Feynman rule :

↔ ih̄ , (9.12)

and a new vertex, also carrying a trivial rule :

↔ i
Q

h̄
. (9.13)

The handlebarred photon line is replaced by a dotted line which evaluates
trivially to unity, but we do not want to leave it out of the diagram since the
dashed propagator still carries an amount of momentum, so that without it
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momentum conservation would not hold at the new vertex. Like the han-
dlebar this rule is not intended to represent some physical interaction, but
serves only as a computational device. For external Dirac lines we find even
simpler rules, since the external spinors satisfy the Dirac equation :

= 0 for on-shell external lines , (9.14)

where the external line may belong to the initial or final state, and the arrow
orientation may be also reversed. An important result follows immediately
from the triviality of our new Feynman-rule tools :

= . (9.15)

9.2.4 Current conservation : the Ward-Takahashi iden-
tity

We shall now prove that the Feynman rule (9.2.1) is a good one, in the
sense that a handlebar on any photon gives a zero result, both for on-shell
(external) and off-shell (internal) photon lines. This is quite a tall order,
since we have to consider a literal infinity of possible processes. We shall
base the proof on - what else ? - the SDe’s of the theory. Throughout this
section we shall use semi-connected diagrams only. Let us consider a general
Green’s function that contains r fermion lines flowing in, and s fermion lines
flowing out, together with any number (≥ 1) of photon lines, one of which
we single out :

r ; s ≡

k

1
rp p

1
q

q
s

(9.16)

The fermions’ momenta are reckoned along their respective arrows, and the
photon momentum k is counted outgoing. Note that, since we are considering
here a Green’s function and not an amplitude, any of the external lines may
be off-shell. It is this object that we shall submit to a handlebar operation.
The SDe’s of QED are, in our notation :

= + ,
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= + ,

= + . (9.17)

We therefore have
r ; s = r ; s , (9.18)

and the handlebar operation gives us

r ; s = r ; s − r ; s . (9.19)

Each term on the right-hand side can be subjected to its own SDe, to give

r ; s =
∑
j

p
r −   ; s1j −

∑
j

jr ; s − 1 q

+ r ; s − r ; s . (9.20)

By virtue of Eq.(9.15) the last two terms cancel precisely, and we are left
with the Ward-Takahashi identity :

r ; s =
∑
j

p
r −   ; s1j −

∑
j

jr ; s − 1 q . (9.21)

We can conveniently express this in a more analytic form. Let us denote our
Green’s function by

Gµ(p1, . . . , pr; q1, . . . , qs; k) ≡ r ; s , (9.22)

where the explicit Lorentz index is that of the photon line, and the same
Green’s function, only with the special photon removed, by

G0(p1, . . . , pr; q1, . . . , qs) ≡ r ; s . (9.23)
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Taking into account the flow of the momenta and the fact that the two trivial
Feynman rules (9.12) and (9.13) together yield a factor of (iQ/h̄)(1h̄) = −Q,
we can write the diagrammatic Ward-Takahashi identity (9.21) as follows5 :

Gµ(p1, . . . , pr; q1, . . . , qs; k) kµ =

Q
s∑
j=1

G0(p1, . . . , pr; q1, . . . , qj + k, . . . , qs)

−Q
r∑
j=1

G0(p1, . . . , pj − k, . . . , pr; q1, . . . , qs) . (9.24)

It is this result that proves that, indeed, the choice of the vertex (9.2.1) leads
to an acceptable theory.

So far we have considered the general case, with no constraint on the
external momenta. If we now specialize to amplitudes, in which all external
momenta except perhaps for kµ, must be on their mass shell, the rule (9.14)
applies, and we find the even more attractive Ward identity :

= 0 . (9.25)

9.2.5 The charged Dirac equation

We still have to determine the precise relation between the coupling constant
Q in the Feynman rule, and the classical electric charge q of the particle. We
shall do this by establishing a relation with classical electrodynamics. The
classical (i.e. non-loop) SDe for ψ in the presence of a photon field A is given
by
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, (9.26)

5In many, or even most, cases of interest fermion number is conserved, which means that
in every (fundamental or effective) vertex the number of incoming and outgoing fermions
is the same ; in that case we have r = s. But since we have nowhere used this, the Ward-
Takahashi identity may be expected to hold also for processes in which fermion number
is not conserved, for example in supersymmetry where Majorana fermions occur. Note,
however, that Majorana fermions are necessarily neutral and themselves do not couple to
photons.
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in other words

ψ(x) =
∫

d4y
1

(2π)4

∫
d4k e−ik·(x−y)

ih̄
/k +m

k2 −m2 + iε

(
i
Q

h̄

)
γµψ(y)Aµ(y) , (9.27)

whence (
i/∂ −m+Q/A(x)

)
ψ(x) = 0 , (9.28)

which is the Dirac equation in the presence of an electromagnetic field. Let us
work this expression towards classical physics. In the first place, the deriva-
tive is, by the standard assignment rules for quantum mechanics, related to
the momentum operator :

pµ = ih̄ ∂µ , (9.29)

and the mass m to the mechanical mass M by (as we have seen)

m =
Mc

h̄
. (9.30)

The Dirac equation can therefore be written as(
(pµ + h̄QA(x)µ)γµ −Mc

)
ψ(x) = 0 , (9.31)

which is to be compared with the standard expression for the electromagnetic
momentum if a charged particle in classical electrodynamics:

pem
µ = pµ − q

c
Aµ . (9.32)

where q is the classical charge of the particle and Ac the classical electromag-
netic field. In the Gaussian system of units, the charges have dimensionality
dim[q2] = kg m3/sec2 and the Coulomb field strength E therefore obeys
dim[E] = dim[q] /m2. Since this is the gradient of the classical e.m. vector
potential Ac we have dim[Ac] = dim[q] /m, and because the photon field A
has dimensionality dim[A2] = kg/sec, it follows the correct relation between
the photon field and the classical e.m. field must read

Ac
2 = c A2 . (9.33)

From this it follows that the coupling Q and the charge q are related by

Q = −q/(h̄
√
c) , (9.34)
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which implies the correct dimensionality dim[Q] = dim
[
1/
√
h̄
]

; moreover,
we find immediately that, for particles with unit electric charge,

Q2 =
4π

h̄
α , (9.35)

where α stands for the electromagnetic fine structure constant :

α ≈ 1 / 137.036 . (9.36)

Since in QED every next loop order contains two extra powers of Q and one
(effective) power of h̄, the loop expansion is in QED equivalent to an expan-
sion in powers of α.

A final remark is in order. The above analysis is purely dimensional i.e.
it does not decide between Q = q/h̄

√
c and Q = 2q/h̄

√
c. Later on, the

discussion of Thomson scattering will assure us that we have made the right
choice. Of course, any extra numerical factor in Q can be compensated for
by a rescaling of A.

9.2.6 Furry’s theorem

An interesting observation concerns closed fermion loops in QED. Let us
consider a fermion loop that is attached by three QED vertices to the rest of
a Feynman diagram:

D− ≡ p

p

p
1

2

3
µ

ν

λ

k

Here, we have indicated the Lorentz indices on the photon lines, and the
momenta across the photon lines are considered incoming into the loop. In
addition to this diagram, there is also a similar diagram in which the orien-
tation of the loop is reversed :

D+ ≡ p

p

p
1

2

3
µ

ν

λ

k

Note that these graphs cannot be twisted into one another. For loops with
only one or two vertices they can be so twisted, and then do not count as
separate diagrams ; for three or more vertices, there are two distinct ones.
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Without pretending to evaluate the whole loop, let us concentrate on the
Dirac structure of their numerators. The first diagram contains the trace6

D− → Tr
(
(/k +m) γµ (/k − /p1 +m) γλ (/k + /p2 +m) γν

)
≡ T− , (9.37)

whereas the corresponding trace for the other diagram reads

D+ → Tr
(
(−/k +m) γν (−/k − /p2 +m) γλ (−/k + /p1 +m) γµ

)
≡ T+ .

(9.38)
Note that the rest of the loops, and in particular the propagator denomina-
tors, are identical for both graphs. By using the reversibility inside traces of
Clifford algebra elements, we can write

T+ = − Tr
(
(/k −m) γν (/k + /p2 −m) γλ (/k − /p1 −m) γµ

)
= − Tr

(
(/k −m) γµ (/k − /p1 −m) γλ (/k + /p2 −m) γν

)
= − T− , (9.39)

since no terms with an odd power of m survives the trace. We see that
the two loops cancel each other precisely ! This can obviously be extended
to loops with more vertices, and we find Furry’s theorem : fermion loops
with an odd number of vector vertices7 and opposite orientation
cancel each other ; with an even number of vector vertices, they
are identical8. Furry’s theorem does not hold if one or more of the ver-
tices are of axial-vector type, and so it is not generally valid for the weak
interactions. For QCD, in which the quark-gluon couplings have the Dirac-
matrix form as in QED, Furry’s theorem holds in a more restricted form :
the spacetime part of the two quark loops with even(odd) number of vertices
are equal(opposite), but the additional colour structures of the diagrams are
different. This implies, for instance, that the two quark loops with three
gluon vertices do not cancel completely. We shall come back to that case
later on.

Let us consider a diagram (or set of diagrams) N with only one single
external line which is a photon :

N ≡
p

, (9.40)

6By the rules of Dirac particles, closed loops automatically evaluate to traces.
7That is, vertices consisting of a single Dirac matrix, such as in QED.
8Furry’s theorem is usually proved by invoking the charge-conjugation matrix, discussed

in section 13.10.2. However, this is not strictly necessary as we see.
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where we have indicated the momentum of the photon. Such objects go
under the name of tadpoles9. By Lorentz covariance we see that, whatever
goes on inside the blob, N must always be of the form

Nµ = pµ f(p2) . (9.41)

But . . . by momentum conservation, pµ = 0 since no momentum is coming
out on the other side of the blob. Therefore N = 0 ; photon tadpoles vanish
identically, even if Furry’s theorem does not apply in this case. It is easy to
see that the same must hold for the tadpoles of any other vector particle. For
scalar particles it does not apply, since N = f(0) has no particular reason to
vanish. Also, for particles that are described not by vectors but by symmetric
tensors, the tadpole Nµν = gµνf(0) does not necessarily vanish10.

9.3 Some QED processes

9.3.1 A classic calculation : muon pair production

We are now in a position to compute, for the first time, a realistic cross
secttion. We shall follow the classic steps that lead to our final result.

Description of the process with momentum assignments

The simplest calculation is that of the cross section for muon pair production
in e+e− collisions:

e−(p1) e+(p2) → µ−(q1) µ+(q2) .

since it is described, at tree level, by only a single diagram11.

9Of course, ‘spermatozoon’ would be more appropriate. . .
10This is not the graviton, since that is described by a symmetric traceless tensor ; it is

in fact another representaion of a scalar particle.
11It might be thought that processes involving only electrons would be simpler, but as

we shall see these contain always at least two diagrams.
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Drawing and writing out the diagram(s)

The single lowest-order Feynman diagram is given by

p

p q

q

11

2

2

Both the electron and muon are Dirac particles. We shall denote the electron
charge by Qe, and the muon charge by Qµ, and their masses by me and mµ,
respectively. The total invariant mass squared is conventionally denoted by
s, and of course momentum is conserved :

p1
α + p2

α = q1
α + q2

α , s = (p1 + p2)2 = (q1 + q2)2 . (9.42)

The amplitude corresponding to the Feynman diagram is

M = i
h̄QeQµ

s
v(p2) γα u(p1) u(q1) γα v(q2) , (9.43)

and is strictly dimensionless: dim[M] = dim[1], as it ought to be for a
2→ 2 process at tree order.

Squaring and averaging, eliminating Dirac stuff

In a typical muon pair production process, we shall accept muons with any
polarization in the final state ; also, usually the beams of incoming electrons
and positrons are unpolarized. The amplitude, squared and averaged over
the incoming electron and positron spins can be evaluated using the Casimir
trick :〈

|M|2
〉

=
1

4

∑
spins

|M|2

=
h̄2Qe

2Qµ
2

4s2

∑
spins

v(p2)γαu(p1) u(p1)γβv(p2)

×
∑

spins

u(q1)γαv(q2) v(q2)γβu(q1)
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=
h̄2Qe

2Qµ
2

4s2
Tr
(
(/p2 −me)γ

α(/p1 +me)γ
β
)

Tr
(
(/q1 +mµ)γα(/q2 −mµ)γβ

)
=

4h̄2Qe
2Qµ

2

s2

(
p2
αp1

β + p1
αp2

β − (p1 · p2)gαβ −me
2gαβ

)
(
q1αq2β + q2αq2β − (q1 · q2)gαβ −mµ

2gαβ
)

=
4h̄2Qe

2Qµ
2

s2(
2(p1 · q1)(p2 · q2) + 2(p1 · q2)(p2 · q1)

− s(p1 · p2)− s(q1 · q2) + s2

)
(9.44)

Choosing a Lorentz frame, working out dot products

We shall work in the centre-of-mass frame of the colliding electron-positron
pairs. In that frame, we have

p1,2
0 = q1,2

0 = E , |~p1,2| = p , |~q1,2| = q , (9.45)

where
s = 4E2 , p2 = E2 −me

2 , q2 = E2 −mµ
2 . (9.46)

The various vector products are therefore given by

(p1 · p2) = s/2−me
2 , (q1 · q2) = s/2−mµ

2 ,

(p1 · q1) = (p2 · q2) = s/4− pq cos(θ)

(p1 · q2) = (p2 · q1) = s/4 + pq cos(θ) , (9.47)

where θ is the polar scattering angle, that is, the angle between ~p1 and ~q1.
We also use the fact that Qµ and Qe are the negative of the unit charge, so
that QµQe = 4πα/h̄.

The final transition rate

We now arrive at〈
|M|2

〉
=

16π2α2

s2

(
s2(1 + cos(θ)2) + 4s(me

2 +mµ
2) sin(θ)2
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+ 16me
2mµ

2 cos(θ)2

)
(9.48)

The differential cross section

Using what we have already learned about the flux factor and the two-body
phase space, we can write the differential cross section as

dσ =
1

64π2s

[
s− 4mµ

2

s− 4me
2

]1/2 〈
|M|2

〉
dΩ

=
α2

4s

[
s− 4mµ

2

s− 4me
2

]1/2 (
(1 + cos(θ)2) + 4

me
2 +mµ

2

s
sin(θ)2

+ 16
me

2mµ
2

s2
cos(θ)2

)
dΩ . (9.49)

This cross section therefore only depends on s and the polar scattering angle:
there is, for unpolarized incoming beams, no azimuthal direction singled out
and there is therefore no azimuthal angle dependence12.

The total cross section

The total cross section is obtained by simple angular integration, and reads

σ =
4π α2

3 s

(
1 + 2

me
2

s

) (
1 + 2

mµ
2

s

) [
s− 4mµ

2

s− 4me
2

]1/2

. (9.50)

The cross section is only nonzero above the muon pair-production threshold,
s > 4mµ

2. Since the muon mass mµ is much larger than the electron mass
me, we may accurately approximate by putting me ≈ 0 :

σ ≈ 4π α2

3 s

(
1 + 2

mµ
2

s

) (
1− 4

mµ
2

s

)1/2

. (9.51)

For large s, furthermore, we have

σ ≈ 4π α2

3 s

(
1− 6

mµ
4

s2
+ · · ·

)
. (9.52)

By accidental cancellation of the leading mµ
2/s terms, the large-s limit is

reached quite rapidly. Note that the cross section does not depend on h̄.

12This could be different, e.g. in the case of transversely polarized beams.
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9.3.2 Compton and Thomson scattering

We next consider the Compton scattering process, an elastic collision between
a photon and an elecron :

e−(p) γ(k1) → e−(q) γ(k2)

Now, there are two Feynman diagrams,

p q

k
2

k
1

p

q

k

k

2

1

The amplitude is given by

M = M1 +M2 ,

M1 = −ih̄Qe
2 A1

2(p · k1)
,

M2 = −ih̄Qe
2 A2

−2(q · k1)
,

A1 = u(q) /ε2 (/p+ /k1 +m) /ε1 u(p) ,

A2 = u(q) /ε1 (/q − /k1 +m) /ε2 u(p) , (9.53)

where ε1,2 are the polarization vectors of the respective photons. Taking into
account the averaging factor 1/4, we find13 (with m for me)〈
|A1|2

〉
=

1

4
Tr
(
(/q +m) γα (/p+ /k1 +m) γβ (/p+m) γβ (/p+ /k1 +m) γα

)
= 16m4 − 8(pq)m2 + 8(pk1)(qk1) + 16(pk1)m2 − 8(qk1)m2 ,〈

|A2|2
〉

=
1

4
Tr
(
(/q +m) γβ (/q − /k1 +m) γα (/p+m) γα (/q − /k1 +m) γβ

)
= 16m4 − 8(pq)m2 + 8(pk1)(qk1) + 8(pk1)m2 − 16(qk1)m2 ,

〈A1A∗2〉 = 〈A2A∗1〉

=
1

4
Tr
(
(/q +m) γα (/p+ /k1 +m) γβ (/p+m) γα (/q − /k1 +m) γβ

)
= 8(pq)(pk1)− 8(pq)(qk1) + 16(pq)m2 − 8(pq)2

−4(pk1)m2 + 4(qk1)m2 . (9.54)

13Both the incoming electron and the incoming photon have 2 degrees of freedom, hence
(1/2)(1/2)=1/4.
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We can most easily evaluate this in the photon-electron centre-of-mass frame14.
In this frame, we have

p0 = q0 =
s+m2

2
√
s

, |~p| = |~q| = |~k1| = |~k2| =
K

2
√
s
, (9.55)

where K = 2(pk1) = s−m2 : and the angle between ~q and ~k1 is denoted by
θ. Putting everyhting together, we find

〈
|M|2

〉
= 16π2 α2

(
8m2

K
+

8m4

K2
+

2m4

(qk1)2
− 4m2

(qk1)

− 8m4

(qk1)K
+

K

(qk1)
+

4(qk1)

K

)
. (9.56)

The phase space integration element is given by

dV (p+ k1; q, k2) =
1

(2π)2

1

8

K

s
dΩ , (9.57)

where Ω is the solid angle of the emitted electron. The flux factor is

1

2λ(s,m2, 0)1/2
=

1

2K
. (9.58)

The only nontrivial quantity in the computation is

(qk1) = k1
0

(
q0 − |~q| cos θ

)
=
K

4s

(
(s+m2)−K cos θ

)
, (9.59)

and we can find the angular averages

1

4π

∫
dΩ (qk1) =

K(s+m2)

4s
,

1

4π

∫
dΩ

1

(qk1)
=

2s

K2
log

(
1 +

K

m2

)
,

1

4π

∫
dΩ

1

(qk1)2
=

4s

m2K2
. (9.60)

14In the actual experiment, the photon will of course be impingeing on the stationary
electron ; but since the cross section is invariant we may choose any frame we want.
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We therefore have for the transition rate, now also averaged over the scat-
tering angle :〈〈

|M|2
〉〉

= 16π2 α2

{
1 +

m2

s
+ 16

m2s

K2

+

(
−8

m2s

K2
− 16

m4s

K3
+ 2

s

K

)
log

(
1 +

K

m2

)}
(9.61)

The total cross section

σ =
1

16πs

〈〈
|M|2

〉〉
. (9.62)

It is interesting15 to note that the ‘static’ limit K → 0 is well-defined :

lim
K→0

σ =
8π α2

3m2
. (9.63)

This is called the Thomson cross section. It may serve as the ‘measurement’
prediction by which the electric charge of the electron is defined.

Note that, just as in the case of muon pair production, the cross section
does not depend on h̄. This means that this cross section had better coincide
with the prediction from classical electromagnetism — as, indeed, it does.
Returning to the arguments that led us to make the identifications

Acl
2 = cA2 , Q =

q

h̄
√
c
, (9.64)

we see that we have made the correct choice.

9.3.3 Electron-positron annihilation

The process
e+(p1) e−(p2) → γ(k1) γ(k2)

is related by crossing to Compton scattering, and is described at the tree
level by the two Feynman diagrams

p

p

k

k
1

2
1

2

p

p

k

k
1

2

1

2

.
15And comforting.
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We shall study it in the context of the way it is actually observed at high-
energy e+e− colliders, that is, in the centre-of-mass frame with the photons
emerging an nonnegligible angles with respect to the electron and positron
beams. In that case, no invariant vector products are small, and we may
neglect the electron mass. We then have an example of a process in which
spinor techniques can be usefully employed. The amplitude is given by

M = ih̄Qe
2

(
A1

2(p2k1)
+

A2

2(p2k2)

)
,

A1(λe, λ1, λ2) = uλe(p1) /ελ2(k2) (/p2 − /k1) /ελ1(k1) uλe(p2) ,

A2(λe, λ1, λ2) = uλe(p1) /ελ1(k1) (/p2 − /k2) /ελ2(k2) uλe(p2) . (9.65)

Since me = 0 we may as well employ the symbol u for both the positron and
the electron. Also, the helicity of the electron fixes that of the positron, and
both are indicated by λe. The helicities of the two photons are denoted by
λ1,2. We shall use the following spinorial representation of the polarization
vectors given in Eq.(8.63), without bothering overmuch about the complex
phase of the polarization vector16 :

ε(kj)λ
µ =

1

2
√

(kjrj)
uλ(kj) γ

µ uλ(rj) , (9.66)

with rj
α the gauge vector as discussed before. It is important to note that

the choice of rj can be made for different photons, and for different helicity
configurations, independently17. We shall usefully employ also Eq.(8.66) :

ωλ /ε(k)λ =
uλ(r)uλ(k)√

(kr)
, ω−λ /ε(k)λ =

u−λ(k)u−λ(r)√
(kr)

. (9.67)

Let us first take the case where the two photon polarizations are equal. With

N = 1/
√

(k1r1)(k2r2), we have

A1(+,+,+) = N u+(p1)u−(k2)u−(r2)(/p2 − /k1)u−(k1)u−(r1)u+(p2) ,

16Because the process is described by only one single current-conserving object. For
more complicated processes we do have to ensure the correct complex phase ; this is
however greatly helped by the observation of section 8.3.7, that the complex phase of the
polarization is independent of the choice of gauge vector.

17But of course we have better choose the same r for all diagrams in the amplitude, or
at least in each of its current-conserving subsets.
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A2(+,+,+) = N u+(p1)u−(k1)u−(r1)(/p2 − /k2)u−(k2)u−(r2)u+(p2) ,

A1(+,−,−) = N u+(p1)u−(r2)u−(k2)(/p2 − /k1)u−(r1)u−(k1)u+(p2) ,

A2(+,−,−) = N u+(p1)u−(r1)u−(k1)(/p2 − /k2)u−(r2)u−(k2)u+(p2) .

(9.68)

If, now, we choose r1 = r2 = p2 for the (+,+,+) configuration and r1 = r2 =
p1 for the (+,−,−) configuration, the amplitude is seen to vanish identically
in either case18 ! We also see that the same must happen for electron-positron
annihilation into any number of photons : if they all have the same helicity,
the amplitude vanishes. Next, we have the (+,+,−) configuration :

A1(+,+,−) = N u+(p1)u−(r2)u−(k2)(/p2 − /k1)u−(k1)u−(r1)u+(p2) ,

A2(+,+,−) = N u+(p1)u−(k1)u−(r1)(/p2 − /k2)u−(r2)u−(k2)u+(p2) .

(9.69)

We can now choose, say, r1 = p2 and r2 = p1. Then A1 is again zero, and

A2(+,+,−) = N u+(p1)u−(k1)u−(p2)(/p2 − /k2)u−(p1)u−(k2)u+(p2)

= −s+(p1, k1)s−(p2, k2)2s+(k2, p1)/
√

(k1p2)(k2p1) , (9.70)

so that up to an irrelevant overall phase we have

M(+,+,−) = 8π α

[
(p1k1)

(p2k1)

]1/2

. (9.71)

By symmetry, the configuration (+,−,+) is obtained by replacing k1 by k2.
The configurations with λe = − follow from complex conjugation. The final
result is, therefore,〈

|M|2
〉

= 32π2 α2

(
(p1k1)

(p2k1)
+

(p1k2)

(p2k2)

)
. (9.72)

The computation of the cross section is left as an excercise. We have dis-
cussed this process, rather, to show how spinor techniques may be usefully
employed to compute amplitudes for massless-particle processes in a fast
and efficient manner ; moreover, we can gain results (such as the vanishing
of the amplitude when the photons helicities are equal) that are not so easily
obtained by more traditional approaches19.

18This is of course independent of our using the standard-spinor techniques ; these just
make it simpler to see the vanishing.

19A word of caution is in order here. The Minkowski products (pikj) can become small
if the photons are emitted collinearly. In that case these products are of order m2 rather
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9.3.4 Bhabha scattering

Our final 2→ 2 QED process is that of Bhabha scattering:

e+(p1) e−(p2) → e+(q1) e−(q2) ,

described by the two following Feynman graphs:

p

p

q

q

1

2

1

2

p

p

q
1

2 q
2

1

We shall use, in addition to s, the following conventional invariants :

t = (p1 − q1)2 = (p2 − q2)2 , u = (p1 − q2)2 = (p2 − q1)2 . (9.73)

For me = 0 we have s + t + u = 0 by momentum conservation. As before,
we shall work in the high-energy limit so that me is neglected. The helicity-
dependent amplitude is

M(λ1, λ2, ρ1, ρ2) = ih̄Qe
2 A(λ1, λ2, ρ1, ρ2) ,

A(λ1, λ2, ρ1, ρ2) =
1

s
uλ1(p1) γµ uλ2(p2) uρ2(q2) γµ uρ1(q1)

− 1

t
uλ1(p1) γµ uρ1(q1) uρ2(q2) γµ uλ2(p2) . (9.74)

Note the relative minus sign between the two diagrams ! By the Chisholm
identity, we can now evaluate the various helicity configurations :

A(+,+,+,+) =
2

s
s+(p1, q2)s−(q1, p2)− 2

t
s+(p1, q2)s−(p2, q1)

∼ 2 u
(

1

s
+

1

t

)
∼ 2

u2

st
,

A(+,+,−,−) =
2

s
s+(p1, q1)s−(q2, p2) ∼ 2

t

s
,

A(+,−,+,−) = −2

t
s+(p1, p2)s−(q2, q1) ∼ 2

s

t
, (9.75)

than of order s. It is therefore not adviseable to blindly put m = 0 in any process in which
photons are emitted, since then we might miss terms looking like m2/(pikj)

2. As can be
seen from the matrix element for Compton scattering, in this case the double-pole term
is actually suppressed by m4 rather than by m2, and therefore at high energies we do not
have to worry about double poles for this process. For other Bremsstrahlung processes
such as e+e− → µ+µ−γ, the double poles are important : see section 9.3.5.
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where the symbol ∼ denotes our throwing away unimportant complex phases.
The other helicity configurations with λ1 = + give zero, and those with
λ1 = − follow again trivially by conjugation. We find〈

|M|2
〉

= 2h̄2Qe
4 s

4 + t4 + u4

s2t2
= 16π2 α2

(
3 + cos2 θ

1− cos θ

)2

, (9.76)

where θ is the angle between ~p1 and ~q1 in the centre-of-mass frame in which
most e+e− scattering experiments are performed. Note that, in this case,
the singularity is not due to our neglecting the electron mass ; indeed, for
nonzero mass we have

t = (p1 − q1)2 = 2m2 − 2(p1
0)2 + 2|~p1|2 cos θ

= −2|~p1|2(1− cos θ) . (9.77)

To this order in perturbation theory, the total cross section for Bhabha scat-
tering is therefore indeed divergent20.E 50

E 51
9.3.5 Bremsstrahlung in Mœller scattering

The nonradiative process

Mœller scattering is the mutual scattering of two electrons :

e−(p1) e−(p2) → e−(q1) e−(q2)

and is just a crossed version of Bhabha scattering. The relevant expression
is therefore, for negligible electron mass,〈

|M|2
〉

= 2h̄2Qe
4 s

4 + t4 + u4

s2u2
(9.78)

The radiative process

We shall now consider the so-called Bremsstrahlung21 process :

e−(p1) e−(p2) → e−(q1) e−(q2) γ(k)

20The importance of the Fermi minus sign is very visible here. If inadvertently we would
forget it, the cross section would be overestimated by as much as 50 % for cos θ = −2+

√
5,

i.e. a scattering angle θ = 76.345 degrees.
21The term originated in studies of the motion of charged particles through a medium ;

they may lose energy by emitting photons, and slow down, or ‘brake’, or – in the language
of early-twentieth-century physics, which was German rather than American English –
‘Bremsen’.
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At the tree level, it is described by the eight Feynman diagrams
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which we may conveniently put in four groups of two diagrams each :

M =
4∑
i=1

Mi ,

M1 = −i(Qe

√
h̄)3 u(q1)

[
/ε
/q1 + /k +me

2q1 · k
γα − γα/p1 − /k +me

2p1 · k
/ε

]
u(p1)

× 1

(p2 − q2)2
u(q2)γαu(p2) ,

M2 = M1cp1↔p2 , q1↔q2 ,

M3 = −M1cp1↔p2 , M4 = −M2cp1↔p2 . (9.79)

Note the Fermi minus sign between M1,2 and M3,4. The four pairs of dia-
grams are separately current-conserving, i.e.

Micε→k = 0 , i = 1, 2, 3, 4 . (9.80)

The soft-photon approximation

Since the emitted photon is a massless particle, its energy can be arbitrarily
low. A useful result can be obtained if we take this limit, that is, the photon
energy is taken to be negligible with respect to the other particle energies.
Consider an arbitrary process in which a fermion with momentum q and mass
m is produced during a scattering :
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A
q

(9.81)
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this amplitude can be written as

M0 ≡ u(q) A(q) , (9.82)

where A denotes the rest of the diagram(s). The corresponding radiative pro-
cess will (amongst others) contain diagrams in which the photon is emitted
by this particular fermion :
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A
k

q

(9.83)

which evaluates to

Ms ≡ −(Qe

√
h̄) u(q)/ε

/q + /k +m

2q · k
A(q + k) . (9.84)

Notice that the denominator q ·k goes to zero as the photon energy vanishes,
and hence the diagram diverges in the soft-photon limit. In the soft-photon
approximation ( and assuming that the object A does not depend on q in
too drastic a manner22) we have

Ms ≈ −(Qe

√
h̄) u(q)/ε

/q +m

2q · k
A(q) . (9.85)

Anticommuting /ε and /q, and using the property of the Dirac spinor, which
tells us that u(q)/q = mu(q), we then find

Ms ≈ −(Qe

√
h̄)
q · ε
q · k

u(q)A(q) , (9.86)

that is, the diagrams factorizes into the nonradiative result and an ‘infrared
factor’23. We can repeat this procedure for those diagrams in which the
photon is emitted by the other external particles. There are, of course, also
(possibly) diagrams in which the photon is emitted from internal lines ; but,
as can easily be checked, such diagrams do not diverge as k0 → 0. In the
soft-photon approximation, they do therefore not contribute. For radiative
Mœller scattering, we therefore have the nicely factorized form

M = −(Qe

√
h̄)

(
q1 · ε
q1 · k

+
q2 · ε
q2 · k

− p1 · ε
p1 · k

− p1 · ε
p1 · k

)
M0 , (9.87)

22This assumption fails, for instance, close to a resonance. However, since every reso-
nance has a finite width, the soft-photon approximation is formally correct for infinitesimal
photon energies.

23Since infrared light has low energy compared to visible light.
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where M0 is the amplitude for the nonradiative process ; and, using the
polarization sum rule Σεµεν = −gµν , we find

〈
|M|2

〉
= −2Qe

6h̄3 s
4 + t4 + u4

t2u2
(VIR · VIR) ,

VIR
µ =

p1
µ

k · p1

+
p2
µ

k · p2

− q1
µ

k · q1

− q2
µ

k · q2

. (9.88)

As has already been intimated, the double poles are indeed suppressed by a
factor me

2.

Hard Bremsstrahlung: massless case

Next, we consider ‘hard Bremsstrahlung’ (i.e. any photon emission which is
not soft) in the limit of vanishing electron mass. It is then most useful to
assign definite helicities to the electrons, so that the scattering process is

e−(p1, µ1) e−(p2, µ2) → e−(q1, ν1) e−(q2, ν2) γ(k, λ)

with µ1,2, ν1,2, λ = ±. The amplitude is then a function of the helicities, and
we write M(µ1, µ2; ν1, ν2;λ). We first consider M1(+,+; +,+; +). Using
Eq.(8.66) this can be written as

M1(+,+; +,+; +) = i
(Qe

√
h̄)3
√

2

2(p2 · q2)s−(k, r)

× u+(q1)

[
u−(k)u−(r)

/q1 + /k

2k · q1

γα − γα /p1 − /k
2k · p1

u−(k)u−(r)

]
u+(p1)

× u+(q2)γαu+(p2) , (9.89)

and sinceM1 is current-conserving by itself we may choose r at will ; in this
case r = p1 appears to be optimal since it kills the second term. Applying
standard (hopefully, by now) spinor techniques we arrive at

M1(+,+; +,+; +) =

i(Qe

√
h̄)3
√

8
s+(q1, k)u−(p1)(/q1 + /k)u−(q2)s−(p2, p1)

(2p2 · q2)(2k · q1)s−(k, p1)
. (9.90)

We may employ momentum conservation and masslessness for a further ma-
nipulation :

u−(p1)(/q1 + /k)u−(q2) = u−(p1)(/q1 + /k + /q2)u−(q2)
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= u−(p1)(/p1 + /p2)u−(q2)

= u−(p1) /p2 u−(q2)

= s−(p1, p2)s+(p2, q2) , (9.91)

so that

M(+,+; +,+; +) = i(Qe

√
h̄)3
√

8
s−(p1, p2)2

s−(p2, q2)s−(k, p1)s−(k, q1)
. (9.92)

Note the fact that in this expression no s+’s occur, but only s−’s. This is
a quite general feature of such processes. Finally, we can make use of the
identity of Eq.(8.73) to arrive at the form

M1(+,+; +,+; +) = −2i(Qe

√
h̄)3 s−(p1, p2)2

s−(p1, q1)s−(p2, q2)

(
ε+ · p1

k · p1

− ε+ · q1

k · q1

)
.

(9.93)
The infrared factor also appears in this case ! Performing the appropriate
subtitutions we can write the complete amplitude as

M(+,+; +,+; +) = −2i(Qe

√
h̄)3 s−(p1, p2)2 (VIR · ε+)

×
(

1

s−(p1, q1)s−(p2, q2)
− 1

s−(p1, q2)s−(p2, q1)

)
. (9.94)

The minus sign in the last term is the Fermi sign ; it helps us to simplify our
expression even further using the Schouten identity, and the final form for
the amplitude is

M(+,+; +,+; +) = 2i(Qe

√
h̄)3 s−(p1, p2)3s−(q1, q2) (VIR · ε+)

s−(p1, q1)s−(p2, q2)s−(p1, q2)s−(p2, q1)
.

(9.95)
For the other helicity configurations, the above treatment can be repeated
straightforwardly. We simply list the final results :

M(µ1, µ2; ν1, ν2;λ) =

2i(Qe

√
h̄)3 (VIR · ελ) K(µ1, µ2; ν1, ν2;λ)

s−λ(p1, q1)s−λ(p2, q2)s−λ(p1, q2)s−λ(p2, q1)
,

K(+,+; +,+; +) = +s−(p1, p2)3 s−(q1, q2) ,

K(+,+; +,+;−) = +s+(q1, q2)3 s+(p1, p2) ,
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K(+,−; +,−; +) = −s−(p1, q2)3 s−(p2, q1) ,

K(+,−; +,−;−) = −s+(p2, q1)3 s+(p1, q2) ,

K(+,−;−,+; +) = +s−(p1, q1)3 s−(p2, q2) ,

K(+,−;−,+;−) = +s+(p2, q2)3 s+(p1, q1) ,

K(−,−;−,−; +) = +s−(q1, q2)3 s−(p1, p2) ,

K(−,−;−,−;−) = +s+(p1, p2)3 s+(q1, q2) ,

K(−,+;−,+; +) = −s−(p2, q1)3 s−(p1, q2) ,

K(−,+;−,+;−) = −s+(p1, q2)3 s+(p2, q1) ,

K(−,+; +,−; +) = +s−(p2, q2)3 s−(p1, q1) ,

K(−,+; +,−;−) = +s+(p1, q1)3 s+(p2, q2) . (9.96)

No other helicity configurations contribute. The spin-averaged matrix ele-
ment squared therefore has the following form in the strictly massless case :〈

|M|2
〉
me=0

= −2Qe
6 h̄3 (VIR · VIR)

× ss′(s2 + s′2) + uu′(u2 + u′2) + tt′(t2 + t′2)

uu′tt′
, (9.97)

with s = (p1+p2)2, s′ = (q1+q2)2, t = (p1−q1)2, t′ = (p2−q2)2, u = (p1−q2)2,
and u′ = (p2 − q1)2. The final result is surprisingly simple. It consists
of the ‘soft-photon’ factor VIR

2 (evaluated for non-soft photon momenta),
multiplying a ‘symmetrized’ form of the nonradiative cross section.

Double-pole terms at high energy

We have already mentioned that putting me = 0 strictly may be too strict
since there are invariant products of momenta that may become equally
small. To see how this works, let us again inspect the radiation emitted from
a produced fermion, as given in figure 9.83, that can be written as

Mc ≡ −(Qe

√
h̄) u(q)/ε

/q + /k +m

2q · k
A(q + k) (9.98)

where, as before, A stands for the rest of the diagram(s). We shall not
assume the soft-photon limit, however. Let us assume that the photon is
emitted as small angle θ with respect to the fermion momentum. We then
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find, assuming the fermion energy to be large compared to its mass m :

(k · q) = k0
(
q0 − |~q| cos θ

)
≈ k0

(
(q0 − |~q|) + |~q|θ2/2

)
≈ 1

2
k0q0

θ2 +

(
me

q0

)2
 , (9.99)

where we have used the fact that q0 − |~q| = me
2/(q0 + |~q|) ≈ me

2/(2q0).
we conclude that as soon as θ is of order me/q

0 or smaller24, the product
(k · q) becomes of order m2

e ; and this means that in that case the ‘single
pole’ (k · q)−1 and the ‘double pole’ me

2(k · q)−2 are of the same order25. The
squared matrix element (summed over fermion and photon spins) contains
of course〈

|Mc|2
〉

= − Qe
2h̄

4(k · q)2

× A(q + k)(/q + /k +m)γα(/q +m)γα(/q + /k +m)A(q + k) (9.100)

Using standard Dirac algebra we can write

(/q + /k +m)γα(/q +m)γα(/q + /k +m)

= 4m2(/q + /k +m) + 4(k · q)(m− /k) . (9.101)

The second term in this expression enters into the ‘massless’ result since it
will give rise only to single-pole terms, whereas the first term tells us that
the double-pole term coming from this Mc must read〈

|Mc|2
〉

= −Qe
2h̄

m2

(k · q)2
A(q + k)(/q + /k)A(q + k) , (9.102)

where we have again discarded terms of order m. The nonradiative transition
rate was given by (A)/qA(q), and in this expression we have now substituted
q+k for q. We can, by momentum conservation, always express the invariants
s, t and u in Eq.(9.78) into a form that does not contain q, and this then
gives us the double-pole terms : keeping all four collinear situations in sight,
we can write the transition rate including the double-pole terms as

〈
|M|2

〉
= Qe

6 h̄2

(
24This is sometimes called the ‘ultra-collinear case’.
25For this reason we use the subscript c which stands for ‘collinear’.
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ss′(s2 + s′2) + tt′(t2 + t′2) + uu′(u2 + u′2)

tt′uu′

×
[
− 2(p1 · p2)

(k · p1)(k · p2)
− 2(q1 · q2)

(k · q1)(k · q2)
+

2(p1 · q1)

(k · p1)(k · q1)

+
2(p2 · q2)

(k · p2)(k · q2)
− 2(p1 · q2)

(k · p1)(k · q2)
− 2(p2 · q1)

(k · p2)(k · q1)

]

− me
2

(k · p1)2

s′4 + t4 + u′4

t′2u′2
− me

2

(k · p2)2

s′4 + t4 + u4

t2u2

− me
2

(k · q1)2

s4 + t′4 + u2

t′2u2
− me

2

(k · q2)2

s4 + t4 + u′2

t2u′2

)
(9.103)

This is the final expression for unpolarized Mœller scattering ; it is accurate
in the limit of small me even for collinear26 photon emission.

9.4 Scalar electrodynamics

9.4.1 The vertices

We can also consider the possibility of interactions between photons and
charged scalar particles27. The simplest vertex is then given by

p

q
µ

where the charge flow is indicated by the arrow. The photon index is µ. The
momenta p and q are counted along the arrow. Note that the propagator
of scalar particles may be unoriented, but the vertices do not have to, in
particular if there is a quantum number, such as charge, that distinguishes
between particle and antiparticle. In the absence of Dirac indices, the only
quantities in this vertex that carry a Lorentz index are the momenta p and
q (and of course the photon’s own momentum, but that is fixed by p and q).

26Or ultra-collinear.
27Elementary charged scalar particles have to date not been observed, although they

are predicted in extensions of the standard model. We include them here since they will
provide indications on how to treat charged vector particles.
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We therefore propose a Feynman rule of the form

p

q
µ ↔ i

Q

h̄
(c1p

µ + c2q
µ) ,

with constants c1,2 to be determined. This is simple, since we can study the
annihilation of the charged scalar-antiscalar pair into an off-shell photon :
under the handlebar operation, the amplitude becomes

p

p
2

1

k
= iQ

√
h̄ (c2p2

µ − c1p1
µ) kµ

= iQ
√
h̄ (c2p2

µ − c1p1
µ)
(
p1µ + p2µ

)
=

iQ
√
h̄

2
(c2 − c1)s . (9.104)

We see that c1 = c2 is required, and therefore the first Feynman rule for
scalar electrodynamics (sQED) reads

p

q
µ ↔ i

Q

h̄
(p+ q)µ

sQED vertex

sQED Feynman rules, version 9.1 (9.105)

Let us now consider the more complicated process of annihilation into two
on-shell photons. With the above vertex two diagrams are involved :

p

p

k

2k

11

2

p

p

k

k

1

2

2

1

The amplitude is then given, with m indicating the scalar’s mass, by

M = −ih̄Q2 (p1 + (p1 − k)) · ε1 ((p1 − k) + (−p2)) · ε2
(p1 − k1)2 −m2

+ (k1 ↔ k2)

= −2ih̄Q2

(
(p1 · ε1)(p2 · ε2)

(p1 · k1)
+

(p1 · ε2)(p2 · ε1)

(p2 · k1)

)
(9.106)
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The test of current conservation now fails, since

Mcε1→k1 = −2ih̄Q2((p2 · ε2) + (p1 · ε2)) = −2ih̄Q2 (k1 · ε2) . (9.107)

The solution is to introduce a four-point vertex into the Feynman rules28 :

p

q
µ ↔ i

Q

h̄
(p+ q)µ

sQED 3-vertex

ν

µ

↔ 2i
Q2

h̄
gµν

sQED 4-vertex

sQED Feynman rules, version 9.2 (9.108)

Now we find immediately the desired current conservation :

+ + = 0 . (9.109)

It might be supposed that annihiliation into three photons would necessitate
a five-point vertex, and so on. Fortunately, the above two vertices are suf-
ficient to guarantee current conservation in all sQED processes, as we shall
now show using some more handlebar diagrammatics.

9.4.2 Proof of current conservation in sQED

Consider a charged scalar propagator somewhere in a Feynman diagram, and
assume a photon attached to it :

k
µ

p q
=

ih̄

p2 −m2

(
i
Q

h̄
(p+ q)µ

)
ih̄

q2 −m2
.

As in our proof of regular QED, none of these lines is necessarily on-shell. .
Momentum conservation again fixes the photon momentum to be k = p− q.

28For reasons lost in the mists of time, such a vertex is called a sea-gull vertex, although
to me it does not look very gully nor even particularly birdy.
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In analogy to regular QED we can now invent some handlebar diagrammatics
as follows :

= −iQh̄ (p− q) · (p+ q)

(p2 −m2)(q2 −m2)

=
ih̄

q2 −m2

(
i
Q

h̄

)
(ih̄) + (ih̄)

(
i
Q

h̄

)
ih̄

p2 −m2

= − , (9.110)

with the trivial auxiliary rules

= ih̄ , = i
Q

h̄
. (9.111)

These rules are very similar to those we adopted in regular QED : however,
in general we have

6= (9.112)

since the scalar-scalar-photon vertex still depends on the various momenta.
We now turn to the second vertex, with two photon lines. Not denoting the
two scalar propagators, we have

µ

p q
k = 2i

Q2

h̄
(p− q − k)sµ

=
(
i
Q

h̄

)
(ih̄)

(
i
Q

h̄
(2q + k)µ

)
−
(
i
Q

h̄
(2p− k)µ

)
(ih̄)

(
i
Q

h̄

)
,

(9.113)

in other words,

= − . (9.114)

The proof of current conservation again relies on the SDe’s for this model :

= + + ,

= + + ,

= + + ,

(9.115)
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where again we have used semi-connected graphs. The handlebar operation
is now seen to lead to

= +

= −

+ −

(9.116)

If we now iterate the SDe cleverly for the first two of these four diagrams,
we obtain

= +

− −

+ −

= 0 , (9.117)

since we do have

= , (9.118)

owing to the simple, momentum-independent structure of the seagull vertex.
Comparing the lines of the proof for sQED with that of regular QED, the
general proof strategy becomes clear : if in a diagram a slashed propagator
occurs as one of the indicated lines of a (semi-)connected graph, we must
iterate de SDe for that line, and then we can collect the various canceling
contributions.

9.5 Electrons in external fields : g = 2

9.5.1 The charged Klein-Gordon equation

A point of particular interest is the way in which electrons react to external
fields. Here ‘external’ is used for fields that are not of the fluctuating quantum



262 March 26, 2017

type, but rather applied ‘from outside’, under our experimental control ; this
is the sense in which it was used in section 9.2.5. In the absence of an explicit
source, the Dirac equation with external field A reads (cf. Eq.(9.28)) :(

γµ(i ∂µ − eAµ(x))−m
)
ψ(x) = 0 (9.119)

in the position representation, where e denotes the coupling. Let us first see
how a scalar electron would behave. For a charged scalar in an external field
we can write down a classical (tree-level) SDe
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(9.120)

or, by explicit use of the Fourier transforms of the fields :

φ(x) =
∫

d4y
1

(2π)4

∫
d4k e−ik·(x−y) ih̄

k2 −m2 + iε((
−i e
h̄

)
1

(2π)8

∫
d4pd4qe−ip·y−iq·y(2p+ q)µA

µ(q) φ(p)

+
1

2

(
2i
e2

h̄

)
Aµ(y)Aµ(y)φ(y)

)
. (9.121)

Note the occurence of the symmetry factor 1/2 in the last line. Applying the
differential operator −∂2 −m2, and using the expressions for derivatives in
Fourier representation we arrive at(

− ∂2 −m2
)
φ(x) =

2ieAµ(x)∂µφ(x) + ie
(
∂µA

µ(x)
)
φ(x)− e2Aµ(x)Aµ(x)φ(x) (9.122)

or ((
i∂ − eA(x)

)2
−m2

)
φ(x) = 0 . (9.123)

This is the Klein-Gordon equation for charged scalar fields. We see that the
same ‘minimal substitution rule’ pµ → pµ − eAµ as in the Dirac case is
employed to account for the presence of the e.m. field ; and we see that the
charge coupling constant e is defined in the same way for both scalar and
Dirac particles.
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9.5.2 The relativistic Pauli equation

We can cast the Dirac equation for spin-1/2 electrons in a form closely re-
sembling that of the Klein-Gordon equation, by multiplying Eq.(9.119) :

0 =

(
γµ
(
i∂µ − eAµ(x)

)
+m

)(
γν
(
i∂ν − eAν(x)

)
−m

)
ψ(x)

=

(
− ∂2 + e2A(x)2 −m2

)
ψ(x)

−ieγµγν∂µAν(x)ψ(x)− ieγνγµAν(x)∂µψ(x) . (9.124)

The second line can be rewritten as

−ie
((

gµν − iσµν
)
∂µAν(x)

)
ψ(x)− 2ieAµ(x) ∂µψ(x) (9.125)

We find, for spin-1/2 electrons, the relativistic Pauli equation, the Klein-
Gordon equation with an extra spin term, the so-called Stern-Gerlach term
added on :((

i∂ − eA(x)
)2
−m2 −

(
eσµν∂µAν(x)

))
φ(x) = 0 . (9.126)

9.5.3 A constant magnetic field

The spin of particles manifests itself most clearly in a magnetic field. Since
the notions of electric and magnetic fields are of dubious Lorentz covarience,
we adopt the following. Let tµ be a constant vector with t2 = 1, and let Bµ

be a constant vector with (B · t) = 0. We now choose the external A field as
follows :

Aµ(x) =
1

2
εµ(t, B, x) . (9.127)

In the ‘rest frame’ where ~t = 0 this reduces to A0 = 0 , ~A = ~B × ~x/2, which

corresponds to a constant magnetic field of strength ~B.
In the Klein-Gordon equation, the term linear in A is given by29

−2ieA(x) · ∂ψ(x) = −ie ε(∂, t, B, x)ψ(x) = e ε(t, B, x, i∂)ψ(x)

= −e Bµ ε
µ(t, x, i∂)ψ(x) . (9.128)

29The term proportional to (∂ ·A) vanishes because of the Lorenz condition.
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We can introduce the angular momentum operator

Lµ = εµ(t, x, i∂) (9.129)

since, for ~t = 0, this reduces to ~L = i~x × ~∂ = ~x × ~p. In the rest frame we
therefore have the interaction term

−2ieA(x) · ∂ψ(x) = e ~B · ~Lψ(x) (9.130)

which represents the coupling between the magnetic field and the angular
momentum of the moving charge. For the Stern-Gerlach term, we have

−e σµν ∂µAν(x) =
e

2
σµν εµναβt

αBβ

= ieγ5σαβ t
αBβ = e γ5/B/t . (9.131)

We now make the approximation that the particle is moving nonrelativisti-
cally slow in the rest frame ~t = 0. In that case we may write, in momentum
language,

/t u(p, s)→ 1

m
/p u(p, s) = u(p, s) , (9.132)

so that the Stern-Gerlach interaction term in this limit reads

−e σµν ∂µAν(x)ψ(x) = eBµ γ
5γµψ(x) . (9.133)

Now, as we have seen in Eq.(7.69), the operator −γ5γµ describes the spin
vector sµ, which is normalized to s2 = −1. However, as we have seen the
actual spin S is one-half this amount since the electron has total spin one
half. We therefore write

−e σµν ∂µAν(x)ψ(x) = 2e ~B · ~S ψ(x) , (9.134)

where ~S = −γ5~γ/2 is the operator for the spin of a nonrelativistic electron.
We see that the coupling of a (nonrelativistic) electron to an external

magnetic field is proportional to

(~L+ ge~S) · ~B , ge = 2 ,

where the factor ge comes somewhat as a surprise : it is called the gyromag-
netic ratio of the particle30. The prediction ge = 2 was one of the first and
most welcome results from Dirac’s description of the electron.

30Composite spin-1/2 particles can have different values for g : the proton and neutron
have about 5.586 and -3.826, repsectively.
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9.5.4 The Gordon decomposition

There is a way to pinpoint the gyromagnetic behaviour of an electron in a
more precise and useful manner. Consider a charged Dirac particle that scat-
ters by emitting (or absorbing) a single photon. The corresponding current
reads

Jµ =
ie

h̄
u(q) γµ u(p) , (9.135)

where p is the incoming, and q the outgoing momentum. By the properties
of the Dirac spinors we can write this as

Jµ =
ie

2mh̄
u(q)

(
/qγµ + γµ/p

)
u(p) . (9.136)

Since

/qγµ = qµ − iqα σαµ , γµ/p = pµ + ipα σ
αµ , (9.137)

the current takes the form

Jµ =
ie

2mh̄
u(q)

(
(p+ q)µ + i(p− q)α σαµ

)
u(p) . (9.138)

This is called the Gordon decomposition : the vertex is split up into a piece
that we recognize as the sQED vertex, which is called the convection term,
and a tensorial part, called the spin term. Both terms vanish individually
under the handlebar operation. It is the spin term which must be responsible
for the result ge = 2 for the electron. The above implies that, by calculating
loop corrections to the electron-photon vertex, we can isolate the σ part of
the loop-corrected vertex and infer the loop corrections to ge.

9.6 Selected topics in QED

9.6.1 Three-photon production

A fine example of a quite nontrivial computation using standard-spinor tech-
niques is provided by the process of three-photon annihiliation in e+e− col-
lisions :

e+(p1) e−(p2) → γ(k1) γ(k2) γ(k3) . (9.139)
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We shall calculate this in the massless case, me = 0. At the tree level there
are 6 Feynman diagrams, so that the amplitude reads

M(λ;λ1, λ2, λ3) = ih̄3/2e3

× uλ(p1)/ελ3(k3)
(/k3 − /p1)

2(k3p1)
/ελ2(k2)

(/p2 − /k1)

2(k1p2)
/ελ1(k1)uλ(p2)

+ (perm) . (9.140)

Here we have explicitly indicated the various helicities, and ‘perm’ stands for
the other 5 permutations of the photons. For the photon polarizations we
take the standard form

ελj(kj)
µ =

λj√
2

uλj(kj) γ
µ uλj(rj)

s−λj(kj, rj)
, (9.141)

where the massless gauge vector rj can be chosen independently for each
photon and each helicity. The frist helicity amplitude that we consider is
M(+; + + +). As we shall see, it pays to choose r1,2,3 = p2 since then we
have, at the right-hand end of Eq.(9.140),

/ε+(k1)u+(p2) ∝ u−(k1)u−(p2)u+(p2) (9.142)

which vanishes, not because of helicity but because p2
2 = 0. All the other

permuations vanish likewise so that we immediately see that

M(+; + + +) =M(−;−−−) = 0 . (9.143)

Similarly, by taking r1,2,3 = p1 we can see that

M(+;−−−) =M(−; + + +) = 0 (9.144)

as well. We see that the only helicity amplitude that we have to work hard
on is, say, M(+;− + +). Negelecting, for now, the overall factor i(2h̄e2)3/2

we can write

M(+;−+ +) =

u+(p1)
u−(k3)u−(p2)

s−(k3, p2)

(/k3 − /p1)

2(k3p1)

u−(k2)u−(p2)

s−(k2, p2)

(/p2 − /k1)

2(k1p2)

u−(p2)u−(k1)

s+(k1, p2)
u+(p2)

+ (perm) . (9.145)
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Actually, only two diagrams contribute here, namely the one written down
and the one where k2 and k3 are interchanged. WithE 52

u+(p1)u−(k3)

2(k3p1)
=

1

s−(k3, p1)
(9.146)

and
u−(p2)(/p2 − /k1)u−(p2)

2(k1p2)
= −1 (9.147)

we can rewrite

M(+;−+ +) = − u−(p2)(/k3 − /p1)u−(k2) s−(k1, p2)

s−(k3, p1) s−(k3, p2) s−(k2, p2) s+(k1, p2)
+ (k2 ↔ k3) .

(9.148)
Using masslessness and momentum conservation, we moreover have

u−(p2)(/k3 − /p1)u−(k2) = u−(p2)(/k2 + /k3 − /p1 − /p2)u−(k2)

= −u−(p2)/k1u−(k2) , (9.149)

Making the denominator symmetric in k2 and k3 gives us

M(+;−+ +)

=
u−(p2)/k1u−(k2) s−(k2, p1) s−(k1, p2)

s−(k3, p1) s−(k3, p2) s−(k2, p1) s−(k2, p2) s+(k1, p2)

+ (k2 ↔ k3) . (9.150)

After yet another manipulation :

u−(p2)/k1u−(k2) s−(k2, p1) + (k2 ↔ k3)

= u−(p2)/k1/k2u+(p1) + (k2 ↔ k3)

= u−(p2)/k1(/k2 + /k3)u+(p1)

= u−(p2)/k1/p2u+(p1) = s−(p2, k1)s+(k1, p2)s−(p2, p1) , (9.151)

we arrive at

M(+;−+ +) =
s−(k1, p2)2 s−(p1, p2)

s−(k3, p1)s−(k3, p2)s−(k2, p1)s−(k2, p2)
; (9.152)

putting it more symmetrically, and reinserting the overall factor,

M(+;−+ +) = i(2h̄e2)3/2 s−(p1, p2)
s−(k1, p2)3s−(k1, p1)
3∏
j=1

s−(kj, p1)s−(kj, p2)
. (9.153)
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The final answer is, therefore,

〈
|M|2

〉
= 2h̄2e4 (p1p2)

3∑
j=1

(kjp1)(kjp2) [(kjp1)2 + (kjp2)2]

3∏
j=1

(kjp1)(kjp2)
. (9.154)

Looking at this result, we notice two interesting things. In the first place, it
is very simple, something you would not have guessed right off, and certainly
would have had to work on very hard using the classical Casimir-trick ap-
proach. In the second place, Eq.(9.153) contains only s− and not s+. This is
a general feature : conceding thatM(+; + + +) = 0 is the simplest possible
amplitude, the ‘next-simplest’, in our caseM(+;−+ +), is both simple and
holomorphic in the spinor products31. Such amplitudes are called maximal
helicity violating (MHV) and are an object of research in their own right, oc-
curring in many theories with massless particles such as QCD with massless
quarks and gluons, and even in gravity.

9.6.2 The Thomson limit : scalar vs spinor

It is interesting to note that the Thomson cross section of Eq.(9.63) is ac-
tually a classical object, derivable within classical, nonrelativistic electrody-
namics32. It should therefore not depend on the fact that the electron is a
Dirac particle : the amplitudes must be the same for spin-0 and spin-1/2
electrons in the low-energy limit. We shall now investigate this in some de-
tail, at the tree level.

We will start by defining the so-called static limit, the situation where
the kinetic energies are negligible with respect to the rest energies of massive
particles. We shall, for our process

e(p) γ(k1) → e(q) γ(k2) , (9.155)

define the momenta as follows, in the centre-of-mass frame:

qµ = (E, 0, k sin θ, k cos θ) , k2
µ = (k, 0,−k sin θ,−k cos θ) ,

pµ = (E, 0, 0, k) , k1
µ = (k, 0, 0,−k) , (9.156)

31In the sense that s+ is the complex conjugate of s− up to a sign.
32After all, Thomson didn’t know either about quantum physics at the time, nor about

relativity.



March 26, 2017 269

where E2 = k2 + m2 for electron mass m, the polar scattering angle of the
photons is θ, and we have arbitrarily fixed the irrelevant azimuthal scattering
angle. The static limit (SL) is defined by k → 0 and E → m.

We start with the scalar case. The scattering is described by the three
diagrams

qp

k1 k2 k q

p
k2

1 k

qp

k21 (9.157)

in which the charge flow is indicated. The amplitude reads

Mλ1λ2 = −ie2h̄

2
(
p · ε1(λ1)

) (
q · ε2(λ2)

)
(p · k1)

−

2
(
q · ε1(λ1)

) (
p · ε2(λ2)

)
(q · k1)

− 2
(
ε1(λ1) · ε2(λ2)

) . (9.158)

Here e is the electron charge. The photon helicities are denoted by λ1,2, and
we shall use the representation

ε1(λ)α =
uλ(k1)γαuλ(k2)√

4(k1 · k2)
, ε2(λ)α =

uλ(k2)γαuλ(k1)√
4(k1 · k2)

, (9.159)

so that (εj · p) = (εj · q) (j = 1, 2) and ε2(λ) = ε1(λ)∗ = ε1(λ). The first
amplitude we consider is

M++ = −ie2h̄

(
2|p · ε1(+)|2

(
1

(pk1)
− 1

(qk1)

)
+ 2

)
. (9.160)

Using

|p · ε1(+)|2 =
Tr (ω+/k1/p/k2/p)

4(k1k2)
=

(pk1)(qk1)

(k1k2)
− m2

2
(9.161)

and
1

(pk1)
− 1

(qk1)
= − (k1k2)

(pk1)(qk1)
(9.162)

and we find the exact result

M++ = −ie2h̄
m2(k1k2)

(pk1)(qk1)
= −ie2h̄

(E − k)(1− cos θ)

E + k cos θ
. (9.163)
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In the SL this becomes

M++
SL = −ie2h̄(1− cos θ) . (9.164)

Since the amplitude must be dimensionless in energy units and m is the only
scale in the SL, it is not surprising that m drops out altogether. The second
amplitude is given by

M+− = −2ie2h̄

(
1

(pk1)
− 1

(qk1)

) (
p · ε1(+)

)2

= 2ie2h̄
(k1k2)

(pk1)(qk1)
eiφ |p · ε1(+)|2

= ie2h̄ eiφ
2(pk1)(qk1)−m2(k1k2)

(pk1)(qk1)

= ie2h̄ eiφ
(E + k)(1 + cos θ)

E + k cos θ
. (9.165)

Here we have introduced the phase factor

eiφ =
p · ε1(+)

p · ε1(+)∗
=
u+(k1) /p u+(k2)

u−(k1) /p u−(k2)
. (9.166)

In the SL we arrive at

M+−
SL = −ie2h̄ eiφ (1 + cos θ) . (9.167)

We now turn to the spin-1/2 case. In section 9.3.2 we already computed
the cross section using the Casimir trick, but now we want the individual spin
amplitudes. The amplitude is now given by two, rather than three, diagrams
and reads

M = −ie2h̄ u(q)

(
/ε2(λ2) (/p+ /k1 +m) /ε1(λ1)

2(pk1)

− /ε1(λ2) (/q − /k1 +m) /ε1(λ2)

2(qk1)

)
u(p) . (9.168)

We do not bother to indicate the spins of the electrons explicitly, although
we shall have to discuss them later. As before, we start with

M++ =
−ie2h̄

(k1k2)

(
A++

1

2(pk1)
− A++

2

2(qk1)

)
,
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A++
1 = u(q)

(
u+(k1)u+(k2) + u−(k2)u−(k1)

)
(/p+ /k1 +m)×(

u+(k2)u+(k1) + u−(k1)u−(k2)
)
u(p) ,

A++
2 = u(q)

(
u+(k2)u+(k1) + u−(k1)u−(k2)

)
(/q − /k1 +m)×(

u+(k1)u+(k2) + u−(k2)u−(k1)
)
u(p) . (9.169)

Using the Dirac equation and some algebra, we can rewrite

A++
1 = u(q)

(
2(qk2)ω+/k1 + 2(pk1)ω−/k2 −mω+/k1/k2 −mω−/k2/k1

)
u(p)

= u(q)
(
2(pk1)/k2 − 2m(k1k2)ω+

)
u(p) ,

A++
2 = u(q)

(
2(qk1)ω+/k2 + 2(pk2)ω−/k1 −mω−/k1/k2 −mω+/k2/k1

)
u(p)

= u(q)
(
2(qk1)/k1 − 2m(k1k2)ω+

)
u(p) . (9.170)

Putting everything back together :

M++ = −ie2 u(q)

(
/k2 − /k1

(k1k2)
− m

(pk1)
ω+ +

m

(qk1)
ω+

)
u(p) . (9.171)

Since
u(q)

(
/k2 − /k1

)
u(p) = u(q)

(
/p− /q

)
u(p) = 0 , (9.172)

we arrive at the exact result

M++ = −ie2h̄
m(k1k2)

2(pk1)(qk1)
u(q)

(
1 + γ5

)
u(p) . (9.173)

In the SL, we may in this expression approximate q by p. It is now time to
consider the spin s of the electron, for which we have the following relations :

u(p, s)u(p, s) = 2m , u(p,−s)u(p, s) = 0 , u(p,±s) γ5 u(p, s) = 0 ,

u(p, s) γβ u(p, s) = 2pβ , u(p,−s) γβ u(p, s) = 0 . (9.174)

We conclude that M++
SL takes again the form (9.164), and that the electron

spin is not influenced in the SL. The second amplitude is given by

M+− =
−ie2h̄

(k1k2)

(
A+−

1

2(pk1)
− A+−

2

2(qk1)

)
,

A+−
1 = u(q)

(
u−(k1)u−(k2) + u+(k2)u+(k1)

)
(/p+ /k1 +m)×(

u+(k2)u+(k1) + u−(k1)u−(k2)
)
u(p) ,

A+−
2 = u(q)

(
u+(k2)u+(k1) + u−(k1)u−(k2)

)
(/q − /k1 +m)×(

u−(k1)u−(k2) + u+(k2)u+(k1)
)
u(p) . (9.175)
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Again using the various standard-form techniques we can establish that

A+−
1 = u(q)u−(k1)u−(k2)/pu−(k1)u−(k2)u(p)

+ u(q)u+(k2)u+(k1)/pu+(k2)u+(k1)u(p)

= eiφ u(q)
(
ω−/k1/p/k2 + ω+/k2/p/k1

)
u(p) , (9.176)

where eiφ is the phase factor of Eq.(9.166). For A+−
2 we find the exact same

result, and thus

M+− =
ie2h̄ eiφ

2(pk1)(qk1)
u(q)

(
ω−/k1/p/k2 + ω+/k2/p/k1

)
u(p) . (9.177)

In this expression, the denominator is of order O (k2) which is already com-
pensated by the occurrence of /k1 and /k2 in the numerator. In the SL we can
therefore again replace q by p since q = p+O (k), and use

ω−/k1/p/k2 + ω+/k2/p/k1 = (pk1)/k2 + (pk2)/k1 − (k1k2)/p− iγαεα(k1, k2, p) (9.178)

which yields 4(pk1)(pk2)− 2m2(k1k2) when sandwiched between u(p, s) and
u(p, s), but zero when sandwiched between u(p,−s) and u(p, s). We see that
also M+−

SL is the same as in the scalar case, while the spin again remains
unaffected by the Thomson scattering.

We have thus established that Thomson scattering will not distinguish
between scalar or Dirac electrons. It is interesting to note, however, that
the amplitudes depend on θ even in the SL, while of course in that precise
limit (zero photon energy) the value of θ becomes undetermined ! We see
that Thomson scattering (and consequently the determination of the elec-
tron charge by this process) is only meaningful if there is some momentum
transfer, no matter how small33.

9.6.3 The Landau-Yang theorem

The photon polarisation revisited

As stated above, any good amplitude for processes in which a photon is
absorbed or produced must vanish under the handlebar operation. That

33This situation is, of course, the same in classical physics : to determine the elasticity
modulus of a spring you will have to stretch or compress it, no matter by how small an
amount.
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means that, provided the amplitude is acceptable, we may add to any photon
polarisation a piece of photon momentum. Let us consider a process with
several photons present, with momenta qi

µ and polarisation vectors εi
µ. We

have, obviously, (qi · qi) = (qi · εi) = 0 and (εi · εi) = −1. From the above,
we see that, if we wish, we may employ instead of εi the more complicated
object

ηi
µ = εi

µ − (p · εi)
(p · qi)

qi
µ , (9.179)

where p is any vector not proportional to qi. This has the properties

(ηi · qi) = (ηi · p) = 0 , ηi
2 = −1 . (9.180)

In numerous applications, η is actually more profitable to use than ε. But
we should note that, in any amplitude described by more than one Feynman
diagram, the shift from ε to η simply means that parts of some Feynman dia-
grams are ‘transferred’ to other diagrams : the total result must, of course, be
the same. The most important difference between ε and η is in the handlebar,
since η then vanishes :

ηicεi→qi = 0 ; (9.181)

therefore, any expression written in terms of η’s vanishes automatically under
the handlebar. On the one hand this is, of course, nice ; on the other hand,
it deprives us of a powerful check on the correctness of our diagrams, since
almost any mistake made in writing them out will show up as a failure under
the handlebar.

The Landau-Yang result

Although this may seem to fall somewhat outside the province of QED, we
can consider the decay of a spin-1 particle into photons. But even within
QED this can be envisaged, since we may have a bound state of electron and
positron (positronium) that may, of course, have some angular momentum.
Such a positronium state can, unless we look really closely, be considered
a single particle. In its ground state, positronium comes in two varieties :
para-positronium in which the electron and positron’s spin are antiparallel
and hence form total spin zero, and ortho-positronium in which the spins are
parallel, leading to a total spin of one.
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Without knowing anything much about the bound-state structure of
positronium, let us consider the amplitude for its decay into a pair of pho-
tons. Let us denote by P µ the positronium momentum (in its rest frame),
and by q1,2 and ε1,2 the photon momenta and polarizations. We shall define
qµ = (qµ1 − q

µ
2 )/2. In addition, the positronium being a spin-1 particle, we

need its polarisation vector ε0. Any amplitude for the decay must necessarily
be linear in ε0, ε1 and ε2 ; and to have current conservation we can, rather,
take η1,2 instead of ε1,2, where here ηi = εi − (P · εi)/(P · qi)qi. Since also
(P · ε0) = 0, the three polarisations (as well as the vector q) have no timelike
component. Noting that, in this case, (q · η1,2) = 0 as well, we see that to
build an amplitude M we actually have but a very few structures that we
can use34 :

M = A1 (q ·ε0)(η1 ·η2)+A2 ε(P, ε0, η1, η2)+A3 ε(P, q, η1, η2)(q · ε0) . (9.182)

The coefficients A are of course undetermined, but they can only depend on
P 2, q2 and (P · q). This last product is zero, and P 2 = −4q2 = M2 where M
is the positronium mass, so the A’s are effectively just constants. We now
come to the main observation : under interchange of the two photons we
have η1 ↔ η2 and q → −q. It is immediately seen that all possible terms
in M are antisymmetric under this operation, and hence cannot occur if
we are to have Bose statistics. It is obvious that this results holds to all
orders of perturbation theory, nor is restricted to the case of positronium.
We conclude that a spin-1 particle cannot decay into two photons, which is
the Landau-Yang theorem. And so it is : para-positronium has a lifetime of
1.25 × 10−10 seconds, while ortho-positronium, having to perform the muchE 53
more cumbersome decay into three photons, lives for as long as 1.39 × 10−7

seconds.

In the literature and most textbooks, the Landau-Yang theorem, espe-
cially when applied to positronium, appears to be based on fairly complicated
reasonings having to do with the charge-conjugation properties of the various
states. In our more simple-minded approach, we see that it is simply a con-
sequence of the relative paucity of building blocks available when you start
to imagine what a decay amplitude could look like. Indeed, as soon as you
envisage three-photon decay, a host of terms can be written down that re-

34You might be tempted to write down a term like ε(q, ε0, η1, η2) but since all these
vectors have vanishing zeroth component, this Levi-Civita product is simply zero.
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spect Bose symmetry, so that it is easily understood why three-photon decay
is not forbidden35.

9.7 Exercises for Chapter 9

Excercise 48 Compton Current Conservation
Consider the process

e−(p1) γ(k1, ε1) → e−(p2) γ(k2, ε2)

where the momenta and polarizations are indicated, and write the two dia-
grams that describe it at tree level. Then, substitute ε1 → k1 and show that
the amplitude, so treated, vanishes.

Excercise 49 Rare or impossible ? The process µ→ e γ
The process

µ−(p)→ e−(q) γ(k)

is not allowed in standard QED since it violates current conservation. Nev-
ertheless, it could be possible with a different interaction vertex coming from
some ‘new physics’. The amplitude would then read

M = i
√
h̄g u(q)

(
cos θ + sin θγ5

)
/k /ε u(p)

where g is the coupling in the new physics, and the angle θ simply parametrizes
the relative weight of the two alternative couplings.

1. Show that this amplitude is current-conserving by applying the han-
dlebar.

2. Show that the coupling g must have the following dimensionality :

dim[g] =
L√
h̄

We shall therefore write
g =

e

Λ

with e the QED coupling constant and Λ the scale of the new physics.

35In the words of Feynman, ‘everything that is not explicitly forbidden is allowed’.



276 March 26, 2017

3. Compute 〈|M|2〉 using the Casimir trick and the trace identities.

4. Compute the total decay width Γ(µ→ eγ).

5. Current limits on this process are expressed as

Γ(µ→ eγ)

Γ(µ→ all)
≤ B , B ≈ 10−11 .

We shall assume that the decay µ→ eνµν̄e is by far the dominant one.
Show that we can relate this to B as follows :

Λ ≥ K√
B

.

Compute K, and find the current lower limit on Λ.

Excercise 50 Bhabha scattering got wrong
In section 9.3.4 it is mentioned in a footnote how important the correct
application of the Fermi minus sign can be. Investigate this by re-computing
the cross section for Bhabha scattering using the wrong sign, and finding the
ratio between the two expressions ; then find the maximum ratio and the
scattering angle at which this is reached.

Excercise 51 Bhabha scattering the hard way
Compute 〈|M|2〉 for Bhabha scattering at tree level, this time keeping me

nonzero. To do this, use the Casimir (trace) method.

Excercise 52 Multi-photon production
Consider the process e+e− → n γ, the n-photon analogue of the process
9.139. Show the following :

1. There are, at the tree level, n! diagrams.

2. The amplitude vanishes if all photons have the same helicity.

3. If all photon helicities except one are equal, only (n − 1)! diagrams
contribute if we choose the gauge vectors cleverly.

Excercise 53 The Landau-Yang theorem in action
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1. Consider the proces

e+(p1, s1) e−(p2, s2) → γ(k1, ε1) γ(k2, ε2)

where the polarizations and spins are indicated along with the mo-
menta. Write out the amplitude at the tree level, keeping the electron
mass m nonzero.

2. Choose the gauge vectors such that not only (k1ε1) = (k2ε2) = 0 but
also (k1ε2) = (k2ε1) = 0. Show that in that case ε1,2

0 = 0 in the
centre-of-mass frame.

3. Take the static limit, in which p1 and p2 become equal. Show that in
this limit the amplitude is proportional to

εµ(ε1, k1 − k2, ε2) v(p1, s1) γ5 γµ u(p1, s2)

4. Show that the amplitude vanishes if s1 = s2, but does not vanish if
s1 = −s2. Hint: show that εµ(ε1, k1 − k2, ε2) ∝ p1

µ.
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Chapter 10

Quantum Chromodynamics

10.1 Introduction: coloured quarks and glu-

ons

In chapter 9 we have studied the behaviour of electrically charged particles
and the electromagnetic field embodied by photons. Notwithstanding the
fact that particles can have different charges, all these charges are of the
same type in the sense that they can be added. For instance, atoms are
electrically neutral when studied from the ‘outside’, since the positive charge
of the nucleus is cancelled out by the negative charge of the electron cloud. It
is interesting to see what happens if we enlarge our view to the possibility of
‘different types of charge’, that cannot be meaningfully added in a simple way.
In that case, a bound state of particles with a different charge type might not
look ‘neutral’ when seen from the outside : the charges of the constituents
would show through. To avoid confusion with the electric charge we shall let
the ‘new charges’ go by the name of colours, and the dynamical theory of
their interactions is called Quantum Chromodynamics, or QCD.

We shall start our investigation with coloured fermions, called quarks1.
The number of colours is denoted by N , where of course N ≥ 2. The quarks
are described by Dirac spinors for given momentum and spin, and also by a
colour label which we shall denote by a, b, c, . . .. All these labels (or indices)

1Historically, the notion of quark predates that of colour, and the colouring of quarks
was invented to explain the possibility of the existence of curious particles such as the ∆++

or the Ω−. In this chapter, we are less interested in describing the world of hadrons than
in constructing an internally consistent theory, hence the unhistorical line of reasoning.

279
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run from 1 to N . A conjugate fermion (u or v) will carry a lower, a regular
fermion (u or v) an upper index.

In addition we expect vector particles to be present, that carry the colour
force. These we call gluons . In analogy to QED, we shall assume the gluons
to be massless, but since we have different colour types there must also be
different gluon types. The gluon type will be denoted by j, k, l,m, . . ., and it
is up to us to determine2 how many gluon types occur for given N .

We now postulate a few properties that we want our world of colour to
possess:

1. Colour is conserved in interactions, just like electric charge. This must
hold for every type of colour charge separately.

2. All colours are equal and none are ‘more equal than others’, which
means that particles that only differ by their colours propagate through
spacetime in the same way.

10.2 Quarks and gluons : first Feynman rules

10.2.1 The propagators

Under the assumption of colour conservation, the quark propagator is defined
by

p
ab ↔ ih̄

/p+m

p2 −m2 + iε
δab (10.1)

where the incoming and outgoing quark colours are denoted by a and b.
The gluon propagator requires some more care. We shall assume that it is
described by the axial propagator of chapter 8. That is, we take an axis nµ,
and require the propagator to be orthogonal to this. Anticipating that also
gluons may carry colour information, we have

pα β

j k ↔ Παβ(p) δjk (10.2)

2The usual approch is simply to postulate a local SU(N) gauge symmetry, from which
the number of gluons immediately follows ; but our (or rather my) interest is to see how
we can arrive at that result from simpler, or rather physical, requirements.
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where j and k denote the gluon colours, and

Παβ(p) = ih̄
−1

p2 + iε

(
gαλ −

pαnλ
(p · n)

)(
gλβ − nλpβ

(p · n)

)

=
ih̄

p2 + iε

(
−gαβ +

pαnβ + nαpβ

(p · n)
− n2 pαpβ

(p · n)2

)
. (10.3)

The first line of Eq.(10.3) shows that, indeed, Παβ(p)nα = Παβ(p)nβ = 0.
Note that we have extended the definition of the axial-gauge propagator to
nonzero values of n2. However, since Πα

α(p) ∝ −2+n2p2/(p·n)2, the number
of degrees of freedom is still equal to 2 on the mass shell, where p2 = 0. The
choice of this propagator has ultimately, of course, to be justified at least by
the handlebar investigation.

10.2.2 The quark-gluon vertex

We start by defining the quark-gluon vertex, as a close analogue of the QED
fermion-photon vertex :

j

a

b

µ
↔ i

h̄
g γµ (T j)ab , (10.4)

where we have explicitly indicated the quark and gluon colour types. Here,
g is the coupling constant, and (T j)ab is recognized as an element of an
N × N matrix, the properties of which we still need to derive. Allowing
for complex matrices, we see that the number of different gluon colours j
cannot exceed 2N2. It is clear that an overall factor in the matrices T can
always be absorbed in a redefinition of g, and we shall use this to normalize
the T matrices. The above vertex, inspired by the example of QED, must
ultimately be justified by investigating the handlebar condition3. Because
of the presence of colour we may expect that this will be more complicated
than in the simple electrodynamics case.

10.2.3 A closer look at the T matrices

We require the structure of the colour part of the interactions to take care
of colour conservation and colour equality in the presence of interactions.

3And, of course, by comparison to experiment !
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Consider the following diagram :

j

ab
c

The colour part of this diagram reads∑
j,b

(T j)ab(T
j)bc

and colour conservation/equality hence demands that∑
j

(
T j

2
)a
b

= k δab (10.5)

for some constant k. Similarly, the diagram

k
b

a

j

contains the colour factor∑
a,b

(T j)ab(T
k)ba = Tr

(
T jT k

)
,

and using the normalization freedom we may take

Tr
(
T jT k

)
=

1

2
δjk . (10.6)

Since colour must be conserved, a gluon cannot lose its colour charge and
therefore gluons and photons cannot mix : in all diagrams of the form

b

photon
j

a

we must have b = a since the colour is conserved and the photon is colourless ;
therefore the T matrices must be traceless :

Tr
(
T j
)

= 0 for all gluon colours j . (10.7)
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Finally, we consider the following two-loop self-energy diagram of the photon :

j

Here, the fermions are quarks and the internal line labelled j is a gluon of
colour type j : of course, we have to sum over all j values. If we compare this
diagram to the corresponding QED one, we see that apart from the overall
charges (g2 instead of Q2) the only difference is the colour factor, in this case

∑
j

Tr
(
T j T j

)

Now, if our theory is to be unitary, it must obey the Cutkosky rules, and
therefore we demand that

j
+

j
+

j

+
j

+
j

= 0 . (10.8)

For the QED diagram, this indeeds holds. In the coloured case, however, the
colour structures of the diagram cut in the various ways are no longer the
same : the three lines in Eq.(10.8) are proportional to, respectively,

∑
j

Tr
(
T jT j

)
,
∑
j

Tr
(
T jT j

†)
, and

∑
j

Tr
(
T j
†
T j
†)

.

Unitarity can therefore only be safe if these three different traces are, in fact,
equal to one another. We may therefore write

∑
j

Tr
(
AjAj

)
= 0 , Aj = i

(
T j − T j†

)
. (10.9)
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The matrices Aj are obviously Hermitean, so that Eq.(10.9) can also be
written as ∑

j

Tr
(
AjAj

†)
=
∑
j

N∑
a,b=1

∣∣∣(Aj)ab∣∣∣2 = 0 , (10.10)

hence all Aj are actually identically zero, and the matrices T j must be Her-
mitean. The number of different gluon colours type is therefore N2 − 1, and
the constant k of Eq.(10.5) is equal to (N2 − 1)/2N .

10.2.4 The Fierz identity for T matrices

We have now zoomed in quite efficiently on the matrices T j. On the other
hand, just as in the case of Dirac particles we would prefer if predictions
for cross sections and the like dit not depend on the particular choice of
the matrices4. We can, in fact, derive a relation between the T ’s that holds
independently of any representation : it goes under the name of the Fierz
identity5. Any N ×N matrix M can be written6 as

M = a01 +
∑
j

ajT
j . (10.11)

By taking traces we can determine the coefficients :

Tr (M) = a0N , Tr
(
MT k

)
= ak/2 . (10.12)

Therefore we have

M = 2
∑
j

Tr
(
T jM

)
T j + Tr (M) /N , (10.13)

or, in terms of the matrix components,

Md
c δ

c
b δ

a
d = 2

∑
j

Md
c (T j)cd(T

j)ab +
1

N
Md

c δ
c
d δ

a
b , (10.14)

4In the Dirac case this was indispensable since any dependence would destroy Lorentz
invariance. In the present case one might argue that the T j could, in principle, just be
measured. Nevertheless having a representation-independent theory just feels so much
more comfortable.

5Same Fierz.
6You might be tempted to think that this holds only for Hermitean matrices. But since

iT j is antiHermitean we can accomodate any M provided the a’s can be complex.
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whence the following, representation-independent identity :

(T j)ab(T
j)cd =

1

2

(
δad δ

c
b −

1

N
δab δ

c
d

)
. (10.15)

Since7 the colour of quarks and gluons cannot be observed, any cross section
will involve a summation over all colours, and therefore every cross section
is expressed as (a product of) traces of strings of T matrices, in which every
matrix T k occurs exactly twice, and the index k is summed over. The Fierz
identity comes in useful here, since we can write (with summation implied)

Tr
(
T jA

)
Tr
(
T jB

)
=

1

2

(
Tr (AB)− 1

N
Tr (A) Tr (B)

)
,

Tr
(
T jAT jB

)
=

1

2

(
Tr (A) Tr (B)− 1

N
Tr (AB)

)
. (10.16)

With these trace identities we can simplify and compute any set of colour
traces without recourse to any explicit representation, especially if we recall
that Tr (1) = N, Tr (T j) = 0 and T jT j = (N2 − 1)/2N times unity. For
instance,

Tr
(
T jT kT l

)
Tr
(
T jT kT l

)
=

1

2

(
Tr
(
T kT lT kT l

)
− 1

N
Tr
(
T kT l

)
Tr
(
T kT l

))
=

1

4

(
Tr
(
T l
)

Tr
(
T l
)
− 2

N
Tr
(
T lT l

)
+

1

N2
Tr
(
T l
)

Tr
(
T l
))

= − 1

2N
Tr
(
T lT l

)
= −N

2 − 1

4N
, (10.17)

and

Tr
(
T jT kT l

)
Tr
(
T jT lT k

)
=

1

2

(
Tr
(
T kT lT lT k

)
− 1

N
Tr
(
T kT l

)
Tr
(
T lT k

))
=

1

4

(
Tr
(
T kT k

)
Tr (1)− 2

N
Tr
(
T kT k

)
+

1

N2
Tr
(
T k
)

Tr
(
T k
))

=
N2 − 2

4N
Tr
(
T kT k

)
=

(N2 − 1)(N2 − 2)

8N
. (10.18)

7Empirically.
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10.3 The three-gluon interaction

10.3.1 The need for three-gluon vertices

It is now time to investigate our theory using handlebars. In the first place, in
the process g → qq̄ the current is conserved in the same way as in QED, since
there is only a single Feynman diagram and the colour structure is therefore
irrelevant to any cancellation. The situation becomes more delicate in the
case of more complicated interactions, so let us consider the process

q̄(p1, a) q(p2, b) → g(q1, ε1, j) g(q2, ε2, k)

where we have explicitly indicated the momenta, polarizations, and colours.
We have at least the following two diagrams8 :

M =

k

p
1

p
2 b

a

q
1

q
2

j

+

2

p
1

p
2 b

a

q
1

j

qk
, (10.19)

where we have indicate the colours explicitly. Explicitly, they read

M1 = −ih̄g2 v(p1)/ε1
/q1 − /p1 +m

−2(q1 · p1)
/ε2u(p2) (T jT k)ab ,

M2 = −ih̄g2 v(p1)/ε2
/p2 − /q1 +m

−2(q1 · p2)
/ε1u(p2) (T kT j)ab . (10.20)

Let us now put the handlebar on gluon 1, so that we replace εµ1 by qµ1 . By
the same reasoning as in chapter 9, we arrive at the handlebar rule

= − , (10.21)

with the auxiliary Feynman rules

ab ↔ ih̄ δab , ab

j

↔ i
g

h̄
(T j)ab . (10.22)

8In the second diagram the two gluon lines form an overpass, without a vertex.
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As before, slashed propagators vanish on external lines. Applying this to the
two Feynman diagrams of Eq.(10.19) yields9

M1+2cε1→q1 =

k

j

+
k

j

=

k

j

−

k

j

+

k

j −
k

j

=

k

j

−
k

j

= −ih̄g2 v(p1)/ε2u(p2) [T j, T k]ab , (10.23)

where the square brackets denote, of course, the commutator of the matrices
T j and T k. Because of the colour structure we have a non-vanishing result,
and current conservation is in trouble ! The remedy must be to introduce a
third diagram, with a nontrivial ggg vertex :

n

p
1

p
2

q
1

q
2

a

b

j

k

It is now our job to determine the form of the new three-gluon vertex. We
shall do this by investigating loop diagrams.

9In calculations such as this one it is often sufficient to simply label the gluons by their
colour, thus simplifying the typography.
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10.3.2 Furry’s failure

Consider the Feynman diagram
depicted on the right, in which
three gluons are effectively cou-
pled by a quark loop. We have ex-
plicitly indicated the momentum
flows. Note especially that the
gluon momenta are all counted
flowing out of the vertex, so that
we have

q1 + q2 + q3 = 0 . (10.24)
µ

q

q

q

1

2

3

j

k
l

p p +q
1

q 2−p
ν

ρ

Apart from overall coupling constants and the like, the loop diagram is given
by

T =
∫
d4p

Tr ((/p+m)γµ(/p+ /q1 +m)γρ(/p− /q2 +m)γν)

(p2 −m2)((p+ q1)2 −m2)((p− q2)2 −m2)
Tr
(
T jT lT k

)
.

(10.25)
There is also a loop diagram in which the quark runs counterclockwise instead
of clockwise. In our discussion of Furry’s theorem in sect. 9.2.6, we have seen
that the space-time part of the second diagram is exactly opposite to the one
of the first, so that in QED these two diagrams cancel. In QCD, however, they
do not since the second diagram contains the colour matrices in the opposite
order, that is to say it contains Tr

(
T jT kT l

)
instead of Tr

(
T jT lT k

)
. The

sum of the two diagrams must, if we take into account the Lorentz-covariant
nature of the loop integral, and the fact that out of q1, q2 and q3 only two
momenta are independent, be of the form

T = Y (q1, µ; q2, ν; q3, ρ) Tr
(
T j[T k, T l]

)
, (10.26)

with

Y (q1, µ; q2, ν; q3, ρ) = {(a1q1 + a2q2)ρgµν + (a3q2 + a4q3)µgνρ

+ (a5q3 + a6q1)νgρµ} , (10.27)

for some numbers a1, . . . , a6. For large p, each of the three propagators goes
as 1/p, and the loop integral is therefore divergent. We see that indeed there
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has to be a three-gluon coupling in the action, otherwise the theory would
not be renormalizable ; and the form of the three-gluon vertex must be that
of Eq.(10.27).

Without evaluating the loop integral completely, we can glean all the
information we need. Consider the following transformation on T :

q1 ↔ −q2 , q3 → −q3 , µ ↔ ν . (10.28)

This transformation leaves the momentum conservation law (10.24) intact,
and also preserves the value of T (by the reversal property (7.29) of Dirac
traces). The same holds, of course, for the transformations

q1 ↔ −q3 , q2 → −q2 , µ ↔ ρ ,

q2 ↔ −q3 , q1 → −q1 , ν ↔ ρ . (10.29)

The function Y must therefore satisfy

Y (q1, µ; q2, ν; q3, ρ) = Y (−q2, ν;−q1, µ;−q3, ρ) =

= Y (−q3, ρ;−q2, ν;−q1, µ) = Y (−q1, µ;−q3, ρ;−q2, ν) ; (10.30)

and by inspection we then find that c1 = c3 = c5 = −c2 = −c4 = −c6. We
shall therefore from now on use the definition

Y (q1, µ; q2, ν; q3, ρ)

≡ (q1 − q2)ρgµν + (q2 − q3)µgνρ + (q3 − q1)νgρµ . (10.31)

Note that this form is antisymmetric in the interchange of any two gluons,
and therefore invariant under a cyclic permutation.

A final remark is in order here. If one of the couplings were not of vector
type (with γµ) but of axial-vector type (with γ5γµ), then the integral would
change sign under the above transformations. In that case the function Y
would read

(q1 + q2)ρgµν + (q2 + q3)µgνρ + (q3 + q1)νgρµ

= −qρ3gµν − q
µ
1 g

νρ − qν2gρµ

and hence be completely transverse to any external polarisation vector10.

10This effect forbids, for example, the decay of a Z0 boson into two photons or two
gluons.
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10.3.3 The ggg vertex and its handlebar

On the basis of the previous section, we see that the only reasonable form of
the three-gluon vertex Feynman rule is

ρ

q
1

j

q
2

k

q
3

l

µ
ν

↔ i

h̄
g3 Y (q1, µ; q2, ν; q3, ρ)hjkl (10.32)

Note that the gluon momenta are counted outgoing from the vertex. The
value of g3 must be determined, as well as the colour factor hjkl. The Y
function’s total antisymmetry strongly suggests that we take the h symbols
antisymmetric as well, and later on we shall show that this is indeed the case.

The following object will turn out to be useful :

∆(q)αβ ≡ qαqβ − q2gαβ , (10.33)

for which
∆(q)αβ = ∆(q)βα , ∆(q)αβ qβ = 0 . (10.34)

Also,
∆(q)αβ εβ = qα(q · ε)− q2εα = 0 (10.35)

if ε is the polarisation vector of an on-shell gluon with momentum q.
We now come to an important result. Let us consider the vertex of

Eq.(10.32), and let us put a handlebar on gluon q3. We find, using momentum
conservation in the form q3 = −q1 − q2,

Y (q1, µ; q2, ν; q3, q3) = (q1 − q2 · q3)gµν + (q2 − q3)µq3
ν + (q3 − q1)νq3

µ

= (q2 − q1 · q2 + q1)gµν − q2
µ(q1 + q2)ν + q1

ν(q1 + q2)µ

= ∆(q1)µν −∆(q2)µν . (10.36)

Some algebra tells us, moreover, that in the axial gauge

Πµα(q1) ∆αβ(q1) Πβν(q2) = (ih̄gµα) (gαβ) Πβν(q2) , (10.37)

so that we find the handlebar rule

k

m

j

=
m

j

k

+
m

j

k

, (10.38)
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with the auxiliary Feynman rules

j k
µ ν

↔ ih̄ gµν δjk (10.39)

and

α
jk

m

β
↔ i

g3

h̄
gαβ hjkm . (10.40)

It is now time to return to the qq̄ → gg process. The new available
Feynman diagram, given by

n

p

p

1

2

q
1

q
2

a

b
k

j

reads

M3 = −gg3v(p1)γµu(p2)Πµν(p1 + p2)Y (q1, ε1; q2, ε2;−q1 − q2, ν)hjkn(T n)ab .
(10.41)

with summation over the colour n implied. Putting the handlebar on gluon
1 as before, we get

n

k

j
=

n

k

j
+

n

k

j
(10.42)

so that

M3c = −ih̄gg3 v(p1)/ε2u(p2)hnkj(T n)ab . (10.43)

The total handlebarred amplitude now reads

M1+2+3c = ih̄g v(p1)/ε2u(p2)
(
g3h

jknT n − g[T j, T k]
)a
b

(10.44)

The colour current will therefore be conserved if we choose

g3 = g (10.45)
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and

[T j, T k] = hjkn T n . (10.46)

Note that since the matrices T are Hermitean, the constants h must be purely
imaginary11. Moreover, we can compute them, using Eq.(10.6), as

hjkl = 2 Tr
(
T jT kT l − T lT kT j

)
, (10.47)

from which we see that the h symbols must be totally antisymmetric. Since
they are related to commutators, we can use the Jacobi identity to find
relations between them12 :

0 = [[T j, T k], T l] + [[T k, T l], T j] + [[T l, T j], T k]

= hjkn[T n, T l] + hkln[T n, T j] + hljn[T n, T k]

= hjknh
nl
mT

m + hklnh
nj
mT

m + hljnh
nk
mT

m , (10.48)

which after a few interchanges of indices leads to

hjknh
lm
n + hjlnh

mk
n + hjmnh

kl
n = 0 . (10.49)

More information comes from colour conservation/equality in the diagram

m
kj

n

from which we find the requirement that∑
m,n

hmnj hmnk = C δjk , (10.50)

with some constant C. Eq.(10.50) is the gluonic equivalent of the property
(10.5) of the T matrices. It does not follow from the Jacobi identity. But

11It is customary to write [T j , T k] = i f jknT
n. The f ’s are then called the structure

constants, and the set of T matrices are then the generators of the Lie algebra of the group
SU(N). The i is then combined with the overall i of the vertex to give a Feynman rule
without any i. This is of course a matter of taste.

12Here and in the following, raising or lowering colour labels has no physical meaning ;
I do it only for typographical reasons.
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since we have already defined the h symbols by Eq.(10.47), it is not an extra
condition bur rather has to be proven. To this end, we use Eq.(10.47) :

hmnjhmnk =

= 8

(
Tr
(
TmT nT j

)
Tr
(
TmT nT k

)
− Tr

(
TmT nT j

)
Tr
(
TmT kT n

))
(10.51)

and the reduction formulæ(10.16) then give us, for instance,

Tr
(
TmT nT j

)
Tr
(
TmT nT k

)
= − 1

4N
δjk ,

Tr
(
TmT nT j

)
Tr
(
TmT kT n

)
=

(
N

8
− 1

4N

)
δjk . (10.52)

Thus we arrive at the desired property :

hmnjhmnk = −N δjk . (10.53)

10.3.4 On coupling quantisation

In the previous chapter we have discussed QED, characterized by the fact
that only fermion-fermion-photon couplings occur. The coupling constant
Qf for a given fermion is not constrained in any way, and there is no a priori
reason why different fermion species ought to have the same charge13. In
QCD the situation is different. In deriving the ggg vertex we have started
with the process qq̄ → gg, without specifying the quark type, only saying
that its coupling to the gluon has coupling constant (‘colour charge’) g. We
then find that the three-gluon vertex has the same coupling constant g. But
that implies that all quark types must have the same coupling constant to
gluons, since two different quark types must lead to the same value of the
Yang-Mills coupling. We see that the presence of bosonic self-interactions
enforces a uniformity on the quark colour charges that was not there before.
In the next chapter we shall see how the presence of a WWγ vertex forces
the electron and muon charges to be, indeed, identical.

13Of course, leptons and quarks have different charge ; but I rather refer to the ratio of
muon and electrron charge, which could be

√
π for all that QED cares.
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10.4 The four-gluon interaction

10.4.1 Colourful manipulations

Before proceeding it is useful to prepare some groundwork. Let us define,
first, the ‘four-colour’ object

[jklm] = hjka h
lm
a = hjkaha

lm . (10.54)

This has the symmetries14

[jklm] = −[kjlm] = −[jkml] = [lmjk] ; (10.55)

and the Jacobi identity reads

[jklm] + [jlmk] + [jmkl] = 0 . (10.56)

In addition, we have the ‘five-colour’ object

[jklmn] = [jkla]hamn = hjka ha
l
b hb

mn . (10.57)

We can easily verify the symmetries

[jklmn] = −[kjlmn] = [jklnm] = −[mnljk] (10.58)

and the two Jacobi identities

[jklmn] + [jkmnl] + [jknlm] = [jklmn] + [kljmn] + [ljkmn] = 0 . (10.59)

With such an arsenal of identities quite a few results can be derived: for
instance, by using each of the three symmetries and the two Jacobi identities
once, we can prove that

[jklmn]− [jklmn] + [lmjkn]− [lmjkn] = 0 ,

[jlkmn] + [kmjln]− [jlmkn]− [kmljn] = 0 . (10.60)

14These are precisely those of the Riemann-Christoffel tensor, familiar from the theory
of general relativity.
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10.4.2 A purely gluonic process

We have seen that gluons, in contrast to photons, exhibit self-interactions.
We can therefore consider the process

g(q1, ε1, j) g(q2, ε2, k) → g(q3, ε3, l) g(q4, ε4,m)

which so far is given (at the tree level) by three Feynman diagrams15 :

M = n
j

k m

l
+

n

l

m

j

k

+ n

j

k

l

m

(10.61)

As before, we put a handlebar on gluon 1 :

Mcε1→q1 = n
j

k m

l
+ n

l

m

j

k

+
n

j

k

l

m

(10.62)

and this combination does not obviously vanish. The three-gluon vertex
is somewhat cumbersome, but we can streamline our calculations a bit by
introducing a ‘partial’ three-gluon vertex :

n

q
1q

2

α
β

λ

j

k

↔ i
g

h̄
(q1 + q2)λ gαβ hjkn . (10.63)

Here, the momenta are counted in the direction of the arrows. Note that
reversing the arrows leaves the vertex unchanged owing to the antisymmetry
of the h symbol. There is therefore no ambiguity. We may write

= + + . (10.64)

15Since in this section we only consider gluons anyway, I shall here denote them by
smooth rather than wriggly lines ; this makes them somewhat easier to read, and certainly
easier to draw.



296 March 26, 2017

This makes it easier to single out particular terms in Eq.(10.62). For instance,
the terms proportional to (ε2 · ε4) are given by the diagrams

n
j

k m

l
+ n

l

m

j

k

+ n

j

k

l

m

that, apart from an overall factor −ih̄g2(ε2 · ε4), evaluate to

(ε3 · q2 + q4)hmkn hnlj + (ε3 · q1 + q2 + q4)hmnl hnkj + (ε3 · 2q2 − q3)hnkl hnmj

= (ε3 · q2 + q4) [mklj]− (ε3 · q1 + q2 + q4) [mlkj] + (ε3 · 2q2 − q3) [klmj]

= (ε3 · q2 + q4)
(
−[mljk]− [mjkl]

)
+(ε3 · q1 + q2 + q4) [mljk]− (ε3 · 2q2 − q3) [mjlk]

= [mljk] (ε3 · q1 + q2 + q4 − q2 − q4) + [mjlk] (ε3 · q2 + q4 − 2q2 + q3)

= (q1 · ε3)
(
[mjlk] + [mljk]

)
. (10.65)

I have displayed this computation in detail in order to emphasize that we only
use momentum conservation, and not for instance the property (ε3 · q3) = 0.
In addition, in the third line the Jacobi identity comes into play. The other
terms are of course treated in the same way, so that we find

Mcε1→q1 = −ih̄g2

{
(q1 · ε2)(ε3 · ε4)

(
[jlmk] + [jmlk]

)
+ (q1 · ε3)(ε2 · ε4)

(
[jmkl] + [jkml]

)
+ (q1 · ε4)(ε2 · ε3)

(
[jklm] + [jlkm]

)}
. (10.66)

10.4.3 The gggg vertex and its handlebar

The handlebar requirement can now be satisfied by introducing a four-gluon
interaction vertex as follows:

n

j

k

α

β

µ

ν

m
↔ i

g2

h̄
X(α, j; β, k;µ,m; ν, n) (10.67)
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with

X(α, j; β, k;µ,m; ν, n) = gαβ gµν
(
[jmnk] + [jnmk]

)
+ gαµ gβν

(
[jknm] + [jnkm]

)
+ gαν gµβ

(
[jkmn] + [jmkn]

)
. (10.68)

In addition, we have found the handlebar rule

= − − − . (10.69)

10.5 Current conservation in QCD

10.5.1 More vertices ?

After having introduced the three-gluon vertex, we have seen that we also
need a four-gluon vertex in order to save current conservation in qq → qq.
What if we now considergg → ggg ? Wil we also need a five-gluon vertex ?
And then what about gg → gggg ? Fortunately, as we shall see, no such
bad luck : with the three- and four-gluon vertices all amplitudes will vanish
under the handlebar. We shall prove this in the same manner as for QED,
only obviously the proof will be somewhat more involved. Before we turn to
our reliable working horse, the SDe, we first need one more result.

10.5.2 Antkaz

Consider the four-gluon vertex in the following form :

ν

j

k

l

m

α

β

µ
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Let us now attach a fifth gluon inall possible ways, and slash the intervening
propagators. This leads to the following expression :

V =
m

j n

k

l + l

j

k n

m

+

k
n

m

l

j

+ l

j

k

m

n
. (10.70)

In V , no gluon momenta enter. Let us now concentrate on the term with
gαβ gµν , say. The colour part of this term reads

Vαβ;µν = [plmk]hpjn + [pmlk]hpjn + [jlmp]hpkn + [jmlp]hpkn

+ [jpmk]hpln + [jmpk]hpln + [jlpk]hpmn + [jplk]hpmn

= −[mkljn]− [lkmjn] + [jlmkn] + [jmlkn]

+[mkjln]− [jmkln]− [jlkmn] + [lkjmn] (10.71)

We now call upon the various symmetry properties and Jacobi identities :

Vαβ;µν = +[mklnj] + [lkmnj] + [jlmkn] + [jmlkn]

+[mkjln] + [lkjmn] + [jlknm] + [jmknl]

= −[mknjl]− [jlnmk]− [lknjm]− [jmnlk] = 0 . (10.72)

So we find that V vanishes completely, and we shall employ that fact in what
follows next.

10.5.3 Proof of current conservation

Let us consider an amplitude with a gluon line sticking out, and see what
the SDe has to tell us about it

= + + (10.73)

Let us now apply the handlebar rules we have developed in this chapter :

= −

+ − . (10.74)
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It is important to realize that the internal lines in the SDe take on all pos-
sible identities, and therefore the third diagram stands for both graphs in
Eq.(10.38), and the fourth stands for all three diagrams in Eq.(10.69)16. We
now iterate the SDe for the slashed propagators in the first three diagrams,
and this gives us

= −

+ + +

−

= 0 , (10.75)

since the first diagram on the second line cancels against those of the first line,
and the last diagram on the second line vanishes all by itself, as we have seen
in the previous section. This establishes the proof of current conservation in
QCD.

It is important that we realize that the above proof relies on our use of
the axial gauge for the gluon propagator. Indeed, that choice is what makes
the identity (10.38) possible.

16Are you worried about possible double-counting here ? Don’t worry, be happy : the
symmetry factors are there for precisely that reason.
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Chapter 11

Electroweak theory

In this chapter we shall introduce the electroweak interactions of the Minimal
Standard Model. We will not use the gauge principle to do this, but rather
build up the theory by introducing new particles and/or vertices as the need
arises. This is more or less the exact opposite of the usual exposition, but is
(hopefully) rather closer to physics than to mathematics.

11.1 Muon decay

11.1.1 The Fermi coupling constant

Let us return to the Fermi model of muon decay as discussed in chapter 7.
There, the (phenomenological) amplitude for this decay was proposed to be
of the form of Eq.(7.154). The resulting width was

Γµ ≡ Γ(µ− → e− νeνµ) =
GF

2 h̄2mµ
5

192π3
. (11.1)

The measured values of the mechanical mass Mµ and the lifetime τµ of the
muon are

Mµ ≈ 1.88353 10−28 kg , τµ ≈ 2.19703 10−6 sec ; (11.2)

the muon mass may be more familiar under its appellation of Mµc
2 ≈

0.106 GeV. From these we can construct the more useful quantities

mµ =
Mµc

h̄
≈ 5.35446 1014 m−1 , Γµ =

1

cτµ
≈ 1.51825 10−3 m−1 .

(11.3)

301
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From Eq.(11.1) we then find

GF h̄ ≈ 4.53167 10−37 m2 , (11.4)

or
GF

h̄c2
≈ 1.16383 10−5 GeV−2 . (11.5)

We can therefore derive the ‘energy scale’ of the interaction responsible for
muon decay1 :

ΛW =

√
h̄c2

GF

≈ 292.5 GeV . (11.6)

11.1.2 Failure of the Fermi model in µ− νµ → e− νe

If the phenomenologically motivated Fermi interaction is to have any claim
on global validity, it must also describe the process

µ−(p1) νµ(p2) → e−(q1) νe(q2) , (11.7)

which amounts to the previous process, only with the outgoing muon neutrino
moved to an incoming anti-muon neutrino. No matter that we cannot, at
present, build µνµ colliders ; the very, very, very early universe did provide
such processes, and their description must be correct. By the rules of the
Fermi model, the amplitude is given by

M = i
GF h̄√

2
v(p2)(1 + γ5)γµu(p1) u(q1)(1 + γ5)γµv(q2)

= i
4√
2
GF h̄ v−(p2)γµu−(p1) u−(q1)γµv−(q2)

= i
8√
2
GF h̄ s−(p2, q1) s+(q2, p1) (11.8)

Here, we have neglected both the muon and the electron mass since the
scattering takes place at high energy, and we have applied the Chisholm
identity in order to remove the contracted Lorentz index. Disregarding overall
complex phases and using momentum conservation, we then find

M≈ i
16 GF h̄√

2
(p1 · q2) . (11.9)

1What precisely constitutes the scale is of course to some extent a matter of taste. If
we include a factor

√
2 in GF the scale is reduced by a factor (

√
2)1/2 to 246 GeV, which

is the more commonly used number.
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Neutrinos2 have only one helicity state, and therefore the averaged matrix
element square is given, in the centre-of-mass system, by〈

|M|2
〉

= 64 GF
2 h̄2 (p1 · q2)2 = 4 GF

2 h̄2 s2 (1 + cos θ)2 , (11.10)

where θ is the angle between the muon and electron momenta. By taking
also the angular average we obtain

〈〈
|M|2

〉〉
=

16

3
GF

2 h̄2 s2 . (11.11)

The total cross section is therefore given by

σ(µ− νµ → e− νe) =
GF

2 h̄2

3π
s (11.12)

As we have seen before, only the factor 1/3 cannot be established straight-
away in this expression, but has to be computed from the Feynman diagrams.

The scattering cross section rises linearly with s, and will therefore violate
the unitarity bound at sufficiently high energy. Since the the muon and its
antineutrino couple with a Dirac matrix, we may conclude that they must
be in a J = 1 state. The unitarity bound on this cross section is therefore

σ(µ− νµ → e− νe) ≤
1

2

16π

s
(2J + 1) =

24π

s
, (11.13)

which leads to a fundamental failure of the Fermi model (at least, at the tree
level) at a scattering energy of

√
s ≈ 1.5 TeV.

11.2 The W particle

11.2.1 The IVB strategy

We are faced with the task of modifying the Fermi model in such a way that
its success in the low-energy description of muon decay is preserved, while
at high energies unitarity remains inviolate. One possible way out might
be to simply make GF depend on the energy scale of the process so that it

2We shall assume, in this section, that neutrinos are strictly massless.
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decreases at high energies, making the µ− νµ → e− νe cross section well-
behaved. We see that this would necessitate a modification that leads to a
1/s behaviour at high values of s. Such energy-dependent couplings, called
form factors, are employed in for instance ‘low-energy’ hadronic physics ;
in such cases, however, this approach is generally viewed as an admission
of ignorance of, and an attempt to cope with, some underlying and simpler
physics at a smaller distance scale3.

The more elegant, and (as it turns out) the correct way to go is to make
the Fermi model look more ‘QED-like’: instead of using a contact interaction
between four fermions, we postulate the existence of a new particle, the so-
called W boson. This couples to fermion-antifermion pairs in a way reminis-
cent of the photon. The four-fermion interaction then resolves into two ff̄W
interactions, with the W boson mediating between the two vertices ; the cor-
responding Feynman diagram for the process µ−(p) to e−(q) νµ(k1) νe(k2)
is therefore given by

p

q

k1

k
2

Q

At the time this model was first seriously discussed, it went under the name
of Intermediate Vector-Boson (IVB) hypothesis. We take the W to couple
to the fermion pairs eνe and µνµ, so that (as we shall check!) the W must be
electrically charged, and assume that the coupling is in both cases of equal
strength4 (for now). We therefore postulate the following Feynman rules :

3This is particularly evident in some modifications of QED where the ‘dimensionless’
coupling Q is replaced by an s-dependent form Q(s/Λ2) which equals Q at low s but
deviates from it at high s. With the commissioning of each higher-energy accelerator,
such deviations are always looked for (and have, so far, not been found). Note that in this
case the quantity Λ for which search limits are obtained establishes an energy scale (or
1/Λ establishes a length scale) at which ‘new physics’ sets in. In the present case, GF ,
being dimensionful, sets such a scale by itself.

4At this point, these are of course just assumptions. Since 1983, when the W boson was
first freely produced, they have been tested with great accuracy. The alternative scenario
of the ‘charge-retention’ form in which an electrically neutral W couples to eµ and νeνµ
is for instance completely ruled out by the fact that the decay W → e+µ− is never seen.
The equality of the couplings is verified by the fact that the branching ratios for W → eνe
and W → µνµ are the same up to computable mass effects.
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kµ ν ↔ ih̄
−gµν + kµkν/mW

2

k2 −mW
2 + iε

internal W lines

µ
↔ i

h̄
gW

(
(1 + γ5)

)
γµ ff ′W vertices

EW Feynman rules, part 11.1 (11.14)

The W propagator is the standard one for a vector particle. Note that the
occurrence of the (1 +γ5) in the vertex is suggested by the form of the Fermi
interaction ; and, that the two fermions meeting in the vertex must be of
different type. The values of mW and gW are to be determined. Another
attractive property of this model is that here the coupling constant, gW, has
the same dimensionality as the QED one, and does not formally contain a
length scale.

With the above Feynman rules, the muon decay amplitude can now be
written as

M =
ih̄gW

2

Q2 −mW
2

[
u(k1)(1 + γ5)γαu(p) u(q)(1 + γ5)γαv(k2)

− 1

mW
2
u(k1)(1 + γ5)/Qu(p) u(q)(1 + γ5)/Qv(k2)

]
, (11.15)

where the momentum of the internal W is given by

Qµ = (p− k1)µ = (q + k2)µ . (11.16)

The last term in Eq.(11.15) appears to deviate significantly from the spinorial
structure of the first term, which coincides with the Fermi model. Hoewever,
notice that

u(k1)(1 + γ5)/Qu(p) = u(k1)(1 + γ5)(/p− /k1)u(p)

= u(k1)
(
− /k1(1− γ5) + (1 + γ5)/p

)
u(p)

= mµ u(k1)(1 + γ5)u(p) (11.17)

upon application of the Dirac equation to the external spinors ; and since, in
the same way,

u(q)(1 + γ5)/Qv(k2) = me u(q)(1− γ5)v(k2) , (11.18)
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the second term in Eq.(11.15) is actually suppressed by a factor (memµ)/mW
2,

which is small if mW is sufficiently large5. Neglecting this term, we see that
the Fermi-model amplitude is recovered with the single replacement of the
coupling constant GF/

√
2 by gW

2/(Q2 − mW
2). Now, the maximum value

that Q2 can take in this process is mµ
2, which is attained in the improbable

case that the muon neutrino emerges with zero momentum from the decay.
If, therefore, we assume that mW is large compared to mµ, we see that the
successes of the Fermi model in describing muon decay will be completely
reproduced provided6

gW
2

mW
2

=
GF√

2
, (11.19)

which we may also write in purely dimensionless terms as(
gW

c
√
h̄

)
=

1

21/4

(
mWc

2

ΛW

)
. (11.20)

11.2.2 The cross section for µ−νµ → e−νe revisited

We can now study the modification that the IVB hypothesis makes in the
cross section for the process µ−νµ → e−νe, where the Fermi model fails. In
this case the total invariant mass is (assumed to be) much larger than the
W mass, so that the modified prediction can immediately be seen to be

σ(µ− νµ → e− νe) =
2h̄2gW

4

3π

s

(s−mW
2)2

=
h̄2GF

2s

3π

(
mW

2

s−mW
2

)2

, (11.21)

and this cross section does decrease as 1/s for large s.
Of course, the unitarity limit (11.13) still has to be observed, which puts

an upper limit7 on the useful values of mW :

mWc
2 ≤ (72π2)1/4 ΛW ≈ 1.5 TeV . (11.22)

However, from Eq.(11.20) we see that for such large values the dimensionless
coupling constant is so large that the tree-level approximation for the cross
section is questionable.

5In fact, for the actual values of the masses the suppression factor is about 10−7.
6We disregard the overall sign difference between the two forms as Q2/mW

2 → 0.
7This value is close to the value of

√
s at which unitairy breaks down in the unmodified

Fermi model, see Eq.(11.13). This is not a coincidence. Whatever we do to the electroweak
interactions, 1.5 TeV appears to be the energy régime where things get tricky.
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One may wonder what happens at s = mW
2. There, the cross section

would seem to diverge ! We must realize, however, that at that energy we
are, in fact, producing an on-shell W that decays into a fermion-antifermion
pair : that is to say, the W is an unstable particle, and has a decay width.
We ought, therefore, to include the decay width into the propagator, so that
in the neighbourhood of the resonance at s ≈ mW

2 the cross section reads

σ(µ− νµ → e− νe) =
2h̄2gW

4

3π

s

(s−mW
2)2 +mW

2ΓW
2 . (11.23)

This is well below the unitarity limit. The IVB hypothesis therefore indeed E 54

E 55
cures the unitarity problem in this process.

Because of these successes, we shall adopt the notion of an existing W
particle of spin 1 (and hence obeying the lines laid out in chapter 8), coupling
to pairs of fermions separated by one unit of charge8.

11.2.3 The WWγ vertex

Minimal coupling

Since the W particle couples to fermion pairs of unequal charge, it must itself
also be charged9, which means that it must couple to the photon in (at least
!) a WWγ vertex. It is our aim now to find the form of such a vertex.

Both W ’s and photons are characterised by the fact that, in addition to
their momentum, they carry also a polarization vector, i.e. a Lorentz index:
the WWγ vertex must therefore carry no fewer than 3 Lorentz indices. As a
first attempt, we can simply view the W particles as a kind of funny scalars,
and adopt the sQED vertex dressed up with a metric tensor to take care of
the W indices. That is, the Feynman rule for the vertex is taken to be

(p )
(p )

(p )

W
γ

µ

ν

ρ
1

+  

W
2

3

_

↔ i

h̄
QW (p1 − p2)ρ γµν (11.24)

where the coupling constant (the W charge) is to be determined, and the
particles are considered to be outgoing from the vertex. To this end, let us

8Note that this automatically rules out couplings between a W , a lepton, and a quark.
9At pain of charge nonconservation, i.e. at pain of pain.
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examine the process

D(q1) U(q2) → γ(k1, ε) W
+(k2, ε+) .

ε and εW denote the polarization vectors of the photon and the W , respec-
tively, and we have indicated the particle momenta. Here, and in the follow-
ing, we shall denote by U and D two fermions of which the U has an electric
charge one unit higher than the D: for instance, U = νe and D = e, or U = u
and D = d. Their respective charges are QU and QD. At the tree level, we
then have three Feynman diagrams :

q
1

q
2

k
1

k
2

q
1

q
2

k
2

k
1

q
1

q
2

k
2

k
1

The three diagrams correspond to the three partial matrix elements

M1 = −ih̄gWQD v(q1)/ε
/k1 − /q1 +mD

(k1 − q1)2 −mD
2

(
(1 + γ5)

)
/εWu(q2) ,

M2 = −ih̄gWQU v(q1)
(
(1 + γ5)

)
/εW

/q2 − /k1 +mU

(q2 − k1)2 −mU
2
/εu(q2) ,

M3 = +ih̄gWQW v(q1)
(
(1 + γ5)

)
γαu(q2)

gαβ − PαP β/mW
2

s−mW
2

εWβ ((2k2 + k1) · ε) , (11.25)

where s = P 2, P = q1 + q2 = k1 + k2.
Since this process involves a produced photon, the handlebar identity

must hold : if we replace εµ by k1
µ the amplitude must vanish. We shall

investigate this is some detail. In the first place, we perform some simple
Dirac algebra to note that

v(q1)/ε(/k1 − /q1 +mD)
⌋
ε→k1

= v(q1)/k1(/k1 − /q1 +mD)

= v(q1)
(
k1

2 − 2(q1 · k1) + (/q1 +mD)/k1

)
=

(
(k1 − q1)2 −mD

2
)
v(q1) , (11.26)

where in the second line we have used anticommutation between /k1 and /q1,
and in the third line the Dirac equation for v(q1). This kind of operation will
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occuur very frequently in what follows. We see that

M1cε→k1 = −ih̄gWQD v(q1)(1 + γ5)/εWu(q2) , (11.27)

and similarly (see excercise ??)

M2cε→k1 = +ih̄gWQU v(q1)(1 + γ5)/εWu(q2) . (11.28)

For the third diagram we find

M3cε→k1 = +ih̄gWQW v(q1)
(
(1 + γ5)

)
/εWu(q2)

−ih̄gWQW (k1 · εW )

× v(q1)
(
mU

(
(1 + γ5)

)
−mD

(
1− γ5

))
u(q2) . (11.29)

If we were allowed to consider only the first of the two terms of the result
(11.29), we could obtain the desired cancellation :

3∑
j=1

Mj


ε→k1

= 0 ⇒ QW = QD −QU : (11.30)

but the second term in Eq.(11.29) spoils this idea by having a quite different
algebraic structure ; no tuning of coupling constants is going to ensure that
a WWγ vertex of the form (11.24) can do the job.

Yang-Mills coupling

Treating the WWγ vertex as a prettified sQED vertex does not work. It
means that the photon-W interactions cannot be obtained by the minimal-
substitution rule. This should not come as a surprize since the vertex (11.24)
is only designed for graceful behaviour towards longitudinal photons, not
towards longitudinal W ’s. We therefore propose to replace Eq.(11.24) by a
vertex of the form

i
QW

h̄

(
(a1p1 + a2p2)ρgµν + (a3p2 + a4p3)µgνρ + (a5p3 + a6p1)νgρµ

)
.

(11.31)
Note that because of momentum conservation each of the three terms need
contain only two of the momenta; the constants a1,...,6 are to be determined.
This we shall do by considering several situations.
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First, we consider the process of decay of a photon in a W+W− pair :

γ∗(q) → W+(k+, ε+) W−(k−, ε−) .

Kinematically this is only possible if the photon is quite off-shell, and there-
fore we do not give it a polarization vector but leave its Lorentz index µ free.
The matrix element is given by

M = ih̄1/2QW Aµ ,

Aµ = (a1k+ + a2k−)µ(ε+ · ε−)

+((a3k− − a4q) · ε+)ε−
µ + ((−a5q + a6k+) · ε−)ε+

µ

= (a1k+ + a2k−)µ(ε+ · ε−)

+(a3 − a4)(q · ε+)ε−
µ + +(a6 − a5)(q · ε−)ε+

µ , (11.32)

where in the last line we have used q = k+ +k− and (k± · ε±) = 0. Since even
for off-shell photons the current must be strictly conserved we require that

Aµqµ =
1

2
q2(a1 + a2)(ε+ · ε−) + (a3− a4− a5 + a6)(q · ε+)(q · ε−) = 0, (11.33)

which leads to the following relations between the six constants :

a1 + a2 = 0 , a3 − a4 = a5 − a6 . (11.34)

In the second place, we return to the process DU → γW+ discussed in
the previous section. The third Feynman diagram now reads differently :

M3 = +ih̄gWQW v(q1)
(
(1 + γ5)

)
γαu(q2)

1

2(k1 · k2)
Zα ,

Zα =
(
δαβ − PαPβ/mW

2
)

{
((a1k2 − a2P ) · ε)ε+β + ((−a3P + a4k1) · ε+)εβ

+(a5k1 + a6k2)β(ε+ · ε)
}

=
(
δαβ − PαPβ/mW

2
)

{
(a1 − a2)(k2 · ε)ε+β + (a4 − a3)(k1 · ε+)εβ

+(a5k1 + a6k2)β(ε+ · ε)
}

. (11.35)
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The replacement ε → k1 now leads, after some simple algebra (and use of
momentum conservation !) to the form

Zαcε→k1 = (a1 − a2)(k1 · k2)ε+
α + T α ,

T α = (−a3 + a4 + a5 − a6)k1
α

−(k1 · k2)

mW
2

(a1 − a2 − a3 + a4 + a5 + a6)Pα . (11.36)

Now a complete cancellation of all diagrams in this case is only possible if
only the first term in Zαc survives. Using the assignment10 QW = QD −QU,
we then come to the following additional relations between the a’s :

a1 − a2 = 2 , a1 − a2 = a3 − a4 − a5 − a6 = 0 . (11.37)

A third result is obtained by considering the process UD → γW−. Be-
cause of the symmetry between this amplitude and the previous one, we can
establish (see excercise ??) that also

a1 − a2 = a5 − a6 + a3 + a4 . (11.38)

For the last necessary piece of information we must turn to the handlebar
operation for the produced W rather than the photon. We can rewrite the
three Feynman diagrams as

M1 = −i h̄gWQD

(q2 − k2)2 −mD
2
v(q1)/ε (/q2 − /k2 +mD)

(
(1 + γ5)

)
/ε+u(q2) ,

M2 = −i h̄gWQU

(k2 − q1)2 −mU
2
v(q1)

(
(1 + γ5)

)
/ε+ (/k2 − /q1 +mU) /εu(q2) ,

M3 = +i
h̄gWQW

s−mW
2
v(q1)

(
(1 + γ5)

)
γαu(q2) Zα, (11.39)

with Zα as in Eq.(11.35). The handlebar operation on ε+ now gives the
slightly more complicated result

v(q1)/ε (/q2 − /k2 +mD)
(
(1 + γ5)

)
/ε+u(q2)

⌋
ε+→k2

=

= −
(
(q2 − k2)2 −mD

2
)
v(q1)

(
(1 + γ5)

)
/εu(q2)

− v(q1)
(
mU

(
(1 + γ5)

)
−mD

(
1− γ5

))
/ε/k2u(q2)

+
(
mU

2 −mD
2
)
v(q1)

(
(1 + γ5)

)
/εu(q2) . (11.40)

10Any common factor in the a’s is always absorbed in the value of QW so this is no loss
of generality.
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Of these three lines, the second is suppressed with respect to the first one by
a factor (mass/energy), and the third line even by (mass/energy)2. In the
high-energy limit, therefore, the second and third line will not contribute to
any unwanted high-energy behaviour of the amplitude : we shall call such
terms safe terms11. We can therefore write

M1cε+→k2 = +ih̄gWQD v(q1)
(
(1 + γ5)

)
/εu(q2) + · · · , (11.41)

where the ellipsis denotes safe terms. For the second diagram, we find in a
similar way (see excercise ??) :

M2cε+→k2 = −ih̄gWQU v(q1)
(
(1 + γ5)

)
/εu(q2) + · · · , (11.42)

For the third graph we find, after some algebra,

Zαcε+→k2 = (a4 − a3)(k1 · k2)εα − a3mW
2εα

− (k2 · ε)(k1 · k2)

mW
2

(a1 − a2 − a3 + a4 + a5 + a6)Pα

+ (k2 · ε)(−a1 + a2 + a5 − a6)k1
α . (11.43)

Requiring M3 to cancel against M1 +M2 up to safe terms therefore leads
to yet more relations between the a’s :

a3 − a4 = 2 , a1 − a2 = a5 − a6 . (11.44)

Combining the requirements (11.34), (11.37), (11.38) and (11.44) we find the
unique solution

a1 = a3 = a5 = 1 , a2 = a4 = a6 = −1 . (11.45)

This leads us to introduce the Yang-Mills form of the three-boson vertex :

Y (p1, µ; p2, ν; p3, ρ) ≡
(p1 − p2)ρgµν + (p2 − p3)µgνρ + (p3 − p1)νgρµ . (11.46)

Note that this is antisymmetric in the interchange of any two of its pairs of ar-
guments. It is therefore invariant under cyclic permutations of the argument
pairs12.

We have thus established the WWγ vertex to be

11Which is not to say that they are negligible ! The point here is that they do not
contribute to any condition on the coupling constants.

12I have adopted the notation ‘Y ’ for this vertex since it reminds us both of the name
Yang(-Mills), and of the fact that in such a vertex three bosons meet.
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p )γ (W (p )

W (p )

µ

ν

ρ
1

2

3

+

_

↔ i

h̄
QW Y (p1, µ; p2, ν; p3, ρ)

WWγ vertex

All particles and momenta counted outgoing

EW Feynman rules, part 11.2 (11.47)

A very important identity for the Yang-Mills vertex is the following :

Y (p1, p1; p2, ν; p3, ρ) =
(
p2
νp2

ρ − p2
2gνρ

)
−
(
p3
νp3

ρ − p3
2gνρ

)
, (11.48)

and its cyclic permutations. This identity, which follows directly from mo-
mentum conservation, is very important whenever we decide to put a han-
dlebar on any of the three boson lines.

11.3 The Z particle

11.3.1 W pair production

Unitarization from extra fermions

In the previous section we have investigated how the possible coupling be-
tween W ’s and photons are restricted by the requirements of the handlebar.
We shall now pursue the same strategy for different processes. Since we
shall be interested in the high-energy behaviour of amplitudes we shall allow
ourselves to neglect particle masses wherever possible.

Let us consider the process

U(p1) U(p2) → W+(q+, ε+) W−(q−, ε−)

With the vertices available so far, we have the following two Feynman dia-
grams

W

W

D

U

U

_

+

_ U

U

_
+

W

W
_γ
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which contribute to the amplitude as follows :

M1 = −2i
h̄gW

2

(p2 − q+)2
v(p1)

(
(1 + γ5)

)
/ε− (/p2 − /q+) /ε+u(p2) ,

M2 = i
h̄QUQW

(q+ + q−)2
v(p1)γµu(p2) Y (q+, ε+; q−, ε−,−q+ − q−, µ) .(11.49)

Here we have neglected the masses as announced. The high-energy behaviour
can be investigated by putting a handlebar on the W+, say ; we then obtain

M1cε+→q+ = 2ih̄gW
2 v(p1)(1 + γ5)/ε−u(p2) ,

M2cε+→q+ = ih̄QUQW v(p1)/ε−u(p2) , (11.50)

and we see that these two diagrams cannot possibly cancel one another. We
must therefore introduce an additional ingredient in the model. A possible
approach is the following. In the analogous process UU → γγ the handlebar
requirement is satisfied because there are two diagrams, with the photons
interchanged. We might do the same for the W by postulating the existence
of another fermion type U ′, with charge one unit higher than QU, and the
existence, in addition to the UDW vertex, of a U ′UW vertex with vector
and axial-vector couplings. We then have a third diagram at hand :

W

W
U

U

_

_

+

U’

with its own contribution

M3 = −i h̄

(p1 − q+)2
v(p1)ω/ε+ (/q+ − /p1)ω/ε−u(p2) ,

ω = g1 + g2γ
5 . (11.51)

The mass of the U ′ is also neglected, and g1,2 are to be determined. We have

M3cε+→q+ = −ih̄ v(p1)ω2/ε−u(p2) , (11.52)

so that

3∑
j=1

Mj


ε+→q+

= 0 ⇒
(
g1 + g2γ

5
)2

= 2gW
2(1 + γ5) +QUQW . (11.53)
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We see that it is in principle possible to attain good high-energy behaviour
in the process UU → W+W−, at the cost of introducing new fermion types ;
and the same is possible for DD → W+W− (note, however, the problem
raised in excercise ??). But a very serious conundrum immediately arises.
Having postulated the existence of the U ′, we of course also have to consider
high-energy behaviour in the process U ′U

′ → W+W−. It is easy to see that
that can only be cured by postulating also a fermion U”, of again one unit of
charge higher . . . An infinite tower of fermions with higher and higher charge
becomes unavoidable. Not only is this extremely unattractive13, but as the
charges grow without bound perturbation theory is bound to break down
since it is based on the assumption that the interactions are not large.

The Z boson to the rescue

Since introducing additional Dirac particles does not seem a viable way to
ensure good high-energy behaviour in UU → W+W−, we shall investigate
the alternative of an additional boson. That is, we shall postulate the exis-
tence of a neutral spin-1 particle, coupling to W+W− pairs and to fermion-
antifermion pairs. This particle, denoted by Z (or Z0) is supposed to cure
the high-energy behaviour in both UU → W+W− and DD → W+W− simul-
taneously14. For the WWZ vertex it stands to reason to employ the useful
Yang-Mills form (11.46), with a coupling constant to be determined. Since
the diagram with the Z must cancel against a combination of the purely vec-
torial photon diagram and theD-exchange diagram with its (1+γ5) structure,
the Z must couple to the fermions with a mixture of vector and axial-vector
terms. We therefore arrive at the following putative Feynman rules :

µ

ν

ρ

W  
Z

(   )

(   )
_

W p2

p
1 (   )p

3

+

→ i

h̄
gWWZ Y (p1, µ; p2, ν; p3, ρ) ,

13Even leaving aside the fact that no higher-charge fermions have been found to date.
14This is the simplest scenario. Other possibilities could be explored, in which there is

more than one type of Z, perhaps one type for the U fermions and one type for the D
fermions. Experiment, however, has taught us that the simplest option appears, as usual,
to be the one chosen by nature.
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U

U

Z
µ
→ i

h̄

(
vU + aUγ

5
)
γµ ,

Z
µ

D

D

→ i

h̄

(
vD + aDγ

5
)
γµ ,

where as before in the Yang-Mills vertex every participant is counted in the
outgoing manner. With these vertices a new Feynman diagram is available
in the process UU → W+W− :

U

U

Z

_

W

W
_

+

,

which evaluates to

M3 = i
h̄ gWWZ

(q+ + q−)2 −mZ
2
v(p1)

(
vU + aUγ

5
)
γµu(p2)

Y (q+, ε+; q−, ε−;−q+ − q−, µ) . (11.54)

Note that nothing has been neglected in this expression ; the second term in
the massive-boson propagator drops out when we multiply it into the Yang-
Mills vertex. Since this diagram is so similar toM2 it is easy to perform the
handlebar operation :

M3cε+→q+ ≈ ih̄ gWWZ v(p1)
(
vU + aUγ

5
)
/ε−u(p2) , (11.55)

where we have assumed that s = (q+ + q−)2 is also much larger than mZ
2,

and neglected safe terms. We now see that the high-energy behaviour is
acceptable provided that the non-safe terms cancel under the relations

0 = vUgWWZ + 2gW
2 +QUQW ,

0 = aUgWWZ + 2gW
2 . (11.56)

We can perform precisely the same procedure for the process DD → W+W−

and obtain (see excercise ??)

0 = vDgWWZ − 2gW
2 +QDQW ,

0 = aDgWWZ − 2gW
2 . (11.57)
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A final piece of information is obtained if we realize that, the Z being a
massive spin-1 particle, it must obey its own handlebar relations ; we can
therefore investigate the process UD → W+Z, which gives a single extra
condition

0 = vD + aD − vU − aU − gWWZ . (11.58)

11.3.2 The weak mixing angle for couplings

We can handle (if not completely solve) the system of constraints as follows.
Let us subtract Eqs.(11.56) from Eqs.(11.57). We then obtain

(vD + aD − vU − aU)gWWZ + (QD −QU)QW = 8gW
2 . (11.59)

Using Eq.(11.58) and the definition of QW, we find a relation between three
couplings :

gWWZ
2 +QW

2 = 8gW
2 . (11.60)

There must, therefore, exist an angle θW such that

QW =
√

8 gW sin θW , gWWZ =
√

8 gW cos θW . (11.61)

In the following we shall use the notation sW = sin θW and cW = cos θW .
This angle is called the weak mixing angle, and it parametrizes essentially all
of the minimal model of electroweak interactions we are constructing here.
In the first place, we know that the charge of the W must be equal to the
charge of the electron (since neutrinos are neutral) and therefore we might
prefer to write

gW =
QW√
8 sW

(11.62)

which leads to a parametrization of the W mass itself15 :

(h̄ c mW)2 =
π α√

2 1.16 10−5

1

sW2
GeV2 , (11.63)

or

h̄ c mW =
37.3

sW
GeV . (11.64)

15To arrive at this experession we have used the definition (11.5) for GF , and the result
(9.35) of α.
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As we see, the assumption of the existence of a single, neutral Z boson
immediately implies that the W has a mass of at least 37.3 GeV. Notice that
no prediction for the mass of the Z is obtained, however.

The other unknowns in our treatment can now be expressed in terms of
θW . Adopting the usual convention of denoting by e the positive unit charge,
we find by straightforward algebra

QW = −e , gWWZ = −ecW
sW

,

aU = −aD =
e

4sWcW
,

vU = aU

(
1− 4sW

2QU

e

)
,

vD = aD

(
1 + 4sW

2QD

e

)
. (11.65)

We note here that θW is defined at this stage as a relation between couplingE 56
constants ; later on we shall encounter it in another guise !

11.3.3 W,Z and γ four-point interactions

The 2→ 2 processes involving either four fermions or two fermions and two
bosons have led us to postulate W and Z particles and their interactions
with fermions, as well as their mutual three-point vertices. Since as excercise
?? shows we have pretty much quarried all possible information16 about this
sector, we now turn to the 2 → 2 processes involving four bosons. First we
consider the process

W+(p1, ε1) γ(p2, ε2) → W+(p3, ε3) γ(p4, ε4)

With the available vertices we have two Feynman diagrams for this process :

W
+

W
+γ

γ
W

+
W

+

γ
γ

with the respective contributions

M1 = i
h̄QW

2

(p2 − p3)2 −mW
2
Y (p3, ε3; p2 − p3, ν;−p2, ε2)

16As long as the fermion masses are neglected, see later.
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×
(
gµν + (p1 − p4)µ(p2 − p3)ν/mW

2
)

× Y (p1 − p4, µ;−p1, ε1; p4, ε4)

= −i h̄QW
2

2(p2 · p3)

(
−mW

2(ε2 · ε3)(ε1 · ε4)

+Y (p3, ε3; p2 − p3, µ;−p2, ε2)Y (p1 − p4, µ;−p1, ε1; p4, ε4)
)
,

M2 = i
h̄QW

2

(p3 + p4)2 −mW
2
Y (p3, ε3;−p3 − p4, ν; p4, ε4)

×
(
gµν + (p1 + p2)µ(−p3 − p4)ν/mW

2
)

× Y (p1 + p2, µ;−p1, ε1;−p2, ε2)

= i
h̄QW

2

2(p3 · p4)

(
−mW

2(ε3 · ε4)(ε1 · ε2)

+Y (p3, ε3;−p3 − p4, µ; p4, ε4)Y (p1 + p2, µ;−p1, ε1;−p2, ε2)
)
,

(11.66)

where we have already used Eq.(11.48) in the internal W lines, as well as
the fact that (pj · εj) = 0, j = 1, 2, 3, 4. Let us now proceed to check current
conservation for the outgoing photon. The following algebra applies toM1 :

Y (p3, ε3; p2 − p3, µ;−p2, ε2)Y (p1 − p4, µ;−p1, ε1; p4, ε4)cε4→p4 =

= Y (p3, ε3; p2 − p3, µ;−p2, ε2)
(
(p4 · ε1)(p2 − p3)µ + 2(p2 · p3)ε1

µ
)

= 2(p2 · p3)Y (p3, ε3; p2 − p3, ε1;−p2, ε2)

+ mW
2(p4 · ε1)(ε2 · ε3) , (11.67)

so that

M1cε4→p4 = −ih̄QW
2 Y (p3, ε3; p2 − p3, ε1;−p2, ε2) (11.68)

In the same manner we arrive at

M2cε4→p4 = ih̄QW
2 Y (p1 + p2, ε3;−p1, ε1;−p2, ε2) (11.69)

Adding these last two results we obtain

2∑
j=1

Mj


ε4→p4

=

= ih̄QW
2 (2(ε1 · ε3)(ε2 · p4)− (ε1 · ε2)(ε3 · p4)− (ε2 · ε3)(ε1 · p4)) .

(11.70)
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We might also have chosen choose to put the handlebar on ε2 instead ; the
result would then have been

2∑
j=1

Mj


ε2→p2

=

= ih̄QW
2 (2(ε1 · ε3)(p2 · ε4)− (ε1 · p2)(ε3 · ε4)− (p2 · ε3)(ε1 · ε4)) .

(11.71)

Going to the limit of large energies, we can also envisage putting a handlebar
on ε1 or ε3. Neglecting safe terms leads to

2∑
j=1

Mj


ε1→p1

=

= ih̄QW
2 (2(p1 · ε3)(ε2 · ε4)− (p1 · ε2)(ε3 · ε4)− (ε2 · ε3)(p1 · ε4)) ,

(11.72)

and

2∑
j=1

Mj


ε3→p3

=

= ih̄QW
2 (2(ε1 · p3)(ε2 · ε4)− (ε1 · ε2)(p3 · ε4)− (ε2 · p3)(ε1 · ε4)) .

(11.73)

We can repair the high-energy behaviour of the amplitude, for all these cases
at once, by introducing a four-boson vertex :

W W
_+

µ ν

βα

γ γ

↔ − i
h̄
QW

2 Xµναβ

where

Xµναβ = 2 gµνgαβ − gµαgνβ − gµβgνα . (11.74)

The occurrence of such a four-point vertex should not surprise us, with our
experience of a similar vertex in sQED. Its precise algebraic structure can,
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of course, not be inferref from that example17.

From the similarity between the WWγ and WWZ vertices we can also
immediately conclude that the analogous processes WZ → Wγ and WZ →
WZ will necessitate the existence of the following four-point vertices :

W W
_+

µ ν

βα
γZ

↔ − i
h̄
QW

2 cW
sW

Xµναβ

W W
_+

µ ν

βα

Z Z

↔ − i
h̄
QW

2 cW
2

sW2
Xµναβ

fFinally, we consider the process

W+(p1, ε1);W−(p2, ε2) → W+(p3, ε3) W−(p4, ε4) ,

for which we have, so far, the four diagrams

W
+

W
_

W
+

W
_

Ζ,γ

,

W
+

W
_

W
+

W
_

Z,γ

.

It will turn out to be useful to take the γ and Z exchanges together so that
we have two contributions :

M1 = ih̄QW
2 Y (p3, ε3,−p1, ε1, p1 − p3, µ)(
gµν

(p1 − p3)2
+
cW

2

sW2

gµν − (p1 − p3)µ(p1 − p3)ν/mZ
2

(p1 − p3)2 −mZ
2

)
Y (−p2, ε2, p4, ε4, p2 − p4, ν) ,

M2 = ih̄QW
2 Y (−p2, ε2,−p1, ε1, p1 + p2, µ)(
gµν

(p1 − p3)2
+
cW

2

sW2

gµν − (p1 + p2)µ(p1 + p2)ν/mZ
2

(p1 + p2)2 −mZ
2

)
Y (p3, ε3, p4, ε4, p2 − p4, ν) . (11.75)

17Except, perhaps, the idea that it contains only the metric tensor, and not any of the
momenta.
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Because the masses of the external particles are all equal, the second term in
the Z propagator can be seen to drop out exactly. We can therefore afford
to take the limit s � mZ

2 without more ado, and combine the γ and Z
propagators to arrive at the following high-energy form of the contributions :

M1 = i
h̄QW

2

sW2

1

(p1 − p3)2
Y (p3, ε3,−p1, ε1, p1 − p3, µ)

Y (−p2, ε2, p4, ε4, p2 − p4, µ) ,

M2 = i
h̄QW

2

sW2

1

(p1 + p2)2
Y (−p2, ε2,−p1, ε1, p1 + p2, µ)

Y (p3, ε3, p4, ε4, p2 − p4, µ) . (11.76)

Let us now take the outgoing W− longitudinal, i.e apply the handlebar on
ε4, and drop safe terms :

Y (p3, ε3,−p1, ε1, p1 − p3, µ)Y (−p2, ε2, p4, ε4, p2 − p4, µ)cε4→p4
= Y (p3, ε3,−p1, ε1, p1 − p3, µ)

×
(
(p1 − p3)µ((p1 − p3) · ε2)− ((p1 − p3)2 −mW

2)ε2
µ
)

≈ −(p1 − p3)2 Y (p3, ε3,−p1, ε1, p1 − p3, ε2) (11.77)

so that

M1cε4→p4 = −ih̄QW
2

sW2
Y (p3, ε3,−p1, ε1, p1 − p3, ε2) ; (11.78)

and the exactly analogous treatment gives

M2cε4→p4 = −ih̄QW
2

sW2
Y (−p2, ε2,−p1, ε1, p1 + p2, ε3) . (11.79)

The total result of the handlebar operation is given by

M1 +M2cε4→p4 =

−ih̄QW
2

sW2
(2(p4 · ε1)(ε2 · ε3)− (p4 · ε2)(ε1 · ε3)− (p4 · ε3)(ε1 · ε2)) :

(11.80)

we arrive at precisely the same algebraical structure as before, and we can
immediately conclude that, in addition to the WWγγ, WWZγ and WWZZ
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couplings there must also be a WWWW coupling :

W

W
_

W
_

W
+

µ ν

βα

+

↔ i

h̄

QW
2

sW2
Xµναβ

Note, however, a slight difference of this vertex as compared to the previous
ones. There, the term that couples the two W Lorentz indices carries the
factor 2 ; here, it is the term that couples the two W+’s that is ‘special’.

11.4 The Higgs sector

11.4.1 The Higgs hypothesis

Fully longitudinal scattering

Having pursued the consequences of unitarity in processes where a single ex-
ternal spin-1 particle is longitudinally polarized, we must of course also face
the more taxing case in which, perhaps, all external spin-1 particles are lon-
gitudinally polarized : surely this is the most dangerous case from the point
of view of unitarity. In doing so, we must however take into account the fact
that the notion of longitudinal polarization is not strictly a Lorentz-invariant
one since a generic Lorentz boost will mix longitudinal and transverse degrees
of freedom. It therefore behooves us to specify in which particular Lorentz
frame the particles are assumed to be longitudinally polarized. To this end
we introduce a vector cµ with

c · c = 1 ;

the frame in which ~c = 0 is defines the appropriate Lorentz frame. In these
notes we shall take cµ to be proportional to the total momentum involved in
the scattering process, that is, the external vector particles are assumed to
be purely longitudinal in the centre-of-mass frame of the scattering18. The

18That this is not a trivial point becomes clear when we realize that in ‘WW scattering’
at the LHC, say, the centre-of-mass frame of the scattering does not coincide with the
laboratory frame, in which the detector is at rest, and in which the polarization analysis
of the produced bosons is presumably performed.
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longitudinal polarization of an on-shell vector particle with momentum pµ

and mass m is then given by

εL
µ =

NL

m

(
pµ − m2

c · p
cµ
)

, NL
−2 = 1− m2

(c · p)2
, (11.81)

which expression is well-defined as long as ~p 6= 0. We see that, as before,
εL = p/m + O (m/p0). In the cases studied so far, the subleading terms in
εL have only led to safe terms so that they could be neglected19 ; now, this
is no longer automatically the case.

WW → ZZ

The first Gedanken process20 is

W+(p1, ε1) W−(p2, ε2) → Z0(p3, ε3)Z0(p4, ε4)

So far, we have the following three Feynman graphs available at the tree level
:

3

4

W

1

2

Z

Z
W

W

W

1

2

Z

Z
W

W

4

3

1

2 3

4Z

Z

W

W

,

and the following contributions :

Mj = −ih̄gWWZ
2Nj

∆j

, j = 1, 2 ,

N1 = Y (p1 − p3, µ;−p1, ε1; p3, ε3)

×
(
−gµν +

1

mW
2
(p1 − p3)µ(p1 − p3)ν

)
× Y (−p2, ε2; p2 − p4, ν; p4, ε4) ,

∆1 = (p1 − p3)2 −mW
2 = mZ

2 − 2(p1 · p3) ,

N2 = Y (p1 − p4, µ;−p1, ε1; p4, ε4)

19From the point of view of restoring unitarity, not that of actually getting the cross
section right!

20As I write these notes, this is still a true Gedanken process. As usual, with improving
technology and the commissioning of higher-energy machines, Gedanken processes are
gradually turned into actual ones...
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×
(
−gµν +

1

mW
2
(p1 − p4)µ(p1 − p4)ν

)
× Y (−p2, ε2; p2 − p3, ν; p3, ε3) ,

∆2 = (p1 − p4)2 −mW
2 = mZ

2 − 2(p1 · p4) ,

M3 = −ih̄gWWZ
2N3 ,

N3 = X(ε1, ε2, ε3, ε4) . (11.82)

Owing to the work we have done so far, we may already anticipate some
cancellations between the diagrams when we make all bosons longitudinal
and the safe terms are therefore not the subleading ones, but rather the sub-
subleading ones. We have to proceed carefully21. Denoting by the subscript
L the ‘fully longitudinal’ case, it appears best to write the result as

3∑
j=1

Mj


L

= −ih̄gWWZ
2 N123

∆12

,

N123 = N1∆2 +N2∆1 + ∆12N3 = −4E6 mZ
2

mW
4

(sin θ)2 + · · · ,

∆12 = ∆1∆2 = 4E4 (sin θ)2 + · · · , (11.83)

where E = p1
0 = p2

0 = p3
0 = p4

0 and θ = 6 (~p1, ~p3), all evaluated in
the centre-of-mass frame. As before, the ellipses denote contributions that
can only give rise to safe terms, and that therefore do not interest us here.
Note that we have disregarded also the normalization factors NL ; since the
polarization vectors are overall factors in the scattering amplitude, the NL

can never play a rôle in any dynamical cancellation, and their subleading
terms are therefore always safe. The non-safe contribution from our three
Feynman graphs is therefore

3∑
j=1

Mj


L

= ih̄ gWWZ
2 E2 mZ

2

mW
4

+ · · · , (11.84)

and it violates unitarity at sufficiently large E. Note that each individual
Mj will go as E4 at high energy so, as already anticipated, some cancellation
has already taken place, but not enough ; and since the vertices have already
been fixed before, we have to introduce a new ingredient into the theory.

21This is most safely done using computer algebra, using e.g. FORM.



326 March 26, 2017

The Minimal Higgs approach

We shall assume that, in addition to the three graphs used so far, there is a
fourth one available, mediated by a new particle type. We assume this to be
a neutral, scalar particle, denoted by H, that couples to W+W− and ZZ as
follows:

H

µ

ν W

W

↔ i

h̄
gWWH g

µν

H

µ

ν

Ζ

Ζ

↔ i

h̄
gZZH g

µν

A fourth Feynman diagram is now possible :

2 4

31

H

,

given by

M = −ih̄ gWWHgZZH (ε1 · ε2) (ε3 · ε4)
1

4E2 −mH
2
. (11.85)

Its contribution to the fully longitudinal scattering reads

M4cL = −ih̄ E2 gWWHgZZH
1

mW
2 mZ

2
(11.86)

and good high-energy behaviour will be restored in the process WW → ZZ
provided that

gWWH gZZH = gWWZ
2 mZ

4

mW
2
. (11.87)

Before we proceed to the next Gedanken process, a few remarks are in order.
In the first place, the choice for a scalar Higgs particle is almost unavoidable.
It certainly cannot be a fermion ; if it were a vector particle, its propagator
would contain unwanted higher powers of the energy E, the WWH and
ZZH would presumably be of Yang-Mills type hence also E-dependent. The
vertices given above are essentially the only ones possible for the interactions
between two vectors and a scalar if we want them to be energy-independent.
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Note that gWWH and gZZH may both be expected to contain a mass, that is,
they are of dimension L−1/

√
h̄. The assumption that there is just one type

of neutral scalar involved is, of course, based on nothing but a prejudice in
favour of simplicity. Finally, at high energy all contributions from mH end up
in safe terms, and we do not expect to glean any information on the Higgs
mass from our considerations.

WW → WW scattering

Another four-boson scattering process of interest is

W+(p1, ε1)W+(p2, ε2) → W+(p3, ε3)W+(p4, ε4)

for which we have five purely vector-boson diagrams :

γ,Ζ

1

2
4

3
γ,Ζ

1

2
3

4 1

2

3

4

whose contributions can be conviently written as

M1 = −ih̄ Y (p3, ε3;−p1, ε1; p1 − p3, µ)

×
(
QW

2 −gµν
(p1 − p3)2

+ gWWZ
2−gµν + (p1 − p3)µ(p1 − p3)ν/mW

2

(p1 − p3)2 −mZ
2

)
× Y (p4, ε4;−p2, ε2; p2 − p4, ν) ,

M2 = M1cp3,ε3 ↔ p4,ε4
,

M3 = ih̄
QW

2

sW2
X(ε3, ε4, ε1, ε2) . (11.88)

By the same methods as used in the previous section we arrive at

3∑
j=1

Mj


L

= i
h̄ E2 QW

2

mW
4 sW2

(
−4mW

2 + 3mZ
2 cW

2
)

+ · · · (11.89)

The Higgs hypothesis now provides for two additional diagrams :

1

2

H
3

4

1

2

H

3

4
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with the contributions

M4 = −ih̄ gWWH
2 (ε1 · ε3)(ε2 · ε4)

(p1 − p3)2 −mH
2
,

M5 = −ih̄ gWWH
2 (ε1 · ε4)(ε2 · ε3)

(p1 − p4)2 −mH
2
, (11.90)

so that
5∑
j=4

Mj


L

= ih̄ E2 gWWH
2

mW
4

+ · · · (11.91)

In this process, then, good high-energy behaviour is obtained under the con-
dition

gWWH
2 =

QW
2

sW2

(
4mW

2 − 3mZ
2 cW

2
)
. (11.92)

Again, no restrictions on mH occur.

HZ → WW scattering

We have now run out of four-vector Gedanken processes. ZZ → ZZ scat-
tering has no Yang-Mills contributions22, and any four-vector process in-
volving photons will have vanishing amplitudes under a handlebar on any
photon. However, in the same spirit by which we boldly proposed the pro-
cess UD → WZ as soon as the Z was hypothesized, we can consider the
process

H(p1)Z0(p2, ε2) → W+(p3, ε3)W−(p4, ε
4)

Since only three out of four particles can become longitudinal here, the uni-
tarity violations are not so bad, and the safe terms are of sub- rather than
of sub-sub-leading type. We have three diagrams,

3

4
2

1 3

4
2

1

3

4
2

1

22Under the Higgs hypothesis ZZ → ZZ scattering is described by three diagrams
containing Higgs exchange. Their sum, however, is safe by itself and hence does not lead
to any constraints.
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that contribute as

M1 = −ih̄ gWWZgWWH Y (p3, ε3; p2 − p3, µ;−p2, ε2)

× −g
µν + (p2 − p3)µ(p2 − p3)ν

(p2 − p3)2 −mW
2

(ε4)ν ,

M2 = −ih̄ gWWZgWWH Y (p2 − p4, µ; p4, ε4;−p2, ε2)

× −g
µν + (p2 − p4)µ(p2 − p4)ν

(p2 − p4)2 −mW
2

(ε3)ν ,

M3 = −ih̄ gWWZgZZH Y (p3, ε3; p4, ε4;−p3 − p4, µ)

× −g
µν + (p1 + p2)µ(p1 + p2)ν

(p1 + p2)2 −mZ
2

(ε2)ν . (11.93)

The kinematics of this process is a little different from that of the two pervious
ones, since mH and mZ cannot be assumed to be equal. Still, at high energy
we may apply massless kinematics since we only have to cancel the leading
non-safe terms. Neglecting, therefore, mW, mZ and mH in the kinematics23

we find

3∑
j=1

Mj


L

= ih̄ E2 cos θ gWWZ

(
gWWH

mZ

mW
4
− gZZH

1

mZ mW
2

)
+ · · · (11.94)

and find the final requirement

gWWH

mZ

mW
4

= gZZH
1

mZ mW
2

(11.95)

if good high-energy behaviour is to emerge.

11.4.2 Predictions from the Higgs hypothesis

The Higgs hypothesis has given us the three conditions of Eqs.(11.87), (11.92)
and (11.95). If we consider gWWH and gZZH as the two unknowns, this system
is overconstrained, and we obtain additional information. The system of
conditions can easily be solved and we find the two couplings

gWWH =
QW mW

sW
, gZZH =

QW mZ

sW cW
, (11.96)

23But not, of course, in the longitudinal polarizations!
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and, in addition, the interesting relation

mW = mZ cW . (11.97)

It is apposite to dwell on this last result. The weak mixing angle θW wasE 57
introduced to parametrize the system of coupling constants , as discussed in
section 11.3.2 : we now see it come back here as a relation between masses
instead ! From the treatment of the Electroweak Standard Model presented
in these notes, it also becomes clear that the mixing angle as a description
of coupling constants is, in a logical sense, prior to that as a description of
masses. The assumption of a single Z0 particle determines the couplings as
described in section 11.3.2 : but it takes the supposition of a single, neutral
Higgs particle to obtain Eq.(11.97). If the Higgs sector of the Standard Model
turns out to be different, with more Higgs-like particles, say, the W and Z
mass become uncorrelated ; but the couplings of W and Z with the fermions
and each other remain unaffected. In the usual textbook derivation of the
model this distinction tends to be obscured by the simultaneous obtention of
all couplings at once after symmetry breaking.

As a final comment we remark that, if unitarity is restored bywhatever
Higgs-like phenomenon, the weak mixing angle must always obey the bound

cW
2 <

4

3

mW
2

mZ
2

(11.98)

as can be seen from Eq.(11.92)24.

11.4.3 W,Z and H four-point interactions

The class of bosonic four-particle scattering amplitudes is not yet completely
exhausted. We can consider the process

Z0(p1, ε1)Z0(p2, ε2) → H(p3)H(p4)

given by two diagrams so far,

31

2 4

1

2

4

3

24For the actually observed values of W and Z mass this bound is itself somewhat larger
than unity, and therefore not so significant; but it is nice to have it even so.



March 26, 2017 331

and the following amplitude :

M1+2 = −ih̄ gZZH2 (ε1)µ (ε2)ν(
−gµν + (p1 − p3)µ(p1 − p3)ν/mZ

2

(p1 − p3)2 −mZ
2

+
−gµν + (p1 − p4)µ(p1 − p4)ν/mZ

2

(p1 − p4)2 −mZ
2

)
. (11.99)

In the fully longitudinal case the non-safe terms are

M1+2cL = −ih̄ E2 gZZH
2

mZ
4

+ · · · (11.100)

and the remedy ought to be straightforward by now. We introduce yet an-
other vertex, involving two Z’s and two H’s :

Z

H

ν

µ

H

Z

↔ i

h̄
gZZHH g

µν

upon which we have a third diagram, whose nonsafe part is trivial :

M3cL = 2ih̄ E2 gZZHH

mZ
2

+ · · · (11.101)

We see that the four-point coupling constant must be given by

gZZHH =
gZZH

2

2mZ
2

=
QW

2

2sW2cW2
. (11.102)

As in the case of sQED and YM, this four-point coupling does not contain a
length scale, in contrast to the ZZH coupling. For the case of WW → HH
scattering, exactly the same treatment holds. It suffices to replace mZ by mW

and gZZH by gWWH. We find that also a WWHH vertex is required :

H

ν

µ

H

W

W

↔ i

h̄
gWWHH g

µν ,

with

gWWHH =
gWWH

2

2mW
2

=
QW

2

2sW2
. (11.103)
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11.4.4 Higgs-fermion couplings

Let us return to the process

U(p1)U(p2) → W+(q+, ε+)W−(q−, ε−)

which was used in section 11.3.1 to argue the existence of the Z boson. This
time, however, we shall not neglect the fermion masses ; and we shall take
both W ’s longitudinal. It can be seen that each individual diagram will go
as E2 when the energy E of the W ’s in their centre-of-mass frame becomes
large. This means that, in the longitudinal polarization of Eq.(11.81), the
second term will only contribute to the safe terms, and we may simply write
(ε±)L = q±/mW, so that

Y (q+, ε+; q−, ε−;−q+ − q−, µ)

⌋
L

≈ − s

2mW
2
(q+ − q−)µ + · · · (11.104)

where once more the ellipsis denotes safe terms. In fact, the restriction to
nonsafe terms in our treatment means that we may neglect the boson masses
in the kinematics : every occurrence of boson masses from the kinematics is
quadratic and hence gives safe terms. For the fermions this is not the case
as we shall see.

Let us revisit the diagrams of our process. The first one now reads

M1 = −ih̄gW2 v(p1)(1 + γ5)/ε−
/q− − /p1 +mD

(q− − p1)2 −mD
2
(1 + γ5)/ε+u(p2) . (11.105)

Note that the mD in the numerator drops out by virtue of the (1 + γ5)’s. We
can now perform some Diracology, using the Dirac equation and dropping
safe contributions wherever opportune :

M1cL = −i 2h̄gW
2

mW
2((q− − p1)2 −mD

2)
v(p1) A u(p2) ,

A = (1 + γ5) /q− (/q− − /p1) (1 + γ5) /q+

→ 2(1 + γ5) /q− (/q− − /p1) (/q+ − /p2 +mU)

= 2(1 + γ5) /q− (/q− − /p1) (/p1 − /q− +mU)

→ 2(1 + γ5)
(
−(q− − p1)2/q− + (/q− − /p1 −mU)(/q− − /p1)mU

)
→ 2(1 + γ5) (mU − /q−) (q− − p1)2 ; (11.106)
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so that the fully longitudinal case gives for this diagram

M1cL = 2ih̄gW
2 v(p1)(1 + γ5)(/q− −mU)u(p2) + · · · (11.107)

For the third diagram we can perform a similar analysis :

M3cL = i
h̄ gWWZ

s−mZ
2

−s
2mW

2
v(p1) B u(p2) ,

B = (vU + aUγ
5)(/q+ − /q−)

→ (vU + aUγ
5)(/q+ − /q− − /p2 +mU − /p1)−mU(vU − aUγ

5)

= −2(vU + aUγ
5)/q− + 2mUaUγ

5 ; (11.108)

and up to safe terms, we therefore have

M3cL = i
h̄gWWZ

mW
2
v(p1)

(
(vU + aUγ

5)/q− −mUaUγ
5
)
u(p2) + · · · (11.109)

To obtain the contribution from the second diagram, we simply put gWWZ →
QW, vU → QU, and aU → 0 in the third diagram :

M2cL = i
h̄QW QU

mW
2

v(p1) /q− u(p2) + · · · (11.110)

If we add the three diagrams, the contributions with v/q−u cancel precisely,
as they should since that was what we imposed in section 11.3.1. We are left
with terms proportional to mU :

M1+2+3cL = i
h̄mU

mW
2
v(p1)

(
−2gW

2(1 + γ5)− gWWZaUγ
5
)
u(p2) + · · ·

= −i h̄

mW
2

QW
2mU

4sW2
v(p1)u(p2) + · · · (11.111)

so that an energy behaviour of E1 at high energy is still uncompensated. The
Higgs boson is usefully applied here as well. We simply assume the UUH
vertex

H

U

U

↔ i

h̄
gUUH 1 ,
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where we must realize that the Dirac unit matrix is involved25. For the
process UU → WW we then have a fourth available diagram :

which contributes to the amplitude the amount

M4 = −ih̄ gUUHgWWH v(p1)u(p2)
1

s−mH
2

(ε+.ε−) . (11.112)

In the fully longitudinal case we therefore have

M4c= − i
h̄ gUUHgWWH

2mW
2

v(p1)u(p2) + · · · , (11.113)

and the following requirement on gUUH is obtained :

QW
2mU

4sW2
+
h̄ gUUHgWWH

2mW
2

= 0 , (11.114)

or

gUUH = −QW

2sW

mU

mW

. (11.115)

This discussion can of course be applied to any fermion type26, and we find
the general Feynman ruleE 58

E 59
H

f

f

↔ i

h̄

e

2sW

mf

mW

1

11.4.5 Higgs self-interactions

The triple H coupling

There remains the issue of possible self-interactions of the Higgs particle. To
this end we examine not a 2→ 2 but a 2→ 3 process, namely

Z(p1, ε1) Z(p2, ε2) → Z(p3, ε3) Z(p4, ε4) H(p5) .

25In fact, the observation that the nonsafe part in this process is proportional to vu is
the strongest argument in favour of a scalar Higgs.

26Note that for D-type fermions, aD has opposite sign ; but also the W+ and W− are
interchanged in the first diagram.
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At the tree level, this process is described by 21 Feynman diagrams provided
we allow for three-point couplings between H’s. These belong to one of the
three following types :

where as usual the dotted lines denotes Z’s and the solid lines stand for H
particles, and we have to take into account the appropriate permutations of
the external Z particles. The amplitude is given by the three corresponding
contributions :

M1 = A1(1, 2, 3, 4, 5) +A1(2, 1, 3, 4, 5) +A1(3, 4, 1, 2, 5)

+ A1(4, 3, 1, 2, 5) +A1(1, 3, 2, 4, 5) +A1(3, 1, 2, 4, 5)

+ A1(2, 4, 1, 3, 5) +A1(4, 2, 1, 3, 5) +A1(1, 4, 3, 2, 5)

+ A1(4, 1, 3, 2, 5) +A1(3, 2, 1, 4, 5) +A1(2, 3, 1, 4, 5) ,

A1(i1, i2, i3, i4, i5) = ih̄3/2 gZZH
3 εi1

µ Πµν(pi1 + pi3) εi2
ν (εi3 · εi4)

× ∆Z(pi1 + pi3)∆H(pi3 + pi4) ,

M2 = A2(1, 2, 3, 4, 5) +A2(3, 4, 1, 2, 5) +A2(1, 3, 2, 4, 5)

+ A2(2, 4, 1, 3, 5) +A2(1, 4, 3, 2, 5) +A2(3, 2, 1, 4, 5) .

A2(i1, i2, i3, i4, i5) = −ih̄3/2 gZZH gZZHH (εi1 · εi2)(εi3 · εi4)
× ∆H(pi3 + pi4) ,

M3 = A3(1, 2, 3, 4, 5) +A3(1, 3, 2, 4, 5) +A3(1, 4, 2, 3, 5) ,

A3(i1, i2, i3, i4, i5) = ih̄3/2 gZZH
2 gHHH (εi1 · εi2)(εi3 · εi4)

× ∆H(pi3 + pi4) ∆H(pi3 + pi4) ,

Πµν(q) = −gµν +
1

mZ
2
qµqν ,

∆Z(q) =
(
q2 −mZ

2
)−1

, ∆H(q) =
(
q2 −mH

2
)−1

. (11.116)

Here we have, for once, taken all momenta outgoing, which means that the
momenta of the incoming Z’s have negative zeroth component. For this 5-
particle process the phase space is of course more complicated, and here we
demonstrate a numerical method to investigate cancellations. This can be
quite sensitive if done right27. Although näıvely each diagram A1 and A2

27A short description of how this is done follows. We first define an energy scale E.
The 1,2, and 3-components of the momenta ~p3,4 are chosen as random values, uniformly
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grow quadratically with the energy in the fully longitudinal case, both M1

and M2 actualy become energy-independent at sufficiently high energy E.
But this is not safe : a 2 → 3 amplitude must go at most as E−1, and
therefore cancellations between (M1 +M2) and M3 are still necessary. We
find that the required HHH coupling is given by

↔ i
gHHH

h̄
, gHHH = −3

2

QW
2 mH

2

mW sW

if the necessary cancellations are to arise. In the figure below we have, some-
what arbitrarily, chosen mWc

2 = 80 GeV, mZc
2 = 90 GeV, mHc

2 = 250 GeV.
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We plot −M3cL /M1+2cL
for various energy scales E.
The sampling is performed
as described in the foot-
note. The two contribu-
tions to the amplitude are
seen to balance one another
precisely, and the combined
amplitude goes as E−2, pro-
vided the right choice of
gHHH is made. Note that the
amplitudes are heavily de-
pendent on the various scat-
tering angles: but their ra-
tio is not.

A word of caution is in order on the interpretation of this picture. The high-
energy limit is, strictly speaking, only obtained if all products of momenta
grow large with respect to all masses involved. In a sampling over phase
space it can always happen that some momentum products are comparable

distributed between −E and E, and the corresponding momentum components of ~p5 are
given by ~p5 = −~p3 − ~p4. We then compute the energy components p3,4,5

0 from the mass-
shell condition. The energy components p1,2

0 are then given by p1,2
0 = −(p3+p4+p5)0/2,

and their momenta are computed from their mass-shell condition. We take these to
be along the z axis, say, and oppositely pointed. This is a crude but efficient way of
obtaining momentum configurations satisfying all kinematical conditions, and the various
polarization vectors are then easily obtained using Eq.(11.81). Repeating this procedure
a number of times, we can map out the phase space for a given energy scale.
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to squared masses ; these cases are responsible for the ‘outlying’ dots in the
plot at large values of the energy scale.

The quartic H coupling

The last Gedanken process needed is

Z(p1, ε1) Z(p2, ε2) → H(p3) H(p4) H(p5)

which is described by 25 Feynman diagrams in six types:

where we have already anticipated a quartic Higgs coupling in the last dia-
gram. The contributions to the amplitude are

M1 = B1(1, 2, 3, 4, 5) + B1(1, 2, 4, 5, 3) + B1(1, 2, 5, 3, 4)

+ B1(1, 2, 5, 4, 3) + B1(1, 2, 3, 5, 4) + B1(1, 2, 4, 3, 5) ,

B1(1, 2, i3, i4, i5) = ih̄3/2 gZZH
3 ε1

µ Πµ
λ(p1 + pi3) Πλν(p2 + pi5) ε2

ν

× ∆Z(p1 + pi3) ∆Z(p2 + pi5) ,

M2 = B2(1, 2, 3, 4, 5) + B2(1, 2, 4, 5, 3) + B2(1, 2, 5, 3, 4)

+ B2(2, 1, 3, 4, 5) + B2(1, 2, 4, 5, 3) + B2(1, 2, 5, 3, 4) ,

B2(i1, i2, i3, i4, i5) = ih̄3/2 gZZH
2 gHHH εi1

µ Πµν(pi2 + pi5) εi2
ν

× ∆Z(pi2 + pi5) ∆H(pi3 + pi4) ,

M3 = B3(1, 2, 3, 4, 5) + B3(1, 2, 4, 5, 3) + B3(1, 2, 5, 3, 4) ,

B3(1, 2, i3, i4, i5) = ih̄3/2 gZZH gHHH
2 (ε1 · ε2) ∆H(p1 + p2) ∆H(pi4 + pi5) ,

M4 = B4(1, 2, 3, 4, 5) + B4(1, 2, 4, 5, 3) + B4(1, 2, 5, 3, 4)

+ B4(2, 1, 3, 4, 5) + B4(1, 2, 4, 5, 3) + B4(1, 2, 5, 3, 4) ,

B4(i1, i2, i3, i4, i5) = −ih̄3/2 gZZHH gZZH εi1
µ Πµν(pi2 + pi5) εi2

ν

× ∆Z(pi2 + pi5) ,

M5 = B5(1, 2, 3, 4, 5) + B5(1, 2, 4, 5, 3) + B5(1, 2, 5, 3, 4) ,

B5(1, 2, i3, i4, i5) = −ih̄3/2 gZZHH gHHH (ε1 · ε2) ∆H(pi3 + pi4) ,

M6 = −ih̄3/2 gZZH gHHHH (ε1 · ε2) ∆H(p1 + p2) . (11.117)
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A treatment analogous to that of the previous paragraph leads to the follow-
ing, final Feynman rule :

↔ i

h̄
gHHHH , gHHHH = −3

4

QW
2 mH

2

mW
2 sW2

as indicated by the picture below.
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We plot the ratio

−M6cL /M1+·+5cL

obtained in the same man-
ner as in the previous para-
graph. Again, the choice of
the factor 3/4 in gHHHH is
justified by the fact that the
ratio geos to 1 with great
accuracy as the scale in-
creases.

11.5 Private sector : the Abelian Higgs model

11.5.1 A sign of symmetry breaking

The Standard Model contains a small subset that has an interesting life of its
own. It consists of the Z and H particles alone, with their four interactions
ZZH, ZZHH, HHH and HHHH. It is easily seen that, at the tree level,
any diagram having as external particles only Z’s and H’s, can only have
these as internal lines as well. This makes the Z −H sector an interestingly
self-contained piece of the Standard Model. With the introduction of a single
coupling constant

g ≡ QW

2 sWmW

hence g2 = GF

√
2 , (11.118)

we can rewrite the Feynman rules for the Z,H vertices as follows :
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µ ν

p
↔ ih̄

p2 −mZ
2

(
−gµν + pµpν/mZ

2
)

p
↔ ih̄

p2 −mH
2

µ

ν

↔ 2
i

h̄
g mZ

2 gµν
µ

ν

↔ 2
i

h̄
g2mZ

2 gµν

↔ −3
i

h̄
g mH

2 ↔ −3
i

h̄
g2mH

2

In this section, the Higgs will be denoted by a solid, the Z by a dashed line28.
Things become interesting if we reconstruct the action corresponding to this
set of Feynman rules (including the propagators). It reads

S =
∫
d4x L ,

L = − 1

4
F µνFµν +

1

2
(∂µH)(∂µH)

+
1

2
Q2 ZµZµ (v +H)2 − 1

4
λ
(
(v +H)2 − v2

)2
, (11.119)

where v = 1/g, Q = mZg, λ = mH
2g2/2, and Fµν = ∂µZν − ∂νZµ. We see

that there is a ‘primordial’ combination φ = v + H, in terms of which the
action looks much simpler. On the other hand, if we use the φ field instead of
the Higgs field, the φ2 term will have a pre-factor +mH

2/4, the wrong sign to
serve as a mass term ! The potential (φ2− v2)2 does not have a minimum at
φ = 0, but rather a local maximum. Such a situation is considered inherently
unstable, and the idea of spontaneous symmetry breaking is that the ground
state of the world has not φ = 0 but rather φ = v. Therefore v is called the
vacuum expectation value. The model we have here is, in fact, the resulting
form of the simplest model that exhibits this idea of spontaneous symmetry
breaking : it is called the Abelian Higgs model.

28There is a tendency among phenomenologists to always use the same line notation for
the same particle. Understandable but not obligatory.
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11.6 About axial anomalies

3
V

1

V2

V

In sections 9.2.6 and 10.3.2, we have dis-
cussed triangle diagrams in which three
vector particles couple to fermions run-
ning around a loop, as indicated on the
left. It is always accompanied by a simi-
lar diagram in which the orientation of the
fermion lines is reversed. In three or more
than spacetime dimensions, such diagrams

are individually ultraviolet divergent. A fermion propagator at large momen-
tum pµ goes as 1/p, while the integration element in D dimensions goes as pD,
leading to a logarithmic divergence or worse if d ≥ 3. In four dimensions, the
diagrams are therefore linearly divergent, but this leads to trouble : there is
no unambiguous intergation prescription. If all three fermion-fermion-vector
couplings are of vector type, section 9.2.6 shows how the two diagrams have
opposite sign, all other things being equal. Therefore, in QED, where the
three vector particles are photons, (V1, V2, V3) = (γ, γ, γ), such diagram pairs
will completely cancel. In QCD, with three gluons, (V1, V2, V3) = (g, g, g), the
two diagrams form a colour-antisymmetric contribution to the one-loop cor-
rection of the three-gluon vertex. Two mixed cases are (V1, V2, V3) = (γ, γ, g),
where the diagrams vanish individually because of their colour structure, and
(V1, V2, V3) = (γ, g, g) where they again cancel against one another. We shall
now investigate how things stand if we include the electroweak sector. In
particular we have to worry about diagrams containing one or three γ5’s,
since in such cases the two diagrams with oppositely-oriented fermion loops
have the same sign.

Since we shall be interested only in the possible ultraviolet behaviour
of the theory, we may assume that all fermions have the same (negligible)
mass. Also, we consider the contribution of a single fermion family, that is
a charged lepton (with charge QL), a neutrino (with charge Qν , which we
alllow to be nonzero for the moment), and an up-type quark (with charge
QU) and a down-type quark (with charge QD). The quarks are supposed
to occur in Nc colour types. We consider the collective effect of all these
fermions together in the table below, where we have a look at all the pos-
sible problematic axial-vector contributions. We shall apply the shorthand
σ ≡ 4sW

2/e, and in the third column drop all common overall factors.
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V1, V2, V3 terms total contribution

γ, γ, Z
∑
f
Qf

2af Nc

(
QU

2 −QD
2
)

+Qν
2 −QL

2

γ, Z, Z
∑
f
Qfvfaf Nc

(
QU(1− σQU) +QD(1 + σQD)

)
+ Qν(1− σQν) +QL(1 + σQL)

γ,W,W
∑
f
QfgW

2 Nc(QU +QD) +Qν +QL

Z,Z, Z
∑
f
vf

2af Nc

(
(1− σQU)2 − (1 + σQD)2

)
+ (1− σQν)

2 − (1 + σQL)2

Z,Z, Z
∑
f
af

3 trivially zero

Z,W,W
∑
f
vfgW

2 Nc

(
(1− σQU)− (1 + σQD)

)
+ (1− σQν)− (1 + σQL)

Z,W,W
∑
f
afgW

2 trivially zero

Z, g, g
∑
f
afgs

2 trivially zero

Inspection tells us that in fact two conditions suffice to let the sum over
fermions vanish :

Nc

(
QU

2 −QD
2
)

= QL
2 −Qν

2 ,

Nc(QU +QD) = − QL −Qν . (11.120)

The ratio of these two result in the requirement

QU −QD = Qν −QL (= −QW) , (11.121)

which is nothing else than the charge conservation we already encountered
in Eq.(11.30). We see that the single condition, necessary to ensure all the
cancellations, is that the quark charges conform to

QU =
Qν −QL

2
− Qν +QL

2Nc

, QD =
QL −Qν

2
− Qν +QL

2Nc

, (11.122)

In the Standard Model, with Nc = 3, we have indeed

Qν = 0 , QU = −2

3
QL , QD =

1

3
QL . (11.123)

This is one of those curious instances where the universe appears to arrange
itself to make the theory as well-behaved as possible. Whether there is a
deeper reason for this I do not pretend to know.
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11.7 Conclusions and remarks

We have now derived all vertices of the electroweak Standard Model. That
is to say, the more usual textbook derivations arrive at precisely the set of
Feynman rules that we have also obtained. There are, however, a number of
differences between the treatment given here and the usual one.

• We have not invoked any symmetry principle, but rather the (under-
lying) SU(2) × U(1) symmetry has spontaneously emerged from our
choices for the ‘minimal’ solution, for instance by insisting on only a
single Z particle while we could have opted for more.

• Since we have not invoked any symmetry, there is also no need to
explain its ‘breaking’ in order to arrive at massiveW ’s and Z’s. Instead,
we have simply faced the observed fact of their massiveness and come
to grips with it with the help of a Higgs sector.

• There is, as we have already discussed, a logical distinction between
the two uses of the weak mixing angle, in which the ratio of coupling
constants is logically ‘prior’ to the ratio mW/mZ.

• We have not needed to introduce any Higgs doublet, but rather only
a single, physically observable H particle. This approach elegantly
sidesteps the question whether , and if so how the Higgs field configu-
ration is ‘spontaneously broken’. This would indicate that the Higgs
particle is also, in a sense, logically prior to a complete Higgs doublet.

11.8 Exercises for Chapter 11

Excercise 54 The width of the W
Assume that the weak coupling constant gW is universal, i.e. independent of
the fermion’s flavour.

1. Compute (at the tree level) the decay width for the decay

W− → e− ν̄e

2. Assuming that all quarks and leptons are essentially massless compared
to the W mass mW, with of course the exception of the top quark.
Determine the total W decay with ΓW . Hint : quarks have colour !
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3. Insert your result into Eq.(11.23), and verify that unitarity is not vio-
lated in this process. For the unitarity limit, see Appendix 13.13.

Excercise 55 The W width with Cabibbo mixing
In the simplest form of the standard model the W couples with universal
coupling to ud and cs quark-antiquark pairs (and, of course to tb but we
disregard that here). In fact, its couplings are more complicated, and we
have the following pattern of couplings :

Wud : gW cos(θc) , Wus : gW sin(θc) ,

Wcd : −gW sin(θc) , Wcs : gW cos(θc) .

Here, θc ≈ 13o is the so-called Cabibbo angle. Show that this refinement does
not change the total W decay width.

Excercise 56 The width of the Z
Compute the total Z decay width at the tree level, with the same approxi-
mation for the masses as in exercise 54.

Excercise 57 Landau-Yang strikes again, sneakily!
From the fact that there is a ZWW vertex in the electroweak model, and
Eq.(11.97), you might hope to circumvent a ‘weak’ variation of the Landau-
Yang theorem by letting cW go to zero, so that the W mass vanishes and the
Z could actually decay into two massless spin-1 particles. Show that this is
impossible. Hint : this is simple.

Excercise 58 The width of the H
Before the Higgs was found in 2012, its mass was unknown. Let us assume
that mH is sufficiently large for decays into heavy bosons to be possible.

1. Compute the decay width of the Higgs into a fermion-antifermion pair.
Show that these widths are proportional to mH.

2. Compute the widths Γ(H → W+W−) and Γ(H → ZZ). Show that
these widths are proportional to mH

3.

3. Esimate the value of mH for which ΓH ≈ mH. This was considered to
be the largest realistic value of mH.
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Excercise 59 Unitarity-violating fermions
Assume that there are some extremely heavy fermions around, called F1 and
F2, both with mass M , much larger than mH.

1. Compute the total cross section for F1F̄1 → F2F̄2 at energies large
compared to M .

2. Compare your result with the unitarity limit and find a restriction on
M .



Chapter 12

Example computations

In this chapter we shall go through several actual computations of a number
of tree-level processes and some loop diagrams. The theory lives in four
Minkowski dimensions ; but in the loop calculations we shall use dimensional
regularization throughout.

12.1 Neutrino production in e+e− scattering

12.1.1 The cross section

In this section we consider the process

e−(p1, λ) e+(p2, λ) → νj(q1) ν̄j(q2) (j = e, µ) ,

where both the e± and the neutrinos are taken to be massless, and we have
indicated the momenta and the electronic helicities.

Z

p

p

q
1

2

1

q
2

W

2
p

1
p

2
q

q
1

For j = e (electron neutri-
nos) the process is described
by two diagrams at the tree
level. For j = µ (muon or
tau neutrinos) only the first
diagram contributes.

We shall neglect the width of the Z boson1. Using the looser notation for

1Since the W is exchanged with negative invariant mass and hence cannot decay at all,
its width is naturally zero in this case anyway.

345
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spinors allowed in the massless case we can write the two diagrams as follows,
where we indicate their dependence on the helicity:

M1(λ) =
ih̄ aν

s−mZ
2
uλ(p2)(ve + aeγ

5)γαuλ(p1)u−(q1)(1 + γ5)γαu−(q2) ,

M2(λ) =
ih̄ gW

2

t−mW
2
u−(q1)(1 + γ5)γαuλ(p1)uλ(p2)(1 + γ5)γαu−(q2) .

(12.1)

We have introduced the Mandelstam variables

s = (p1 + p2)2 = (q1 + q2)2 , t = (p1 − q1)2 = (p2 − q2)2 ,

u = (p1 − q2)2 = (p2 − q1)2 = − s− t . (12.2)

The first step is to get rid of the explicit γ5’s :

M1(λ) =
2ih̄ aν(ve − λae)

s−mZ
2

uλ(p2)γαuλ(p1)u−(q1)γαu−(q2) ,

M2(λ) =
4ih̄ gW

2

t−mW
2
u−(q1)γαuλ(p1)uλ(p2)γαu−(q2) . (12.3)

Using the Chisholm identity we can compute the explicit helicity forms :

M1(+) =
4ih̄ aν(ve − ae)

s−mZ
2

s+(p2, q2) s−(p1, q1) ,

M1(−) =
4ih̄ aν(ve + ae)

s−mZ
2

s−(p2, q1) s+(q2, p1) ,

M2(+) = 0 ,

M2(−) =
8ih̄ gW

2

t−mW
2
s−(q1, p2) s+(q2, p1) . (12.4)

Keeping in mind the antisymmetry of the spinor products, and the Fermi
minus sign, we find that up to an irrelevant overall complex phase the am-
plitudes are given by

M(+) = 4h̄
aν(ve − ae)
s−mZ

2
t ,

M(−) = 4h̄

(
aν(ve + ae)

s−mZ
2

+
2gW

2

t−mW
2

)
u . (12.5)
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We arrive at〈
|M|2

〉
= 4h̄2

{
aν

2(ve − ae)2

(s−mZ
2)2

t2 +
aν

2(ve + ae)
2

(s−mZ
2)2

u2

+
4gW

2aν(ve + ae)

(s−mZ
2)(t−mW

2)
u2 +

4gW
4

(t−mW
2)2

u2

}
. (12.6)

The centre-of-mass frame is the obvious choice to work in ; in this frame

t = −s
2

(1− cos θ) , (12.7)

where θ is the angle between ~p1 and ~q1, and the cross section has no azimuthal-
angle dependence. We may therefore write the phase space as follows :

dV (p1 + p2; q1, q2) =
d cos θ dφ

32π2
→ d cos θ

16π
=

1

8πs
dt , (12.8)

with the integration interval being t ∈ [−s, 0]. The various integrals are
easily worked out ; we have

0∫
−s

u2

(t−mW
2)2

= s

(
s

mW
2

+ 2− 2

(
1 +

mW
2

s

)
log

(
1 +

s

mW
2

))
,

0∫
−s

u2

t−mW
2

= s2

3

2
+
mW

2

s
−
(

1 +
mW

2

s

)2

log
(

1 +
s

mW
2

) ,

0∫
−s

t2 dt =

0∫
−s

u2 dt =
1

3
s3 . (12.9)

Putting everything together2 we obtain for the total cross section the expres-
sion

σ(e+e− → νeν̄e) =

h̄2

4πs

{
2

3
aν

2
(
ve

2 + ae
2
) ∣∣∣∣ s

s−mZ
2

∣∣∣∣2

+ 4gW
2aν(ve + ae)

s

s−mZ
2

3

2
+
mW

2

s
−
(

1 +
mW

2

s

)2

log
(

1 +
s

mW
2

)
+ 4gW

4

(
s

mW
2

+ 2− 2

(
1 +

mW
2

s

)
log

(
1 +

s

mW
2

))}
. (12.10)

2And not forgetting the flux factor !
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For muon (or tau) neutrinos only the first line remains :

σ(e+e− → νµν̄µ) =
h̄2

6πs
aν

2(ve
2 + ae

2)
∣∣∣∣ s

s−mZ
2

∣∣∣∣2 . (12.11)

12.1.2 Unitarity considerations

The above neutrino cross section lends itself to a few interesting observations.

At the Z peak

As it stands, the cross section diverges for s = mZ
2. This is of course due to

our neglecting ΓZ. To remedy this, we may replace mZ
2 by mZ

2− imZΓZ, and
neglect the second (W -exchange) diagram3. Close to the Z pole, the cross
section for each neutrino type is then given by

σ(e+e− → νν̄) =
h̄2 aν

2(ve
2 + ae

2)

6π

mZ
2

(s−mZ
2)2 +mZ

2ΓZ
2 (s ≈ mZ

2) ,

(12.12)
while at the very peak we have4

σ(e+e− → νν̄) =
h̄2 aν

2(ve
2 + ae

2)

6πΓZ
2 (s = mZ

2) , (12.13)

This can be cast in an instructing form, using the fact that

Γ(Z → e+e−) =
h̄ (ve

2 + ae
2)mZ

12π
, Γ(Z → νν̄) =

h̄ aν
2mZ

6π
. (12.14)

The cross section at the peak can therefore be written as

σ(e+e− → νν̄) =
12π

s

(
Γ(Z → e+e−)

ΓZ

)(
Γ(Z → νν̄)

ΓZ

)
(s = mZ

2) ,

(12.15)
which is exactly the form demanded by unitarity for an intermediate state
(the Z) with unit spin (see section 13.13).

3This is really justified ! In the sense in which ΓZ 6= 0 comes about by interactions, ΓZ

is formally of higher order in perturbation theory, and then a factor ΓZ
−1 actually lowers

the order of such diagrams. Thus, around the Z pole, the W -exchange diagram is formally
of higher order in perturbation theory.

4Remember, this is all strictly tree level...
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Very high and very, very high energy

We may also consider what happens at very high energies, s � mZ,mW. In
that case we may approximate the cross section by

σ(e+e− → νeν̄e) =

h̄2

π

{
gW

4

mW
2
− 2gW

4 + gW
2aν(ve + ae)

s
log

(
s

mW
2

)}
. (12.16)

At extremely high energies the cross section becomes very simple :

σ(e+e− → νeν̄e) =
h̄2 gW

4

πmW
2

(s→∞) . (12.17)

This is indeed a nice, simple expression — but it is a constant. Does this not
conflict with unitarity, that demands a 1/s behaviour ? The solution appears
if we realize that the unitarity behaviour is required in each individual angular
momentum channel, or alternatively in a situation where s becomes very
large together with all other momentum transfers : in this case, a fixed t/s
ratio. As we can see, at high energies the process is completely dominated
by t values close to zero, so the ratio t/s approaches zero5. Another way
of putting this is to say that in the infinite-energy limit, all intermediate
angular momentum channels contribute. A quick inspection of Eq.(12.5)
shows that for s → ∞ at fixed t/s the amplitudes are indeed just simple,
energy-independent (but angle-dependent) quantities6.

12.2 W pair production in e+e− scattering

12.2.1 Setting up the amplitude

In sec. 11.3.1 we have saved unitarity in the process e+e− → W+W− by
introducing the Z particle, upon which the dangerous terms that lead to
faulty high-energy behaviour are cancelled. But of course, the well-behaved
remainder is also of interest, and its computation is a nice example of get-
your-hands-dirty theoretical work. In detail, the process is described as

e+(p1, λ) e−(p2, λ) → W+(q1, ε
ρ1
1 ) W−(q2, ε

ρ2
1 )

5Since the (t−mW
2)−1 propagator peaks for vanishing t. The distribution proportional

to (t−mW
2)−2, with −s < t < 0, gives expectation value 〈t〉 ≈ mW

2 −mW
2 log(s/mW

2)
so that for very large s the ratio is typically t/s ∼ − log(s)/s.

6Since u = −s− t, when t/s is fixed then so are u/s and u/t.
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where we explicitly indicate the momenta p1,2 (taken to be massless) and
q1,2, and the polarisation vectors ε1,2. The electron helicity is λ = ± and
the W polarisations are denoted by ρ1,2 that can take the values ± or 0, the
latter standing for the longitudinal polarisation. There are thus 18 different
amplitudes to be considered. We write the amplitude as

M(λ, ρ1, ρ2) = ih̄
2∑
j=1

Aj(λ)Bj(λ; ρ1, ρ2) , (12.18)

where the index 1 refers to the νe-exchange diagram, 2 to the combined γ/Z
diagrams. The A’s collect the coupling constants and propagators :

A1(λ) = −4gW
2 1

∆
δλ,− ,

A2(λ) =
e2

s
+
gWWZ(ve − λae)

s−mZ
2

= − e2mZ
2

s(s−mZ
2)

+
4gW

2

s−mZ
2
δλ,− .(12.19)

where P = p1 + p2 = q1 + q2 and s = P 2 , ∆ = (p1− q1)2. We see that A2(+)
goes asymptotically as 1/s2 at high energies, whereas A1,2(−) decreases as
1/s. The real work of calculation is in the ‘spacetime’ objects

B1(−; ρ1, ρ2) = u−(p1) /ερ11 (/q1 − /p1) /ερ22 u−(p2) ,

B2(λ; ρ1, ρ2) = uλ(p1) γα uλ(p2) Y (q1, ε
ρ1
1 ; q2, ε

ρ2
2 ;−q1 − q2, α)

= (ερ11 · ε
ρ2
2 ) uλ(p1) (/q1 − /q2)uλ(p2)

+ 2 (q2 · ερ11 ) uλ(p1) /ερ22 uλ(p2)

− 2 (q1 · ερ22 ) uλ(p1) /ερ11 uλ(p2) , (12.20)

where in the last expression we have used (qj · εj) = 0.

12.2.2 Momenta and polarisations

We shall, of course, work in the centre-of-mass frame, where the momenta
are chosen as follows :

pµ1 = (E,E~ep) , pµ2 = (E,−E~ep) , qµ1 = (E, q~e) , qµ2 = (E,−q~e) .
(12.21)

The beam energy is E so that s = 4E2, and the W velocities are β = q/E,
where q2 = E2 − mW

2. The ~ep and ~e are unit vectors, with ~ep · ~e = c, the
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cosine of the scattering angle between e+ and W+. In addition we define two
massless vectors7

aµ = (1, ~e ) , bµ = (1,−~e ) (12.22)

For the transverse W polarisations we shall use ε±1,2 = ε± and

(ε±)µ =
1√
8
u±(a) γµ u±(b) . (12.23)

The two longitudinal polarisations are of different : we write

ε01 =
1

mWβ

(
q1 −

2mW
2

s
P

)
, ε02 =

1

mWβ

(
q2 −

2mW
2

s
P

)
. (12.24)

12.2.3 Working out the amplitudes

It is enlightening to see explicitly how the various elements of M are com-
puted. First, we can use /ερ/ερ = 0 to write

B1(−; +,+) = − u−(p1) /ε+ /p1 /ε+ u−(p2)

= −2(p1 · ε+) u−(p1) /ε+ u−(p2)

= −1

2
u+(a) /p1 u+(b) u−(p1)u+(b)u+(a)u−(p2)

= −1

2
s−(p1, b)

2 s+(a, p1) s+(a, p2) ,

B1(−;−,−) = −1

2
s−(p1, a)2 s+(b, p1) s+(b, p2) . (12.25)

Similarly,

B1(−; +,−) =
1

2
u−(p1)u+(b)u+(a) (/q1 − /p1)u+(a)u+(b)u−(p2)

= (a · q1 − p1) u−(p1) /b u−(p2)

=
∆ +m2

2q

u−(p1) /q2 u−(p2)

q

=
2(∆ +m2)

β2s
u−(p1)/q2 u−(p2) = B1(−;−,+) .(12.26)

7Note that the definition of a and b can be made Lorentz invariant by requiring them
to be massless linear combinations of q1 and q2.
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The next one is a bit more involved :

B1(−; +, 0) =
1

mWβ
u−(p1) /ε+ (/q1 − /p1)

(
/q2 −

2mW
2

s
/p1

)
u−(p2)

=
1

mWβ
u−(p2)

(
−∆/ε+ −

2mW
2

s
(2p1 · q1)/ε+

+
2mW

2

s
(2p1 · ε+)/q1

)
u−(p2)

= s−(p1, b)s+(a, p2)

(
−∆− 2mW

2

s
(2p1 · q1)

)

+
2mW

2

2
s+(a, p1)s−(p1, b) q s−(p1, a)s+(a, p2)

}

=
s−(p1, b)s+(a, p2)

mWβ
√

2

(
−∆− 2mW

2

s

(
(2p1.q1)− 2q(a · p1)

))

= − 1

mWβ
u−(p1) /ε+ u−(p2)

(
∆ +mW

2(1− β)
)
. (12.27)

This is the most non-trivial of them all : notice the juggling with the spinor
products. Nevertheless the result factorizes nicely, and that does not depend
on the use of the standard form. The other such cases are

B1(−;−, 0) = − 1

mWβ
u−(p1) /ε+ u−(p2)

(
∆ +mW

2(1 + β)
)
,

B1(−; 0,±) = −B1(−;±, 0) . (12.28)

The last case for B1 is

B1(−; 0, 0) =

1

mW
2β2

u−(p1)

(
/q1 −

2mW
2

s
/p2

)
(/q1 − /p1)

(
/q2 −

2mW
2

s
/p1

)
u−(p2)

=
1

mW
2β2

u−(p1)

(
∆/q2 −∆

2mW
2

s
/p1 + ∆

2mW
2

s
/p2 +

4mW
4

s2
/p2/q1/p1

)
u−(p2)

=
1

mW
2β2

u−(p1) /q2 u−(p2)

(
∆ +

4mW
4

s

)
. (12.29)

Note that we have used momentum conservation, u(p1)(/q1 + /q2)u(p2) = 0.
Computationally, for B2 things are simpler. First of all, we have trivially

B2(λ; +,+) = B2(λ,−,−) = 0 , (12.30)
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and, almost equally trivially,

B2(λ; +,−) = B2(λ;−,+) = 2 uλ(p1) /q2 uλ(p2) , (12.31)

owing to our choice of the polarisations. Next, by(
q1,2 · ε02,1

)
=

1

mWβ

(
(q1q2)−mW

2
)

=
sβ

2mW

(12.32)

we have

B2(λ,±, 0) = − sβ

mW

uλ(p1) /ε± uλ(p2) , = −B2(λ, 0,±) . (12.33)

And, finally,

B2(λ; 0, 0) =
s+ 2mW

2

mW
2

uλ(p1) /q2 uλ(p2) . (12.34)

We see that the nonzero B2 always carry the same spinor sandwich as do
the B1. Indeed they had better if they want to show (partial) cancellation
between them. As expected, the B’s behave, for large energy, as E2 if both
W ’s are transverse, while they go as E3 and E4 if one or both become lon-
gitudinally polarised, respectively.

Of the various spinorial objects we can compute the absolute values :

|s−(p1, b)
2s+(a, p1)s+(a, p2)|2 = s2(1 + c)3(1− c) ,

|s−(p1, a)2s+(b, p1)s+(b, p2)|2 = s2(1− c)3(1 + c) ,

|uλ(p1)/q2uλ(p2)|2 =
1

4
β2s2(1− c2) ,

|uλ(p1)/ε−λuλ(p1)|2 =
1

2
s(1 + c)2 ,

|uλ(p1)/ελuλ(p1)|2 =
1

2
s(1− c)2 . (12.35)

Using these results, we can easily evaluate the absolute values of the ampli-
tudes. Some observations are in order here. First, there are two vanishing
amplitudes : M(+; +,+) =M(+;−,−) = 0. This is, of course, due to our
choice of ε± for both transverse polarisations. Secondly, the nonzero am-
plitudes do not look nice, what with the occurence of the two couplings gW
and e, two masses mZ and mW, the denominator ∆ here and there, and β
cropping up in various places. There is a message here : real phenomenology
is messy. It is only in the more Platonic realm of very high energies that we
may hope to see our results simplify, and this we shall now investigate.
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12.2.4 W pair production at very high energy

As has been amply discussed in these notes, the high-energy behaviour of
amplitudes often requires diagrams to partially cancel against one another.
Indeed, that is what led us to introduce the Z boson in WW production in
the first place. However, here we are interested in what is actually left after
the cancellations have taken place. We shall consider the limit where E is
very much larger than mZ,mW, at fixed c. In that limit, we may approximate
∆ ≈ −2E2(1− c). We shall neglect overall complex phases in what follows.
The amplitude for this 2 → 2 process should have no energy dimension (cf.
sec. 6.3.3), so any contribution going as E−1 or lower can be neglected. Of
course all contributions going as E+1 or higher had better cancel8 ! This
actually leaves only a few surviving amplitudes. In the first place,

M(−; +,+) ≈ h̄e2

2sW2

(1 + c)

(1− c)
(1− c2)1/2 ,

M(−;−,−) ≈ h̄e2

2sW2
(1− c2)1/2 . (12.36)

The apparent singularity at c = 1 is of course due to our approximating ∆.
Note also that e2h̄ is actually the properly dimensionless quantity 4πα, see
sec. 9.2.5. Next we have

M(+; 0, 0) ≈ h̄e2

2

mZ
2

mW
2

(1− c2)1/2 . (12.37)

The most difficult one is

M(−; 0, 0) = h̄ u−(p1)/q2u−(p2)K ,

K = − 4gW
2

β2mW
2∆

(
∆ +

4mW
2

s

)

+
s+ 2mW

2

mW
2

(
− e2mZ

2

s(s−mZ
2)

+
4gW

2

s−mZ
2

)
. (12.38)

Performing the cancellations inside the factor K with care we find

M(−; 0, 0) ≈ h̄e2

2
(1− c2)1/2

(
1

sW2
− mZ

2

mW
2

(
1

2sW2
− 1

))
. (12.39)

8This is what we did all the hard work for, after all.
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We have now proven that the amplitudes surviving the high-energy limit are
dimensionless and well behaved ; but they still depend on the ratio mZ/mW.
Since we have taken the fermions to be massless, the Higgs boson is absent at
the tree level here. Nevertheless (but this is, as we see, an additional input !)
we may take mW/mZ = cW from our discussion of the minimal Higgs sector
in sec. 11.4.2, and then we find the even more pleasing-looking results

M(−; +,+) ≈ 4πα (1− c2)1/2 1

2sW2

1 + c

1− c
,

M(−;−,−) ≈ 4πα (1− c2)1/2 1

2sW2
,

M(+; 0, 0) ≈ 4πα (1− c2)1/2 1

2cW2
,

M(−; 0, 0) ≈ 4πα (1− c2)1/2 1

4sW2cW2
. (12.40)

12.3 Self-energy graph in ϕ3 theory

The first nontrivial one-loop example is the self-energy diagram from ϕ3

theory :

p + k

p
pk

The momentum flowing through the external propagators is pµ. The diagram
(excluding the external propagators) is given by

Σ(p2) =
i2(iλ)2

(2π)4

∫
d4k

1

(k2 −m2 + iε)((k + p)2 −m2 + iε)
. (12.41)

Performing the Feynman trick, and replacing the number of dimensions (orig-
inally 4) by 2ω, where ω will approach 2 at the end, we write the diagram
as

Σ(p2) =
λ2(µ2)2−ω

(2π)2ω

1∫
0

dx
∫
d2ωk

1(
k2 + 2x(k · p) + xp2 −m2 + iε

)2 , (12.42)

where µ is the dimensionful quantity needed to keep the overall dimension-
ality of the diagram consistent. We now shift the loop momentum kµ to
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kµ − xpµ so as to make the linear term disappear :

Σ(p2) =
λ2(µ2)2−ω

(2π)2ω

1∫
0

dx

∞∫
−∞

dk0d2ω−1d~k
1(

(k0)2 − |~k|2 + x(1− x)p2 −m2 + iε
)2 ,

(12.43)
where we have already singled out the timelike component of kµ for spe-
cial treatment : by the Wick rotation, we see that we may rotate9 the k0

integration contour

from

+∞∫
−∞

dk0 to

+i∞∫
−i∞

d(ik0)

so that we arrive at

Σ(p2) =
iλ2(µ2)2−ω

(2π)2ω

1∫
0

dx
∫
d2ωk

1(
k2 − x(1− x)p2 +m2 − iε

)2 , (12.44)

where k2 now refers to the Euclidean square (k0)2 + |~k|2. Writing k2 = u the
diagram then becomes

Σ(p2) =
iλ2(µ2)2−ω

(4π)ωΓ(ω)

1∫
0

dx

∞∫
0

du
uω−1(

u− x(1− x)p2 +m2 − iε
)2 . (12.45)

We can now do the u integral using the standard formula

∞∫
0

du
uα

(1 + u)β
=

Γ(α + 1)Γ(β − α− 1)

Γ(β)
(12.46)

so that

Σ(p2) =
iλ2(µ2)2−ωΓ(2− ω)

(4π)ω

1∫
0

dx
1(

m2 − x(1− x)p2 − iε
)2−ω . (12.47)

9Note that the direction of the Wick rotation does not depend on |~k|2, p2 or m2 : the
poles are always in the lower-right-hand and the upper-left-hand parts of the complex k0

plane.
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The factor Γ(2−ω) indicates that this diagram is logarithmically divergent10.
At this point we may carefully take the limit ω → 2. Writing ω = 2−ε (where
this ε has nothing to do with the iε in the propagators ! This should not lead
to confusion) we have the following expansion :

Γ(2− ω) = Γ(ε) =
Γ(1 + ε)

ε

=
1

ε

(
Γ(1) + Γ′(1)ε+ Γ′′(1)ε2/2 + · · ·

)

=
1

ε
− γE +

(
γ2
E

2
+
π2

12

)
ε+ · · · , (12.48)

where γE ≈ 0.5772156649 is Euler’s constant11. Similarly,

Aε = exp(ε log(A)) = 1 + ε log(A) + ε2 log(A)2/2 + · · · (12.49)

Where we should truncate the ε expansion depends on the loop order we
are considering. For two-loop computations, the terms with ε1 must be re-
tained, but for the present one-loop calculation we can restrict ourselves to
the divergent and constant terms :

Σ(p2) =
iλ2

(4π)2

(
1

ε
− γE + log(4π) + log(µ2)−R(s)

)
,

R(s) =

1∫
0

dx log(m2 − x(1− x)s− iε) . (12.50)

In the evaluation of the x integral, it of course becomes important to keep
careful track of the logarithm’s singularity structure. We can distinguish
three cases, depending on the value of s = p2.

1. s < 0. In this case the logarithm’s argument is always positive. Writing

x = (1 + y)/2 we have, with b =
√

1 + 4m2/|s|, and using partial

10In four spacetime dimensions. A factor Γ(1−ω) implies a quadratic divergence in four
dimensions. For higher dimensions the divergences become more severe, as is only to be
expected fos such multidimensional integrals.

11Lots and lots of mathematical things are called after Euler. To spread the credit
somewhat, it is also called the Euler-Mascheroni constant.
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integration :

R(s) =

1∫
0

dx log(m2 + |s|x− |s|x2)

=

1∫
0

dy log(m2 + |s|/4− |s|y2/4)

= log(|s|) +

1∫
0

dy log(b2 − y2)

= log(|s|) +

[
y log(b2 − y2)

]1

0

+

1∫
0

dy
2y2

b2 − y2

= log(|s|) + log(b2 − 1) + b log

(
b+ 1

b− 1

)
− 2

= log(m2)− 2 + b log

(
b+ 1

b− 1

)
. (12.51)

2. 0 < s < 4m2. Proceeding in a similar way as above, but now with

η =
√

4m2/s− 1, we can write

R(s) = log(s/4) +

1∫
0

dy log(y2 + η2)

= log(s/4) + log(η2 + 1)−
1∫

0

dy
2y2

y2 + η2

= log(m2)− 2 + 2η arctan(1/η) . (12.52)

3. s > 4m2. This is the more tricky case since the argument crosses zero
twice as x moves between 0 and 1. The two roots are given as x0,1,
where

x1 = (1+β+iε)/2 , x0 = 1−x1 = (1−β−iε) , β =
√

1− 4m2/s .
(12.53)

Since β > 0 we shall have occasion to use

log(−x1) = log(x1)− iπ , log(−x0) = log(x0) + iπ . (12.54)
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We evaluate the integral as follows :

R(s) = log(s) +

1∫
0

dx
(
log(x− x0) + log(x− x1)

)

= log(s) +

[
(x− x0) log(x− x0) + (x− x1) log(x− x1)− 2x

]1

0

= log(s) + x1

(
log(x1) + log(−x1)

)
+ x0

(
log(x0) + log(−x0)

)
− 2

= log(s) + 2x1 log(x1) + 2x0 log(x0) + iπ(x0 − x1)

= log(m2)− 2 + β

(
log

(
1 + β

1− β

)
− iπ

)
. (12.55)

The function R(s) for m = 3.14.
It is continuous both at s = 0
and s = 4m2. The real part of
R is positive (since log(3.142) >
2), its imaginary part is negative.
At s = 4m2 the imaginary part
‘switches on’ suddenly. This in-
dicates that R(s) has a cut along
the real axis starting at that value
; and of course the ‘kink’ in the
real part tells us the same. We
also see that the real part of Σ(p2)
only develops above the ‘thresh-
old’ value p2 = 4m2, and is posi-
tive there, as required by the uni-
tarity arguments of chapter 6.

12.4 The gluon-gluon-Higgs vertex

Although the gluon is massless and therefore has no direct coupling to the
Higgs, such a coupling is effectively realized by quark loops. Since the top
quark, being the heaviest, has the strongest interaction with the Higgs, we
shall concentrate on this. At one-loop order, we then have two contributing
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diagrams :

+ ,

which differ in the orientation of the top quark line. If our theory is to
be consistent, this amplitude must be ultraviolet-finite (since otherwise we
would have to introduce a counterterm which would mean a direct gluon-
Higgs coupling after all) and it must obey current conservation. We shall
verify this point first, by putting a handlebar on one of the gluons :

+

= − + −

(12.56)

By using the identities

= , = (12.57)

we see that the third and fourth diagram are actually equal to the first and
second one (flipped over), so that the sum vanishes and current conservation
(gauge invariance) is assured.

The process we investigate is, more explicitly, given as

g(q1, ε1, j) + g(q2, ε2, `) → H

where we have explicitly given the momenta, polarizations, and colours of
the gluons. We denote the Higgs mass by m and the top quark mass by M ,
and shall make extensive use of

(qi · qi) = (qi · εi) = 0 , 2(q1 · q2) = m2 . (12.58)

Although we do not expect (or hope to see) divergences, we shall still work
in 2ω dimensions for reasons that will be come clear later on. One of our
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diagrams12 is given by

M1 =
(−1)i6g2gttHµ

4−2ω

(2π)2ω
Tr
(
T jT `

) ∫
d2ωp

N

D
,

D = (p2 −M2 + iε)((p− q2)2 −M2 + iε)((p+ q1)2 −M2 + iε) ,

N = Tr

(
(/p+M)/ε2(/p− /q2 +M)(/p+ /q1 +M)/ε1

)
. (12.59)

The other diagram,M2, is obtained by interchange of the two gluons. Using
the shorthand

δx ≡ dx1 dx2 dx3 δ(x1 + x2 + x3 − 1) (12.60)

we can write, using the Feynman trick,

1

D
=
∫
δx

2(
p2 + 2x1(p · q1)− 2x2(p · q2)−M2 + iε

)3 ; (12.61)

which, by the redefinition

pµ = kµ − x1q1
µ + x2q2

µ (12.62)

becomes
1

D
→
∫
δx

2(
k2 −M2 + x1x2m2 + iε

)3 . (12.63)

Since the maximum value13 of x1x2 is 1/4, we see that the iε can be expected
to become relevant whenever m2 ≥ 4M2, i.e. when the Higgs is sufficiently
heavy to decay into two top quarks14.

We now turn to N . Since the whole amplitude is current-conserving,
we are allowed to replace the polarizations by explicitly current-conserving
combinations :

ε1
µ → η1

µ = ε1
µ − (q2 · ε1)

(q1 · q2)
q1
µ , ε2

µ → η2
µ = ε2

µ − (q1 · ε2)

(q1 · q2)
q2
µ ,

(12.64)

12In fact, the second one.
13Reached when x1 = x2 = 1/2, x3 = 0.
14Since we now know that M > m this is not in order here, but for lighter quarks it

may be.
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with the nice properties that

η1 · q1,2 = η2 · q1,2 = 0 . (12.65)

This simplifies the trace in N :

N → Tr

(
(/p+M)/η2(/p− /q2 +M)(/p+ /q1 +M)/η1

)

= 4M

{
4(p · η1)(p · η2)− p2(η1 · η2) +M2(η1 · η2)−m2(η1 · η2)/2

}
.

(12.66)

Performing the same shift (12.62) as before, we have

N → 4M

{
4(k · η1)(k · η2)− k2(η1 · η2) +M2(η1 · η2) +m2(η1 · η2)(x1x2 − 1/2)

+ 2(k · q1)(η1 · η2)− 2(k · q2)(η1 · η2)

}
. (12.67)

Since D is even in k, the integral of the last two terms in (12.67) will vanish,
and we discard them. Considering the first term, we notice that Lorentz
invariance requires that

∫
d2ωk kµ kν f(k2) =

1

2ω
gµν

∫
d2ωk k2 f(k2) , (12.68)

where the proportionality factor can be checked by multiplying both sides
with gµν . The effective form of N is therefore, finally,

N → 4M(η1 · η2)

((
2

ω
− 1

)
k2 +M2 +m2(x1x2 − 1/2)

)
, (12.69)

and the diagram is therefore

M1 = 4g2gttHδj,`M(η1 · η2)µ4−2ω Q ,

Q =
1

(2π)2ω

∫
δx d2ωk

(
2
ω
− 1

)
k2 +M2 +m2(x1x2 − 1/2)(

k2 −M2 + x1x2m2 + iε
)3 .(12.70)
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We see that in fact M2 = M1, owing to our use of the η’s rather than the
ε’s. Performing the Wick rotation, the by-now familiar15 techniques allow us
to write

Q =
i

(4π)ωΓ(ω)

∫
δx

∞∫
0

ds sω−1

(
2−ω
ω

)
s−M2 −m2(x1x2 − 1/2)(

s+M2 − x1x2m2 − iε
)3

=
i

(4π)ωΓ(ω)

∫
δx

[(
2− ω
ω

)
Γ(ω + 1)Γ(2− ω)

Γ(3)

1

(M2 − x1x2m2 − iε)2−ω

−Γ(ω)Γ(3− ω)

Γ(3)

M2 +m2(x1x2 − 1/2)

(M2 − x1x2m2 − iε)3−ω

]
. (12.71)

From the identities

Γ(ω + 1)/ω = Γ(ω) , (2− ω)Γ(2− ω) = Γ(3− ω) , (12.72)

we see that

Q =
im2Γ(3− ω)

4(4π)ω

∫
δx

1− 4x1x2

(M2 − x1x2m2 − iε)3−ω . (12.73)

Now we can afford to let ω → 2, and find for the amplitude

M = M1 +M2 = 2M1

=
2ig2gttHM

(4π)2
δj,` (η1 · η2) F (M2/m2) ,

FttH(t) =

1∫
0

dx1

1−x1∫
0

dx2
1− 4x1x2

t− x1x2 − iε
. (12.74)

A number of remarks are in order here. For very large values of t we have

FttH(t) ≈ 1/(3t) . (12.75)

Since

gttH =
eM

2sWmW

(12.76)

15Hopefully.
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the amplitude becomes independent of M as M becomes very large16. That
this happens is due to the fact that in Eq.(12.71) the M2 terms in the nu-
merator cancels if we combine the two terms. But for that to happen, the
first term has to be present. Were we to set d = 4 from the outset, it would
be absent. Of course, the fact that the numerator would contain a k2 term
and the loop integral would be divergent if d would differ ever so slightly
from 4 should give us pause. This is the reason why we have to stick to
variable dimension in this calculation : if we don’t, then the amplitude will
be proportional to M2 ! Furthermore we can introduce the ‘field strength
tensors’

Fj
µν ≡ εj

µqj
ν − qjµεjν , j = 1, 2 , (12.77)

and realize that

(η1 · η2) = m2 F1
µν F2µν . (12.78)

With the additional definition

αs = g2/(4π) (12.79)

we see that the amplitude takes on the form

lim
M→∞

M =
ie αs

12πmWsW
F1

µν F2µν δj,` . (12.80)

For finite values of M we have

M =

(
lim
M→∞

M
)

3M2

m2
FttH(M2/m2) . (12.81)

We now turn to the calculation of F (t) for finite t, and first rewrite

F (t) = 2 + (1− 4t)H(t) ,

H(t) =

1∫
0

dx1

1−x1∫
0

dx2
1

t− x1x2 − iε

=

1∫
0

dx
−1

x
log

(
t− iε− x+ x2

t− iε

)

16This further implies that very heavy fermions from a possible fourth generation will
contribute appreciably to de decay H → gg or H → γγ !
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=

1∫
0

dx
−1

x
log

(
(x− − x)(x+ − x)

t− iε

)

=

1∫
0

dx

(
−1

x
log

(
1− x

x−

)
− 1

x
log

(
1− x

x+

))
, (12.82)

where
x±

2 − x± + t− iε = 0 (12.83)

so that
x+ + x− = 1 , x+x− = t− iε (12.84)

We now distinguish two cases. In the first place, let t > 1/4. Then

x± =
1

2

(
1± γ

)
, γ =

√
4t− 1 . (12.85)

We can then use the definition of the dilogarithm function Li2, further de-
scribed in Appendix 13.15, to arrive at

t > 1/4 : H(t) = Li2

(
1

x+

)
+ Li2

(
1

x−

)
. (12.86)

Since x− = (x+)∗, this expression has no imaginary part, as expected. Fur-
thermore, the expansion

Li2(z) =
∑
n≥1

zn

n2
, (12.87)

valid for |z| < 1, leads to the correct form for F (t) for large t (hence large
γ).

The other case of interest17 is 0 < t < 1/4. We can write

x± = u± ± iε , u± =
1

2

(
1± β±

)
, β =

√
1− 4t . (12.88)

We now first consider

H− =

1∫
0

dx
−1

x
log

(
1− 1

x−

)
. (12.89)

17Since t = M2/m2, the case t < 0 is irrelevant.
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Cleverly, we first take a derivative :

∂

∂u−
H− =

∂

∂x−
H− =

1∫
0

dx
1

x−(x− x−)

=

1∫
0

dx
1

x

(
log(1− x−)− log(−x−)

)
. (12.90)

By carefully taking the limit iε→ 0 we see that this can be written as

∂

∂u−
H− =

1

u−

(
log(1− u−)− log(u−)− iπ

)
. (12.91)

Also realizing that H− = Li2(1) when u− = 1, we arrive at

H− =
π2

3
− Li2(u−)− 1

2
log(u−)2 − iπ log(u−) . (12.92)

We can replace u− by u+ so as to compute the analogous H+ ; the only
difference is in the different sign of iε so that we find

H+ =
π2

3
− Li2(u+)− 1

2
log(u+)2 + iπ log(u+) ; (12.93)

The final result is, therefore,

H(t) = H− +H+

=
2π2

3
− (Li2(u−) + Li2(u+))− 1

2
log(u+)2 − 1

2
log(u−)2 + iπ log

(
u+

u−

)

=
π2

2
− 1

2
log

(
u+

u−

)2

+ iπ log

(
u+

u−

)
. (12.94)

Throughout, we have here used the properties of Li2 as discussed in Appendix
13.15.



Chapter 13

Appendices

13.1 Convergence issues in perturbation the-

ory

Let us reinspect Eq.(1.19), taking µ = 1 for simplicity :

G2n = H2n/H0 ,

H2n =
∑
k≥0

(4k + 2n)!

25k+n 3k (2k + n)! k!
(−λ4)k ,

H0 =
∑
k≥0

(4k)!

25k 3k (2k)! k!
(−λ4)k . (13.1)

Although we have treated the expressions for the H’s as if they were well-
defined objects, in fact these series do not converge ! For large k and fixed n
the kth term in H2n contains the numerical coefficient

(4k + 2n)!

25k+n 3k (2k + n)! k!

which increases superexponentially1 with k : which implies that the series
has a radius of convergence equal to zero. The procedure of taking the ratio
H2n/H0, while it mixes terms of different order in λ4, does not help to repair
this ; a simple numerical study shows that

G2 =
∑
k≥0

σk(−λ4)k , σk ∼ k! (2/3)k , (13.2)

1This means that the coefficient increases with k faster than Ak for any A : roughly
speaking, it grows like (k!) .

367
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so that also G2 (and, it can be checked, the higher G’s) are described by series
with vanishing radius of convergence. This should not come as a surprise.
For, in the discussion of the perturbation expansion we have assumed the
coupling constant λ4 to be small, but positive. If, on the other hand, it was
small but negative, perturbation theory would look very different ; in fact
it would look like nothing at all since for negative λ4 the path integral is
completely undefined. Therefore, the perturbative expansion is not regular
around λ4 = 0, and in the set of all ϕ4 theories the point λ4 = 0 constitutes
an essential singularity.

All may not be lost, however. The method of Borel summation some-
times2 enables us to assign a value to a sum with vanishing radius of con-
vergence. Suppose that a function of a positive variable x is given by the
sum

f(x) =
∑
k≥0

ck x
k , (13.3)

where the coefficients ck grow superexponentially. Clearly it is difficult to
make sense of such a sum ; but it may be possible to make sense of a related
sum :

g(x) =
∑
k≥0

ck
k!
xk , (13.4)

simply because the coefficients do not grow as rapidly. Let us suppose that
this is indeed the case. We then may employ the formula

∞∫
0

dy exp(−y) (xy)n = n! xn , n = 0, 1, 2, . . . (13.5)

to arrive at the rule

f(x) =

∞∫
0

dy e−y g(xy) . (13.6)

Notice that here, we have again interchanged summation and integration,
thus in a sense repairing the damage done when we arrived at the perturba-
tion expansion in the first place. This approach is called Borel summation.
We can illustrate this in a simple example. Let us take ck = 1, that is

f(x) =
∑
k≥0

xk =
1

1− x
: (13.7)

2In zero dimensions this will work. In four-dimensional Minkowski space things are not
nearly as simple. . .
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we immediately find that

g(x) =
∑
k≥0

xk

k!
= ex , (13.8)

and indeed ∞∫
0

dy e−y exy =
1

1− x
. (13.9)

However, an important observation is to be made here. The sum for f(x)
converges (conditionally) for the region |x| ≤ 1, whereas the sum for g(x)
converges everywhere, and the Borel integral converges in this case as long
as <(x) < 1, thus immeasurably enlarging the region of x values where the
Borel-summed version makes sense.

We now turn to a more challenging example : the sum

F (x) =
∑
k≥0

k! (−x)k , (13.10)

with x positive. In that case we find

G(x) =
∑
k≥0

(−x)k =
1

1 + x
(13.11)

and the Borel sum reads

F (x) =

∞∫
0

dy e−y
1

1 + xy
=

1

x
e1/x E1

(
1

x

)
(13.12)

where the function E1, the exponential integral, given by

E1(z) =

∞∫
z

dt
exp(−t)

t
, (13.13)

is a little-known but perfectly well-defined function. F (x) is a function that
starts (obviously) at F (0) = 1 and then gently decreases. Borel summation
works ! But how do we actually compute the series F (x) ? The theory of
asymptotic functions provides an answer. Let us consider not the infinite
sum F (x) as given in Eq.(13.10) but its truncated version

FK(x) =
K−1∑
k=0

k! (−x)k (13.14)
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It can be shown that the difference between f(x) and fK(x) is of the order3

of the first neglected term :∣∣∣F (x)− FK(x)
∣∣∣ = O

(
K! (−x)K

)
. (13.15)

Taking ‘order’ to mean ‘roughly equal in magnitude, barring accidents’4 we
might therefore conclude that the optimal value of K is that for which the
error term is minimal, that is, we truncate around K ≈ 1/x. In that case⌊

K!xK
⌋
x=1/K

= K! K−K ≈ e−K = e−1/x , (13.16)

so that the numerical error can be very small indeed for small x. As an
illustration we give here the actual and asymptotically-inspired-truncated
result for the function (13.10).

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5

The exact and truncated re-
sults for the function F (x)
of (13.10). The smooth
curve is the exact, the
zigzagging one the trun-
cated result. The approxi-
mate value oscillates around
the true one ; but for small
x the difference is negligible.
This shows that, even if a
sum is divergent, it may still
be possible to make sense
out of it by Borel summa-
tion.

Note that in our example we have required x to be positive, so that
(−x)n oscillates in sign. That this is essential becomes clear when we try to
Borel-sum

F (x) =
∑
n≥0

n! (x)n , x > 0 : (13.17)

3Also this statement needs interpretation. In the theory of asymptotic series it means
that the difference will go to zero at least as fast as the first neglected term goes to zero,
not that these two numbers must be necessarily comparable in magnitude. As an example,
the object 1012/x2 is formally of the order of 1/x as x→∞, but x has to be really large
for them to be of equal size. Fortunately, it often happens that the difference and the
neglected term are of similar magnitude.

4Only to be justified by its success.
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the Borel integral reads

F (x) =

∞∫
0

dy e−y
1

1− xy
, (13.18)

and this integral runs into problems around y = 1/x. One may of course ex-
tend the integral to complex y values, and then skirt around the singularity ;
but it is not clear whether we should pass the point y = 1/x above, or below,
the real axis. The ambiguity, that is, the difference between the results from
the alternative contours, is of course given by the number

∮
y∼1/x

dy
e−y

1− xy
= 2πi

e−1/x ,

x

and, since during the integration we might decide to circle around the sin-
gularity any number of times, arbitrary multiples of the ambiguity may be
added. We see that the Borel integral becomes ambiguous : it may be some
consolation that the ambiguity is nonperturbative in nature, i.e. it has no
series expansion for infinitesimal but real and positive x. We conclude that
the function F (x) is given by

F (x) = −1

x
e−1/x

(
Ei
(

1

x

)
+ (2n+ 1)iπ

)
, (13.19)

where n is an undetermined integer5.

13.2 More on symmetry factors

13.2.1 The origin of symmetry factors

In this section we shall return to the ‘simple’ world of zero dimensions, since
symmetry factors do not depend on the dimensionality of the theory. Let us
consider again the ϕ3/4 theory, with a path integrand

exp
(
−S(ϕ) + Jϕ

)
= exp

(
− µ

2!
ϕ2 − λ3

3!
ϕ3 − λ4

4!
ϕ4 + Jϕ

)
5For the functions E1 and Ei, see e.g. M. Abramowitz and I.A. Stegun, Handbook of

Mathematical Functions, ch.5.
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= e−µϕ
2/2!

∑
n1,3,4≥0

1

n3!

(
−λ3ϕ

3

3!

)n3 1

n4!

(
−λ4ϕ

4

4!

)n4 1

n1!

(
Jϕ
)n1

(13.20)

We see that a diagram with n3 three-vertices, n4 four-vertices and n1 source
vertices carries an a priori factor of

1

n1! n3! n4! (3!)n3 (4!)n4
.

We then have to consider the number of ways in which a particular diagram
can be formed by connecting external lines and the vertices in appropriate
ways. The best way to learn this is, of course, to see how it is done.

13.2.2 Explicit computation of symmetry factors

Let us start with the very simple diagram

It is built up from 2 external lines (distinguishable !) and one four-vertex :
the a-priori factor is therefor 1/24. We can lay out the ingredients as a tool
kit6 : We can denote this as follows :

1

4!

To build the diagram, we first connect one of the external lines to the vertex :
there are 4 possible ways to do so since all legs of the vertex are indistin-
guishable. We then have

4

4!

To attach the other external leg, there are now 3 choices :

4× 3

4!

6If you have ever played with K’NEX this may look familiar
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For the remaining operation of linking the two other legs of the vertex there is
of course only one possibility. The resulting symmetry factor is 4×3/24 = 1/2
as advertised.

We next turn to a slightly more complicated diagram :

The tool kit is now

1

2!× 4!× 4!

The first external leg can now be attached in 8 ways, since the vertices and
all their legs are indistinguishable :

8

2!× 4!× 4!

For the other external line there are now 4 possibilities :

8× 4

2!× 4!× 4!

Now we arbitrarily consider the upper vertex leg on the left. It has to be
connected to one on the right, which can be done in 3 ways :

8× 4× 3

2!× 4!× 4!

The next leg on the left now has 2 ways to go :

8× 4× 3× 2

2!× 4!× 4!

and then the diagram is closed uniquely, leading to a symmetry factor of
8.4.3.2/2!4!4! = 1/6.

The symmetry factors of vacuum diagrams are no exception, as we can
see from the construction of
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The tool kit is now

1

4!× (3!)4

We arbitrarily pick one of the vertices and attach to an arbitrarily chosen leg
one of the 9 remaining vertex legs :

9

4!× (3!)4

The other two vertices are attached in 6 and 3 ways, respectively :

9× 6× 3

4!× (3!)4

Now take one of the outside legs. It must be attached to another outside leg
that comes from another vertex, hence 4 possibilities :

9× 6× 3× 4

4!× (3!)4

In the same way, for the next outside leg there are possibilities :

9× 6× 3× 4× 2

4!× (3!)4

and then the diagrams is closed uniquely. The symmetry factor is therefore
1/24, corresponding to the symmetry of permuting the vertices.

We finish with a truly nontrivial one :

Note that the two crossing lines do not touch but form an ‘overpass’ : this
diagram is nonplanar in the sense that an overpass remains no matter how
you try to draw it. The toolkit is now even more impressive :

1

5!× (3!)5
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We can attach the external lines to different 3-vertices in 15, 12, and 9 ways,
respectively :

15× 12× 9

5!× (3!)5

Now the leftmost object can be attached to the two remaining 3-vertices in
6 and then in 3 ways :

15× 12× 9× 6× 3

5!× (3!)5

The topmost leg of the object on the left has to be connected to both the
upper and the lower objects on the right, for which there are thus 4 and 2
options, respectively :

15× 12× 9× 6× 3× 4× 2

5!× (3!)5

By now, it ought to be obvious that there are 2 ways to finish off the dia-
gram, leading to a symmetry factor of (15.12.9.6.3.4.2.2)/(5!(3!)5), in simpler
terms 1/2. The actual symmetry is, once again, the permutation of the two
innermost vertices.

13.3 Completely solvable models in zero di-

mensions

13.3.1 A logarithmic action

The free theory is of course one in which we can calculate all Green’s functions
exactly to all orders – but that is because they are trivial. Are there less
trivial actions for which we can compute everything? Consider, for example,
the action given by

S(ϕ) = − µ
a2

log(1− aϕ)− µ

a
ϕ

=
µ

2
ϕ2 +

aµ

3
ϕ3 +

a2µ

4
ϕ4 + · · · . (13.21)
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Here, a is some dimensionful constant, and the field is supposed to take values
only on (−∞, 1/a). Since

S ′(ϕ) =
µ

a

(
1

1− aϕ
− 1

)
= µ

(
ϕ+ aϕ2 + a2ϕ3 + · · ·

)
, (13.22)

The SDe for the path integral reads

µ
(
h̄Z ′ + ah̄2Z ′′ + a2h̄3Z ′′′ + · · ·

)
= JZ . (13.23)

Differentiating this once more and multiplying with ah̄ gives

µ
(
ah̄2Z ′′ + a2h̄3Z ′′′ + · · ·

)
= ah̄(Z + JZ ′) . (13.24)

By subtraction we therefore find

µh̄Z ′ = JZ − ah̄Z − ah̄JZ ′ , (13.25)

The solution to this differential equation is the path integral

Z(J) =
(

1 +
a

h̄
J
)−(1+µ/a2h̄)

exp
(
J

ah̄

)
; (13.26)

but, more importantly, we can simply read off φ(J) from Eq.(13.25) :

φ(J) = h̄
Z ′

Z
=
J − ah̄
µ+ aJ

. (13.27)

We have now completely solved the SDe. It appears that all loop corrections
beyond one loop vanish identically ! Moreover we can write Eq.(13.27) also
as

J =
µφ+ ah̄

1− aφ
, (13.28)

so that the effective action is

Γ(φ) = − µ
a2

log(1− aφ)− µ

a
φ− h̄ log(1− aφ) . (13.29)

The effective action, also, is free of corrections beyond one loop. Results
such as this one can provide a powerful check on other calculations. For
instance, the results of Eq.(1.93) and Eq.(1.98) for the effective action can
be applied for this action, and indeed we find that, at one loop, Γ1(φ) =
−h̄ log(1 − aφ), and at two loops, Γ2(φ) = 0. Furthermore, the fact that
if we (a) allow for all possible vertices, (b) assign the Feynman rule −(n −
1)!/h̄ to an n-point vertex, and h̄ to each propagator, then all connected
Green’s functions (or their 1PI parts only) must vanish beyond one loop, is
very helpful in determining whether we have forgotten some diagrams in a
nontrivial calculation.
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13.3.2 An exponential action

Next, we consider the action

S(ϕ) =
µ

a2

(
eaϕ − 1− aϕ

)
. (13.30)

From

S ′(ϕ) =
µ

a

(
eaϕ − 1

)
=
µ

a

(
aϕ+

1

2!
a2ϕ2 +

1

3!
a3ϕ3 + · · ·

)
(13.31)

we obtain the SDe in the form

µ

a

(
ah̄Z ′ +

a2h̄2

2!
Z ′′ +

a3h̄3

3!
Z ′′′ + · · ·

)
=
µ

a

(
Z(J + ah̄)− Z(J)

)
= JZ(J) .

(13.32)
In other words,

Z(J + ah̄) =
(

1 +
J

ah̄

)
Z(J) , (13.33)

which functional equation has the solution7

Z(J) = Γ
(
µ

a2h̄

)−1
(
a2h̄

µ

)J/ah̄
Γ
(
µ

a2h̄
+

J

ah̄

)
. (13.34)

The corresponding field function reads

φ(J) =
1

ah̄

[
log

(
a2h̄

µ

)
+ ψ

(
µ+ aJ

a2h̄

)]
, (13.35)

where ψ(z) = Γ′(z)/Γ(z). This function has an asymptotic expansion for
large z :

ψ(z) ∼ log(z)− 1

2z
−
∑
n≥2

Bn

n
z−n , z →∞ . (13.36)

Here, the Bn are the Bernoulli numbers, defined by their generating function
as follows :

F (x) ≡ x ex

ex − 1
=
∑
n≥0

Bn
xn

n!
. (13.37)

7Here, Γ does of course not denote any effective action, but rather the ‘factorial’ Gamma
function.
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It is easily seen that B0 = 1 and B1 = 1/2 ; but more significantly, from
the fact that F (x)− x/2 is actually8 even in x, we see that all Bn vanish for
odd n ≥ 3 ; which again means that all odd loop corrections beyond the first
order vanish for all Green’s functions ! The receipe is even simpler than in
the previous case : replacing each vertex by −1 and each propagator by 1, all
odd-loop Green’s functions must be identically zero ; yet another powerful
check on our computations.

13.4 Alternative solutions to the Schwinger-

Dyson equation

13.4.1 Alternative contours in the complex plane

Alternative contours for general theories

In section 1.2.5, it was mentioned that ϕ3 theory is not well-defined for real
fields since the action will go to infinity whenever ϕ→ +∞ or ϕ→ −∞. It
is instructive to lift the requirement that ϕ be real. In that case, we see that
different integration contours become available for which the path integral is
well-defined (albeit not necessarily real). Let us consider a zero-diensional
theory with general action

S(ϕ) =
m∑
p=1

λp
p!
ϕp . (13.38)

The requirement for the path integral to be defined is that at both endpoints
(still assumed to be at infinity in some complex direction) the real part of
the action goes to positive infinity. That is,

<(ϕm) → +∞ ⇒

− π

2m
+

2π

m
k < arg(ϕ) <

π

2m
+

2π

m
k , k = 1, 2, . . . ,m .(13.39)

The argument of the endpoints are restricted to certain intervals. Inside
each interval the precise value of the argument is irrelevant since the path
integral will be precisely the same: we may therefore say that for a theory

8From the way it is written, this seems unlikely — but it is true.
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with highest interaction term ϕm the admissible endpoints are ∞(m)
n , with

n = 0, 1, 2, . . . ,m− 1, where

∞(m)
n = lim

r→∞
reiφn , φn ∈

(
2π

m
(n− 1

4
),

2π

m
(n+

1

4
)
)

. (13.40)

Since the path integrand is analytic, the theory is completely determined by
the endpoints. We see that for a theory with highest interaction of the form
ϕm there are precisely m− 1 independent solutions to the SDe, as necessary
since the SDe is a linear differential equation of order m − 1. We may take
these as given by a contour running between∞(m)

0 and any of the m−1 other
∞(m)

n . By suitably combining several integrals we can of course also obtain
a theory based on a contour running between any two distinct ∞(m)

n .

An interesting observation can be made on the limit of vanishing cou-
pling. Consider an action in which the highest coupling is λmϕ

m/m!, and
the next highest is λkϕ

k/k!. We can immediately see that the theory will
remain well-defined in the limit λm → 0, provided that its endpoints ∞(m)

are chosen such as to overlap with two distinct endpoints of the subleading
coupling, ∞(k). If this is not the case the path integral will not be defined in
the limit of vanishing leading coupling constant.

Alternative contours for ϕ3 theory

As an example, let us look again at ϕ3 theory. There are three endpoints
∞(3)

0,1,2. Since the point −∞ is not inside one of the admissible edpoints,
the real axis is not a valid contour as we have remarked. An interesting
well-defined choice is the contour between ∞(3)

1 and ∞(3)
2 : by symmetry

we see that, as long as the action’s parameters and the source are real, the
path integral and φ(J) are well-defined and real. On the other hand, both

endpoints overlap with the same endpoint ∞(2)
1 , which means that in the

limit λ3 the theory must become ill-defined. A quick look at the tree-level
form of the theory bears this out : for the action

S(ϕ) =
λ

6
ϕ3 +

µ

2
ϕ2 (13.41)

the classical solution is given by

S ′(φc(J)) = J ⇒ φc(J) =
µ

λ

(
−1±

√
1 +

2λJ

µ2

)
. (13.42)
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Choosing the − sign we obtain a clasical tadpole φc(0) = −2µ/λ, which
corresponds to the contour discussed above9 ; and indeed it becomes ill-
defined as λ → 0. The choice of the + sign gives a classical solution that
has a Taylor series expansion around λ = 0. It corresponds to the contours
running from ∞(3)

0 to either ∞(1) or ∞(2) ; it is not possible to tell which of
the two contours is intended. In fact the situation appears to be even worse.
If λ, µ and J are all real, the SDe can be iteratively solved starting from the
classical solution, and the perturbation series is completeley fixed as well as
real ; whereas the fact that the two integration contours are really distinct
from the real axis tells us that the path integral (and hence φ(J)) ought
to be complex, with the results from the two contours related by complex
conjugation. We conclude that the difference between the two alternative
path integral must be non-perturbative in nature.

Alternative contours for ϕ4 theory

For ϕ4 theory, with action

S(ϕ) =
1

4!
λϕ4 +

1

2
µϕ2 ,

there are three independent contours. Since ∞(4)
1,3 do not overlap with any

∞(2), we see that only the real axis gives a theory in which the limit λ4 → 0
is well-defined. Another interesting contour is that running between ∞(4)

3

and∞(4)
1 : we may take this contour to be the imaginary axis. By the simple

variable transformation ϕ → iϕ′ we see that the theory we are actually
investigating here is that with real field ϕ′ but action

S(ϕ′) =
1

4!
λ4ϕ

′4 − 1

2
µϕ′

2
,

that is, a theory with the ‘wrong’ sign for the quadratic term. Such mod-
els are regularly studied in connection with the phenomenon of spontaneous
symmetry breaking10. As we see, this theory does not have a standard per-
turbative expansion around λ4 = 0 even though the tadpole vanishes.

9It should be observed that the classical SDe allows us to construct the full classical
solution from the tadpole φc(0), and that from the classical solution we can construct the
full quantum solution — all perturbatively, and some care has to be taken if the tadpole
is nonzero.

10In zero dimensions, spontaneous symmetry breaking does not occur.
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13.4.2 Alternative endpoints

Fixed non-infinite endpoints

Those theories of ϕ3 or ϕ4 kind that show a regular behaviour as λ → 0
have in common that their contour may be drawn so as to include a part
that crosses the point ϕ = 0 along the real axis11. We can therefore envis-
age theories where the contour crosses the origin (assumed to be where the
minimum of the action is) along the real axis, but where we keep the path
integral wel-defined simply by letting the contour end at finite distance from
the origin. The value of the path integral will then, of course, depend on
where the endpoints are – but is that a problem ? As an example, consider
the free theory with for the contour the real axis between, say, ϕ− < 0 and
ϕ+ > 0. This contour includes ϕ = 0, and we may trust perturbation theory
insofar as it can be trusted at all. The difference between this ‘restricted’
path integral and the one where the whole real axis is included is given
by the error function with arguments ϕ±, that is, terms that are of order
exp(−ϕ±2/(2h̄µ)). This will lead to a theory that differs from the standard
free one on a nonperturbative level only, as long as ϕ± is not of order h̄. It is
easy to see that this phenomenon will persist for interacting theories as well.
Our upshot is that finite endpoints are acceptable as long as we are doing
perturbation theory, and as long as the origin can be crossed along the real
axis in an unambiguous manner.

Moving endpoints

Finitely positioned endpoints of the integration contour will in general lead
to nonperturbative inhomogeneous terms in the SDe, as we have seen. There
is, however, another possibility : that of letting the contour endpoints depend
on the source. To see how this is possible, let us consider the path integral
over the real axis, assuming that the action diverges acceptably at ϕ = −∞,
and that the upper limit of the path integral resides at the source-dependent
value ϕ = c(J). Denoting12 by A(ϕ, J) the integrand exp(−S(ϕ) + Jϕ), we

11The ϕ3 theory with endpoints ∞(3)
1 and ∞(3)2 can also be deformed to go over the

origin along the real axis — but then it has to go ‘forth’ and ‘back’ over that point, which
rather spoils the idea since the contributions will cancel one another.

12We take h̄ = 1 for simplicity here.
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then have the (unnormalized) path integral

Z(J) =

c(J)∫
−∞

dϕ A(ϕ, J) , (13.43)

for which we can deduce the derivatives

Z ′(J) = c′(J)A(c(J), J) +

c(J)∫
−∞

dϕ ϕ A(ϕ, J) ,

Z”(J) =

[
2c′(J)c(J) + c”(J) + c′(J)2(J − S ′(c(J))

]
A(c(J), J)

+

c(J)∫
−∞

dϕ ϕ2 A(ϕ, J) , (13.44)

and so on. By suitably choosing c(J) we can make sure that Z(J) obeys the
exact, homogeneous SDe. For the free theory, the SDe reads

0 = JZ(J)− µZ ′(J)

= −µc′(J)A(c(J), J) +

c(J)∫
−∞

dϕ (J − µϕ)A(ϕ, J)

=

(
1− µc′(J)

)
A(c(J), J) : (13.45)

and we conclude that the theory with a restricted but J-dependent endpoint
will be completely indistinguishable from the standard free theory if

c(J) = c(0) + J/µ . (13.46)

By some poetic justice, the endpoint must move uniformly for the free theory
(in the sense in which J stands for ‘time’). We can of course also introduce
a moving lower endpoint, and in fact, for any theory, we can let the two end-
points satisfy their own differential equation independently of one another.
For the free theory, we find that a contour over any finite interval leads to the
correct SDe, provided the interval moves along the real axis with the correct
‘speed’. The extension to interacting theories we glibly leave as an excercise
to the reader.
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13.5 Concavity of the effective action

In the zero-dimensional case of a single field variable, the effective action
is concave. Let us now investigate whether this persists in case of more
fields. Let the collection of all fields be denoted by {ϕ} as before, and the
collection of all sources, one for each field, by {J}. We shall denote the
combined probability density of all fields, including the effects of the sources,
by P ({ϕ}, {J}). The effective action is now that function of the collection
of all field functions {φ} that has the correct classical equation :

∂

∂φn
Γ({φ}) = Jn . (13.47)

Concavity of the effective action in the many-field case means that the matrix

Γnm ≡
∂

∂φn

∂

∂φm
Γ({φ}) =

∂

∂φm
Jn (13.48)

has only positive eigenvalues. If this is the case, then also its inverse, the
matrix

Hmn =
∂

∂Jm
φn (13.49)

must have only positive eigenvalues13. That is, for any eigenvector a of H
the eigenvalue λ must be positive :∑

n

Hmn an = λ am , λ > 0 . (13.50)

In turn, this is guaranteed if ∑
m,n

Hmn am an > 0 (13.51)

for any vector a. Now, we have

φm =

∫
(
∏
n dϕn) P ({ϕ}, {J}) ϕm∫

(
∏
n dϕn) P ({ϕ}, {J})

, (13.52)

13Since Γmn is symmetric, so is Hmn although this is not obvious from the form it is
written here.
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and therefore

1

h̄
Hmn =

∫
(
∏
n dϕn) P ({ϕ}, {J}) ϕmϕn∫
(
∏
n dϕn) P ({ϕ}, {J})

−
∫

(
∏
n dϕn) P ({ϕ}, {J}) ϕm∫

(
∏
n dϕn) P ({ϕ}, {J})

∫
(
∏
n dϕn) P ({ϕ}, {J}) ϕn∫

(
∏
n dϕn) P ({ϕ}, {J})

.(13.53)

We now employ the following trick : duplicate the set of fields {ϕ} by the
addition of another set of fields, {ϕ̂}, with the combined probability density

P ({ϕ}, {ϕ̂}, {J}) = P ({ϕ}, {J})P ({ϕ̂}, {J}) . (13.54)

By this construction, the random variables ϕ and ϕ̂ are statistically indepen-
dent. We can then write the matrix H as

1

h̄
Hmn = 〈ϕmϕn − ϕmϕ̂n〉 , (13.55)

with the average taken with respect to the new probability density. Using
the fact that this density is symmetric in ϕ↔ ϕ̂, we can write this as

1

h̄
Hmn =

1

2
〈ϕmϕn − ϕmϕ̂n − ϕ̂mϕn + ϕ̂mϕ̂n〉

=
1

2
〈(ϕm − ϕ̂m)(ϕn − ϕ̂n)〉 , (13.56)

and we arrive at

∑
m,n

Hmn am an =
h̄

2

〈(∑
n

(ϕn − ϕ̂n)an

)2〉
, (13.57)

which is necessarily positive. The matrix H has, therefore, only positive
eigenvalues, and the effective action is always concave. It is of course possible
(and even likely in the case of continuum theories that have a noncountable
infinity of field values) that the eigenvalue is actually infinite. In that case
the effective action contains flat directions. So perhaps the more careful
statement is that the effective action cannot be convex anywhere.

A final point to note is that our proof relies only on the fact that the ϕ
values are randomly distributed over some nonvanishing region, no matter
how small. Of course, by restricting the values that the ϕ are allowed to take
we will change the effective action ; but it will never be convex.
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13.6 Diagram counting

13.6.1 Tree graphs and asymptotics

Direct counting

An interesting and useful application of zero-dimensional field theory lies
in the topic of counting diagrams. To the extent that we may consider
every diagram as being of the same ‘order of magnitude’ this gives an idea,
however crude, of the amplitude to be expected. Of particular interest is
the behaviour of the number of graphs under extreme circumstances such
as when the number of external lines becomes very large. In this section
we shall consider the simplest case, that of tree-level Green’s functions of a
single self-interacting field.

In order to count diagrams, we can simply consider the zero-dimensional
theory so that we are not bothered by summing diagrams over internal de-
grees of freedom. Secondly, we replace every vertex, and every propagator by
unity. This reduces every Feynman diagram to just its symmetry factor. For
tree diagrams, the symmetry factor is unity; for loop graphs, the symmetry
factors are nontrivial and getting rid of them is quite cumbersome14. The
appropriate action reads

S(ϕ) =
1

2
ϕ2 − F (ϕ) , F (ϕ) =

∑
k≥3

εk
k!
ϕk , (13.58)

where εk is unity for every k-point interaction proposed in the theory, oth-
erwise zero. Since we only consider counting graphs, the fact that S may
become negative infinity for infinite ϕ does not bother us. The number-of-
diagrams generating function

Φ(J) =
∑
n≥0

Nn

n!
Jn , (13.59)

where Nn is the number of tree graphs with n+ 1 external lines, is given by
the classical version of the SDe :

Φ = J + F ′(Φ) . (13.60)

14In the literature ‘counting diagrams’ is usually understood to mean ‘counting diagrams
with symmetry factors’.
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There are several ways of solving for Φ. We may directly solve Eq.(13.60) as
an algebraic equation and then expand in powers of J , but this is practical
only in the simplest cases such as the ϕ3/4 theory. Alternatively, we can
approach the root of Φ = J + F ′(Φ) by Lagrange expansion15 :

Φ = J +
∑
n≥1

1

n!

(
∂

∂J

)n−1 (
F ′(J)

)n
. (13.61)

This is useful in theories with only a single coupling, such as pure ϕ4 the-
ory. In more complicated theories, the best approach for n not too large is
simply to iterate Eq.(13.60) by computer algebra. For pure ϕp theories we
can explicitly work out the result of the Lagrange expansion. The counting
equation is

φ = J +
1

m!
φm , m = p− 1 , (13.62)

so that Lagrange’s formula gives

φ = J +
∑
n>0

1

n! (m!)n

(
∂

∂J

)n−1

Jmn

=
∑
n≥0

(mn)!

n!(m!)n(mn− n+ 1)!
Jmn−n+1 . (13.63)

The nonvanishing N ’s are therefore

Nn(m−1)+1 =
(mn)!

n!(m!)n
, n = 0, 1, 2 . . . (13.64)

As expected, for m > 2 some connected Green’s functions vanish identically
at the tree level since no diagrams contribute.

Asymptotic methods

For asymptotically large n, we can estimate the form of Nn by realizing that
these must be given by the behaviour of Φ(J) near that of its singularities
that lies closest to the origin in the complex-J plane. Now, if Φ(J) is singular,

15This is proven in detail in section 13.15.8.
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then Φ′(J) is divergent16, so that dJ/dΦ must vanish. We therefore solve the
equation

∂

∂Φ
J = 1− F ′′(Φ) = 0 (13.65)

for Φ. If the highest power of interaction in the theory is ϕm, this equation
has m− 2 complex roots Φ1,Φ2, . . . ,Φm−2, and

Jp = Φp − F ′(Φp) , p = 1, 2, . . . ,m− 2 . (13.66)

Now, single out that Jp that has the smallest absolute value17, which we shall
call J0, and its corresponding Φp will be writtten Φ0. For J and Φ very close
to the values J0 and Φ0, respectively, we may use Taylor expansion to write

J ≈ J0 −
1

2
F ′′′(Φ0)(Φ0 − Φ)2 , (13.67)

since the linear term vanishes by definition. Hence

Φ ≈ Φ0 −
(

1− J

J0

)1/2
√

2J0

F ′′′(Φ0)
(13.68)

close to the singularity. From the standard Taylor expansion18

1−
√

1− x =
∑
n≥0

(2n)!

(n+ 1)!n!22n+1
xn+1 (13.69)

we then recover the asymptotic form for Nn :

Nn ≈
(2n− 2)!

(n− 1)!

1

(4J0)n

√
8J0

F ′′′(Φ0)
. (13.70)

This estimate grows roughly as n!, as ought to have been immediately obvious
from the fact that Φ(J) has a finite radius of convergence ; the above, more
careful, treatment gives an estimate that is quite good even for non-huge n.
As an application, we may consider purely gluonic QCD. In this theory, the

16The divergence might also show up in higher derivatives only, but in every actual case
that I have studied the divergence shows up in Φ′.

17The case that there are several such values is discussed in the next paragraph.
18This can be proven by applying the Lagrange expansion to the object u = y+u2/2 =

1−
√

1− 2y, and putting y = x/2.
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only interactions are between 3 or 4 gluons, and the theory is equivalent, as
far as counting is concerned, to the ϕ3/4 theory, with

F (ϕ) =
1

3!
ϕ3 +

1

4!
ϕ4 . (13.71)

The solutions of Eq.(13.65) and the corresponding J values are

Φ1 = −1 +
√

3 , J1 = −4

3
+
√

3 ; Φ2 = −1−
√

3 , J2 = −4

3
−
√

3 ,

(13.72)
so that J0 =

√
3−4/3, Φ0 =

√
3−1, and F ′′′(Φ0) =

√
3. In the table we give

the exact number Nn, and its asymptotic estimate. The approximation is
better than one per cent for n ≥ 3. The non-polynomial (that is, n!) growth
of the number of diagrams with n can be seen as an immediate indication
of the failure of perturbation theory as a convergent series, as discussed in
Appendix 1.

n Nn (exact) Nn(asymptotic)
1 1 0.85
2 1 1.07
3 4 4.01
4 25 25.17
5 220 220.94
6 2485 2493.60
7 34300 34397.35
8 559405 560754.85
9 10525900 10547973.57

Coarse-graining effects

In the above we have assumed that there is only a single J0. This is indeed
usually the case ; for pure ϕp theories, however, Eq.(13.65) reads

1

q!
ϕq = 1 , q = p− 2 , (13.73)

and this has solutions

φn = (q!)1/q exp

(
2iπ

n

q

)
, n = 1, 2, . . . , q ; (13.74)
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the corresponding values for J are

Jn = 1− 1

(q + 1)!
φn

q+1 =
q

q + 1
φn , n = 1, 2, . . . , q , (13.75)

and these have all the same absolute value. The thing to do is therefore
to take the asymptotic contributions from all these q singular points into
account, and sum them. We then obtain

Nk ≈
q∑

n=1

(2k − 2)!

(k − 1)!
(4Jn)−k

√√√√8(q − 1)!Jn

φn
q−1

=
(2k − 2)!

(k − 1)!

(
q + 1

4q

)k√
8

q

q∑
n=1

φn
−(k−1) . (13.76)

The sum over the n values of φ will vanish completely, except when k−1 is a
multiple of q, and then it evaluates to q/(q!)k−1 ; this is exactly the behaviour
we found using Lagrange expansion.

We might have proceeded otherwise, by simply taking the single real
solution φq = (q!)1/q as the only singular point. The number of diagrams
Nk will then be nonvanishing for every k value, while in the asymptotic
expression (13.76) the sum over n φ’s is replaced by φq

−(k−1), that is precisely
q times smaller than the nonvanishing sums of Eq.(13.76). We see that the
taking into account of only the single, real solution causes the asymptotic
values of Nk to be ‘smeared out’ ; Nk is then never zero anymore, but its
average value19 is still correct.

13.6.2 Counting one-loop diagrams

The SDe approach to counting diagrams has a number of interesting or useful
applications, one of which we discuss here. We can extend the treatment of
the previous section as follows. For the case of purely gluonic QCD the num-
ber of one-loop diagrams including their symmetry factors can be counted
by iterating the appropriate Schwinger-Dyson equation :

Φ(J) = J +
1

2
Φ2 +

1

6
Φ3 +

h̄

2
(1 + Φ) Φ′ (13.77)

19For the correct definition of ‘average’.
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and taking care to discard terms of order h̄2 or higher. As an example, the
gluonic 20-point function is given by

N(19) = N0(19) + h̄ N1(19) +O
(
h̄2
)
,

N0(19) = 11081983532721088487500 ,

N1(19) = 2900013601350201168582750 . (13.78)

The number N0(19) is the actual number of diagrams since tree diagrams
always have unit symmetry factor ; but the number N1(19) underestimates
the actual number of diagrams since the symmetry factors are not trivial. We
can see, however, that the only possible nonntrivial symmetry factor at the
one-loop level is 1/2, as evidenced by the factor h̄/2 in Eq.(13.77). Inspection
tells us that in this theory the only elementary Feynman diagrams that have
symmetry factor 1/2 are

E1 = , E2 = , E3 = ,

E4 = , E5 = .

All diagrams that contain one of these elementaries as a subgraph will have
a symmetry factor 1/2, and it will suffice to determine their number and
multiply it by two20. Alternatively, we may get rid of all such diagrams,
and work with the difference. This is the more useful approach ; and it
illustrates how we may go about using counterterms to impose constraints
on the structure of Feynman diagrams. The procedure is best explained by
going through it step by step. In the first place, it will become necessary to
again distinguish betwee three- and four-point vertices. We therefore modify
Eq.(13.77) be reinserting labels for these couplings:

Φ(J) = J +
g3

2
Φ2 +

g4

6
Φ3 +

h̄

2
(g3 + g4Φ) Φ′ (13.79)

Iterating this gives for the first N :

N(0) =
h̄

2
g3 ,

20This relies, of course, on the fact that there can be no diagrams containing two (or
more) of the elementaries, since that would be a two-loop diagram (or even higher).
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N(1) = 1 + h̄
(

1
g4 + g3

2
)

,

N(2) = g3 + h̄
(

4g3
2 +

7

2
g4g3

)
,

N(3) = g4 + 3g3
2 + h̄

(
7

2
g4

2 + 24g3
4 +

59

2
g4g3

2
)

. (13.80)

We can now start to remove graphs. We shall get rid of all diagrams with a
tadpole by introducing a tadpole counterterm h̄T in the SDe:

Φ(J) = J +
g3

2
Φ2 +

g4

6
Φ3 +

h̄

2
(g3 + g4Φ) Φ′ − h̄T (13.81)

We see that this amounts to replacing J by J − h̄T , and the N ’s become

N(0) = h̄
(

1

2
g3 − T

)
,

N(1) = 1 + h̄
(

1
g4 + g3

2 − g3T
)

,

N(2) = g3 + h̄
(

4g3
2 +

7

2
g4g3 − g4T − 3g3

2T
)

,

N(3) = g4 + 3g3
2 + h̄

(
7

2
g4

2 + 24g3
4 +

59

2
g4g3

2 − 10g4g3T − 15g3
3T
)

.

(13.82)

The tadpole N(0) is removed by choosing T = g3/2 ; and by the recursive
structure of the SDe all diagrams containing the elementariy E1 are removed
as well. The remaining low-order Ns are now

N(1) = 1 + h̄
(

1

2
g4 +

1

2
g3

2
)

,

N(2) = g3 + h̄
(

3g4g3 +
5

2
g3

3
)

,

N(3) = g4 + 3g3
2 + h̄

(
7

2
g4

2 +
49

2
g4g3

2 +
33

2
g3

4
)

. (13.83)

Next, we want to get rid of the two self-energy bubbles E2 and E3. To this
end, we again modify the SDe:

Φ(J) = J +
g3

2
Φ2 +

g4

6
Φ3 +

h̄

2
(g3 + g4Φ) Φ′ − h̄T +

h̄B

1 + h̄B
Φ , (13.84)



392 March 26, 2017

where the strange-looking form of the counterterm is justified by the fact
that we can rewrite Eq.(13.84) into

Φ(J) =

(
J +

g3

2
Φ2 +

g4

6
Φ3 +

h̄

2
(g3 + g4Φ) Φ′ − h̄T

)(
1 + h̄B

)
, (13.85)

which lends itself better to the purpose of iteration. We then obtain

N(1) = 1 + h̄
(

1

2
g4 +

1

2
g3

2 +B
)

,

N(2) = g3 + h̄
(

3g4g3 +
5

2
g3

3 + 3Bg3

)
,

N(3) = g4 + 3g3
2 + h̄

(
7

2
g4

2 +
49

2
g4g3

2 +
33

2
g3

4 + 4Bg4 + 15Bg3
2
)

.

(13.86)

Requiring N(1) = 1 leads to B = −(g4 + g3
2)/2, and we are left with

N(2) = g3 + h̄
(

3

2
g4g3 + g3

3
)

,

N(3) = g4 + 3g3
2 + h̄

(
3

2
g2

4 + 15g4g3
2 + 9g3

4
)

. (13.87)

Now, the one-loop contribution to the three-point function N(2) must not
be completely cancelled, since it contains the diagram

which has symmetry factor 1 and must be retained. We therefore add a
counterterm to the three-point coupling in the SDe:

Φ(J) =

(
J +

(g3 − h̄δ3)

2
Φ2 +

g4

6
Φ3 +

h̄

2
(g3 + g4Φ) Φ′ − h̄T

)(
1 + h̄B

)
,

(13.88)
where the counterterm is needed only at one place since we are working to
one-loop accuracy. The result of the iteration is

N(2) = g3 + h̄
(

3

2
g4g3 + g3

3 − δ3

)
,

N(3) = g4 + 3g3
2 + h̄

(
3

2
g2

4 + 15g4g3
2 + 9g3

4 − 6δ3g3

)
. (13.89)
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The condition now is that

N(2) = g3 + h̄g3
3 , (13.90)

which requires δ3 = 3g4g3/2 to remove all elementaries E4, and leads to

N(3) = g4 + 3g3
2 + h̄

(
3

2
g4

2 + 6g4g3
2 + 9g3

4
)

. (13.91)

The same trick can be applied to the four-point coupling: the SDe is then

Φ(J) =

(
J +

(g3 − h̄δ3)

2
Φ2 +

(g4 − h̄δ4)

6
Φ3 +

h̄

2
(g3 + g4Φ) Φ′ − h̄T

)(
1 + h̄B

)
,

(13.92)
which gives

N(3) = g4 + 3g3
2 + h̄

(
3

2
g4

2 + 6g4g3
2 + 9g3

4 − δ4

)
. (13.93)

For the four point coupling, we only want to retain the diagrams

, , and ,

which occur respectively 3,6, and 3 times. Therefore, δ4 = 3g4
2/2 removes

all occurrences of E5. With these choices, the SDe Eq.(13.92) can be iterated
(and truncated to one-loop order!) to give all diagrams that do not contain
any of the elementaries E1,...,5 as subdiagrams21.

For the 20-point gluonic amplitude we find that the number of diagrams
with symmetry factor unity is given by

N̂(19) = N0(19) + h̄M1(19) , M1(19) = 2013070318716871853439000 .
(13.94)

The total number of one-loop diagrams is therefore given by

N̂1(19) = M1(19) + 2
(
N1(19)−M1(19)

)
= 3786956883983530483726500 .

(13.95)

21The actual implementation of the approach described here in computer algebra may-
have to be somewhat modified in the interest of speed : simply iterating Eq.(13.92) as it
stands may lead to unwieldily large expressions.
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In the table we
give the results
for the amplitudes
from two to twenty
external lines. It
is seen that the
ratio of one-loop
to tree diagrams
increases with the
number of external
legs ; while the
average symmetry
factor per one-loop
diagram seems to
slowly approaches
unity. It can in-
deed be proven
that asymptoti-
cally it does do
so.

n+ 1 N0(n) N̂1(n)/N0(n) avg.symm.

2 1. 3. 0.5000
3 1. 14. 0.5357
4 4. 24.75 0.5758
5 25. 37.88 0.6066
6 220. 52.09 0.6309
7 2485. 67.47 0.6506
8 34300. 83.86 0.6672
9 5.594 105 101.2 0.6813
10 1.053 107 119.4 0.6936
11 2.244 108 138.5 0.7044
12 5.349 109 158.3 0.7140
13 1.409 1010 178.9 0.7226
14 4.064 1012 200.2 0.7305
15 1.274 1014 222.2 0.7376
16 4.315 1015 244.9 0.7441
17 1.569 1017 268.2 0.7502
18 6.101 1018 292.1 0.7558
19 2.525 1020 316.6 0.7609
20 1.108 1022 341.7 0.7658

The above strategy can of course be applied to other problems as well.
For instance, we may remove all one-loop three- and four point elementaries
instead of just those with symmetry factor one-half : in that case we are
essentially renormalising the theory. It should also be clear that in that case,
in which we just want to remove subdiagrams rather than count them, it is
easy to go to more loops in an order-by-order approach.

13.7 Frustrated and unusual actions

13.7.1 Frustrating your neighbours

The one-dimensional action we have studied was based on ‘nearest-neighbour’
interactions. We can, of course, extend this treatment to include ‘next-to-
nearest-neighbour’ interactions as well. Let us take

S({ϕ}) =
∑
n

∆
[
1

2
µϕn

2 − γ1ϕnϕn+1 − γ2ϕnϕn+2

]
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=
∑
n

∆
[
1

2
(µ− 2γ1 − 2γ2)ϕn

2 − 1

2
(γ1 + 4γ2)(ϕn+1 − ϕn)2

− 1

2
γ2(ϕn+2 − 2ϕn+1 + ϕn)2

]
, (13.96)

with the continuum behaviour of µ, γ1 and γ2 to be determined. We disregard
any other interactions since we shall only be interested in the propagator.
Setting up the SDe for the discrete propagator is trivial: we have

Π(n) =
h̄

µ
δn,0 + γ1

(
Π(n+ 1) + Π(n− 1)

)

+γ2

(
Π(n+ 2) + Π(n− 2)

)
, (13.97)

so that Fourier transformation gives us

Π(n) =
h̄

2iπ

∮
|u|=1

du
un−1

f(u)
,

f(u) = µ− γ1

(
u+

1

u

)
− γ2

(
u2 +

1

u2

)
. (13.98)

In the continuum limit, the only relevant poles of the integrand are those at
values of u such that |u| = 1 − O (∆). Let uj (j = 1, 2, . . .) be these poles:
then

Π(x) = h̄
∑
j

uj
|x|/∆

f ′(uj)
. (13.99)

Writing u = 1− v∆, we can approximate

f(u) = (µ− 2γ1 − 2γ2)− (γ1 + 4γ2)(v2∆2 + v3∆3)

−(γ1 + 5γ2)v4∆4 +O
(
∆2
)
. (13.100)

There are now two possible continuum limits. In the first case, we can assume
that γ1 + 4γ2 does not vanish. In that case, we can take γ1 + 4γ2 ∼ 1/∆, and
the resulting continuum limit is indistinguishable from the nearest-neighbour
case. For later reference we shall denote this propagator by

P1(x) =
h̄

2m
exp(−m|x|) . (13.101)
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The more curious solution is provided by the special choice γ1 = −4γ2.
The only sensible continuum limit in that case is to take

γ1 + 5γ2 ∼
1

∆3
→ γ1 ∼

4

∆3
, γ2 ∼ −

1

∆3
, (13.102)

and

µ = m4∆ + 2γ1 + 2γ2 ∼ m2∆ +
6

∆3
. (13.103)

The poles of the integrand are therefore approximately given by

f(u) = ∆
(
m4 + v4

)
+O

(
∆2
)

= 0 , (13.104)

so that the solutions are

uk ≈ 1−∆m

(
1 + i√

2

)2k−3

, k = 1, 2, 3, 4 . (13.105)

Only u1 and u2 are inside the unit circle, and we obtain the propagator

Π(x) =
h̄

m3
√

8
exp

(
−m|x|√

2

)(
cos

(
m|x|√

2

)
+ sin

(
m|x|√

2

))
,(13.106)

which we shall denote by P2(x): it has the interesting property that Π2(x)
is negative for mx between 3π/4 and 7π/4, modulo 2π. An discrete action
such as the one belonging to this continuum limit, in which nearest-neighbour
and next-to-nearest-neighbour couplings have opposite sign, are called frus-
trated22. The continuum limit of the propagator can also be written as

P2(x) =
h̄

2π

∫ exp(ikx)

k4 +m4
dk , (13.107)

and that of the action reads

S[ϕ] =
∫ [

1

2
m4ϕ(x)2 +

1

2
ϕ′′(x)2

]
. (13.108)

22Frustrated in the sense that ‘not all couplings can have it their own way’.
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13.7.2 Increasing frustration

It is quite possible to construct even more frustrated actions, as follows. Let
us suppose that the action is given by

S({ϕ}) =
∑
n

1

2
µϕn

2 −
p∑
j=1

γjϕnϕn+j

 . (13.109)

The propagator is given by Eq.(13.99), where now

f(u) = µ−
p∑
j=1

γj

(
uj +

1

uj

)
. (13.110)

We shall now arrange for the only the highest possible power of 1 − u to
survive in this expression. We first put u = exp(ik∆), so that the function
f(u) becomes

f(u) = µ−
p∑
j=1

2γj cos(jk∆) = µ−
∑
r≥0

(k∆)2r Br ,

Br ≡
p∑
j=1

2(−)r

(2r)!
j2rγj . (13.111)

We now seek to find the γ’s such that

B1 = B2 = · · · = Bp−1 = 0 , Bp = − 1

∆2p−1
. (13.112)

In that case, we can take arbitrary constants cr, with cp = 1, and always
have

p∑
r=1

crBr =
p∑
j=1

γjQ(j) = Bp , (13.113)

with

Q(j) =
p∑
r=1

2(−)r

(2r)!
crj

2r . (13.114)

The polynomial Q(j) is even and of degree 2p in j, and Q(0) = 0. We can
now, for any preassigned q with 1 ≤ q ≤ p, choose the numbers cr such that

Q(0) = · · · = Q(q − 1) = Q(q + 1) = · · · = Q(p) = 0 , Q(q) 6= 0 ,
(13.115)
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upon which

γq = Bp/Q(q) . (13.116)

Obviously, the polynomial Q(j) is given by

Q(j) =
2(−)p

(2p)!

∏
0 ≤ n ≤ p
n 6= q

(
j2 − n2

)
, (13.117)

from which we derive

γq =
(−)q−1(2p)!

∆2p−1(p− q)!(p+ q)!
, 1 ≤ q ≤ p . (13.118)

The continuum limit of the propagator is, then

Πp(x) =
h̄

2π

∫
dk

exp(ikx)

k2p +m2p
(13.119)

The poles of the integrand are located at k = mωj, where

ωj = exp

(
iπ

2j + 1

2p

)
, j = 0, 1, 2, . . . , 2p , (13.120)

so that Cauchy integration gives

Πp(x) =
−ih̄

2pm2p−1

p∑
j=0

ωj exp(iωjm|x|) . (13.121)

We may even investigate the limit p→∞: in that case we may approximate

1

k2p +m2p
≈
{
m−2p if −m < k < m

0 elsewhere
(13.122)

so that the propagator takes the form

Πp(x) ≈ h̄

2πm2p

m∫
−m

dk exp(ikx) =
1

m2p−1π

sin(mx)

mx
. (13.123)
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The propagators
Πp(x) for h̄ = m = 1,
as a function of x.
The values of p are
1,2,5,10, and also
the asymptotic form
of Eq.(13.123) is
plotted. For large
p the asymptotic
form is approximated
smoothly.
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The higher the value of p, the more frustrated the lattice is, and the more
difficult it becomes for momentum modes with high wave number to prop-
agate through the lattice, as is evident from the Fourier form (13.119). For
the totally frustrated lattice, all wave numbers smaller than m propagate
equally, and all wave nubers larger than m do not propagate at all.

13.8 Newton’s First Law revisited

13.8.1 Introduction : the matter of sources

In our discussion of Newton’s first law in section 5.3.3 we have used a par-
ticular expression for the shape of the time-dependent part of the source,
motivated by mathematical convenience. Here we shall redo the analysis of
5.3.3 but with several different time dependences of the source. The response
of the field function to the source is

φ(x0, ~x) =
1

(2π)4

∫
dk0 d3k

e−ik
0x0+i~k·~x

k02 − ω2 + iε
Jt(k

0) Js(~k) , (13.124)

with ω =
√
~k2 +m2 as usual. The space part of the source will be Gaussian :

in position language it reads

Js(~x) = (2πσ2)−3/4 exp

(
− ~x2

4σ2
+
i

h̄
~p · ~x

)
(13.125)
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which corresponds to unit strength,∫
d3x |Js(~x)|2 = 1 . (13.126)

In momentum language, we have

Js(~k) =
∫
d3x Js(~x) e−i

~k·~x = (8πσ2)3/4 exp

(
−σ2

(
~k − 1

h̄
~p
)2
)

. (13.127)

For the time dependence of the source we examine three alternatives, which
may be called slow, fast, and abrupt, respectively : in position language,

J
(1)
t (x0) =

1

(a1)1/2
exp

(
−|x

0|
a1

− i

h̄
p0x0

)
,

J
(2)
t (x0) =

1

(2πa2
2)1/4

exp

(
−x

02

4a2
2

− i

h̄
p0x0

)
,

J
(3)
t (x0) =

1

(2a3)1/2
θ
(
−a3 < x0 < a3

)
exp

(
− i
h̄
p0x0

)
. (13.128)

These three sources are all normalised to unit strength :∫
dx0 |J (j)

t (x0)|2 = 1 , j = 1, 2, 3 . (13.129)

To compare the spread of the sources in the time domain we can use〈
x02

〉
=
∫
dx0 (x0)2 |J (j)

t (x0)|2 =
a1

2

2
= a2

2 =
a3

2

3
. (13.130)

In momentum language we have

J
(1)
t (k0) =

2a1
1/2

∆2 + 1/a1
2
,

J
(2)
t (k0) = (8πa2

2)1/4 e−a
2
2∆2

,

J
(3)
t (k0) =

−i
(2a3)1/2∆

(
eia3∆ − e−ia3∆

)
, (13.131)

with ∆ = k0 − p0/h̄. The response of the field to the timelike part of the
source is

ψj ≡
∫
dk0 e−ik

0x0

k02 − ω2 + iε
J

(j)
t (k0) , (13.132)

and this is what we now investigate for positive times : x0 > 0.
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13.8.2 Slow, fast and abrupt

Slow source: exponential behaviour

The case j = 1 is what we have already investigated. Recalling the discussion
of how to close the contour in the k0 plane, we have

ψ1 = −2iπ
√
a1ω

{
exp(−iωx0)

(ω − p0/h̄)2 + 1/a1
2

+
ia1ω exp(−x0/a1 − ip0x0/h̄)

(p0/h̄− i/a1)2 − ω2

}
(13.133)

As we have remarked before, the second term dies out with the source, so
that for large enough times x0 � a1 we can disregard it.

Fast source : Gaussian behaviour

The second, ‘moderate’ time dependence has to be treated more carefully.
This is due to the fact that the exponential exp(−k02

) diverges when k0 →∞
if the argument of k0 lies in (π/4, 3π/4) or (5π/4, 7π/4), so we cannot close
the contour simply as in the previous case. Instead, we write

ψ2 = a2(8πa2)1/4 exp

(
− x02

4a2
2
− ix0p0/h̄

)
A2 ,

A2 =

∞∫
−∞

dy
exp (−(y + iτ)2)

(y − b+ + iε)(y − b− − iε)
,

b± = a2(±ω − p0/h̄) , τ = x0/(2a2) , (13.134)

and we have chosen y = a2(k0−p0/h̄). The y integral runs over the real axis ;
we may shift it downwards by an amount τ provided we include a contour
integral around the point b+ − iε, as indicated in the figures below.

→

The shift of the
contour to make it
run from −∞ − iτ
to +∞ − iτ . The
poles at b± ∓ iε are
indicated.
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The result of this operation on A2 is

A2 = −
∮
y∼b+−iε

dy
exp (−(y + iτ)2)

(y − b+ + iε)(y − b− − iε)

+

∞∫
−∞

dz
exp(−z2)

(z − b−iτ)(z − b− − iτ)

= −i 2π

b+ − b−
exp

(
−(b+ + iτ)2

)

+

∞∫
−∞

dz
exp(−z2)

b+ − b−

[
1

z − b− − iτ
− 1

z − b+ − iτ

]
. (13.135)

For large times (τ → ∞) the two integral terms in the second both behave
as ∼ 1/τ so, as in the previous case, they give rise to a contribution that dies
out with the source. We therefore have

lim
τ→∞

ψ2 ∼ a2(8πa2)1/4 exp
(
−a2

2(ω − p0/h̄)2 − iωx0
)
. (13.136)

As before, the on-shell condition implied by ω ≈ p0/h̄ is enforced.

Abrupt source : Heavyside behaviour

This case is the easiest one to analyse once we realise that J
(3)
t is perfectly

regular at ∆ = 0 notwithstanding the denominator. So for x0 > 0 we may
simply close the contour in the lower half complex k0 plane to find

ψ3 =
−π
ω
√

2
exp(−iωx0)

eia3(ω−p0/h̄) − e−ia3(ω−p0/h̄)

√
a3(ω − p0/h̄)

. (13.137)

The numerator in the last factor remains bounded in absolute value. There-
fore, as long as ω 6= p0/h̄, ψ3 goes to zero as 1/

√
a3 for large a3, while at

ω = p0/h̄ it approaches infinity as
√
a3 : yet another situation in which the

on-shell condition is enforced.

13.8.3 Conclusion : general effect of the sources

We have seen that all three type of sources exhibit a large-time behaviour

ψj ∼ e−iωx
0

dj(aj;ω − p0/h̄) , (13.138)
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characterised by a plane wave exp(−iωx0), with the contributing values of
ω governed by a distribution dj such that for aj becoming large (hence the
source becoming broader in time) the energies ω are closely clustered around
the central value p0/h̄. The reasoning leading to the mass-shell condition
E2 ≈ |~p|2c2 + M2c4, as well as the motion along straight trajectories, ~x ≈
~p t/p0, follow in each case as discussed in section 5.3.3.

13.9 Some techniques for one-loop diagrams

13.9.1 The ‘Feynman trick’

Consider n positive real numbers aj, j = 1..n. We can write

n∏
j=1

1

aj
=

∞∫
0

dz1 dz2 · · · dzn exp(−z1a1 − z2a2 − · · · − znan) (13.139)

In this integral, we may define s as the sum of the z’s, and define xj as zj/s,
as follows:

n∏
j=1

1

aj
=

∞∫
0

dz1 dz2 · · · dzn ds dx1 dx2 · · · dxn

× exp(−z1a1 − z2a2 − · · · − znan)

× δ(z1 + z2 + · · ·+ zn − s)

× δ
(
x1 −

z1

s

)
δ
(
x2 −

z2

s

)
· · · δ

(
xn −

zn
s

)
.(13.140)

We can now eliminate the z’s in favor of the x’s:

n∏
j=1

1

aj
=

∞∫
0

dx1 dx2 · · · dxn ds

× sn−1 exp

(
− s(x1a1 + x2a2 + · · ·+ xnan)

)
× δ(x1 + x2 + · · ·+ xn − 1) . (13.141)

A last integral over s then gives us the formula known as the Feynman trick:

n∏
j=1

1

aj
= Γ(n)

1∫
0

dx1 dx2 · · · dxn
(
x1a1 + x2a2 + · · ·+ xnan

)−n
× δ(x1 + x2 + · · ·+ xn − 1) . (13.142)
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For example,

1

a1 a2

=

1∫
0

dx
1(

xa1 + (1− x)a2

)2 . (13.143)

13.9.2 A general one-loop integral

We shall compute the integral

I =
∫ dDq

(2π)D
|~q|n

(|~q|2 + a2)m
(13.144)

in the spirit of dimensional regularization. That is, we shall assume that D,
n and m are such that the integral converges: where it does not, we define
the integral by analytical continuation from the convergence region. The
number a2 is not necessarily a positive real number, but again we shall reach
other values for a2 by analytical continuation from positive real values.

In the first place, by scaling the vector ~q by a factor
√
a2 we find that

I = aD+n−2mI ′ , I ′ =
∫ dDq

(2π)D
|~q|n

(|~q|2 + 1)m
. (13.145)

Next, we compute WD(t), the number of D-dimensional Euclidean vectors ~q
of a given length t, as follows:

WD(t) =
∫
dDq δ(|~q| − t)

= 2t
∫
dDq δ(|~q|2 − t2)

= 2t
∫
dq1 dq2 · · · dqD δ

(
(q1)2 + (q2)2 + · · ·+ (qD)2 − t2

)
= (2t)2D

∞∫
0

dq1 dq2 · · · dqD δ
(
(q1)2 + (q2)2 + · · ·+ (qD)2 − t2

)

= 2tD+1

∞∫
0

dy1 · · · dyD y1
−1/2 · · · yD−1/2 δ

(
t2(y1 + · · · yD − 1)

)

= 2tD−1 Γ(1/2)D

Γ(D/2)
= 2tD−1 πD/2

Γ(D/2)
, (13.146)
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where we have written qj = yj
1/2t, and used Euler’s formula of sect.(13.15.4).

Hence,

I ′ =
1

(4π)D/2Γ(D/2)
I ′′ , I ′′ =

∞∫
0

du
u(D+n)/2−1

(u+ 1)m
, (13.147)

where we have used u = t2. Another application of Euler’s formula gives us

I ′′ =

∞∫
1

du u−m (u− 1)(D+n)/2−1 =

1∫
0

du um−2
(

1

u
− 1

)(D+n)/2−1

=

1∫
0

du um−1−(D+n)/2 (1− u)(D+n)/2−1

=
Γ (m− (D + n)/2) Γ ((D + n/2)

Γ(m)
. (13.148)

We arrive at the general formula

∫ dDq

(2π)D
|~q|n

(|~q|2 + a2)m
= aD+n−2m

Γ
(
m− D+n

2

)
Γ
(
D+n

2

)
(4π)D/2 Γ

(
D
2

)
Γ(m)

. (13.149)

In the special case m = 2, n = 0 and D = 4 − 2ε, with infinitesimally
small ε, we find∫ dDq

(2π)D
1

(|q|2 + a2)2
=

a−2ε Γ(ε)

(4π)2−ε Γ(2)

=
1

(4π)2

(
1− ε log(a2) + · · ·

)
(1− ε log(4π) + · · ·)

(
1

ε
− γE + · · ·

)
=

1

(4π)2

(
1

ε
− γE − log(4π)− log(a2) +O (ε)

)
, (13.150)

where we have used

Γ(ε) =
1

ε
Γ(1 + ε) =

1

ε

(
1− εγE +O

(
ε2
))

, (13.151)

and γE ≈ 0.577216 is Euler’s constant.
Another curious feature of dimensional regularization is that of a → 0.

For D + n− 2m > 0, we find that the integral vanishes: for instance,∫
d4−2εq =

∫
d4−2εq |~q|2 = d4−2εq

1

|~q|2
= 0 , (13.152)
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whereas in particular the last integral appears to be divergent both for small
and large values of |~q|.

13.10 The fundamental theorem for Dirac ma-

trices

13.10.1 Proof of the fundamental theorem

In this appendix we prove the following statement : if we have two sets of
four matrices, γµ and γ̂µ (µ = 0, 1, 2, 3) , satisfying Dirac’s anticommutation
relation

γµ γν + γν γµ = 2 gµν , γ̂µ γ̂ν + γ̂ν γ̂µ = 2 gµν , (13.153)

then there is a matrix S such that

γ̂µ = S γµ S−1 . (13.154)

To this end, we first set up a basis of the Clifford algebra as follows :

Γ0 = 1 , Γ1 = γ0 , Γ2 = iγ1 , Γ3 = iγ2 , Γ4 = iγ3 ,

Γ5 = γ0γ1 , Γ6 = γ0γ2 , Γ7 = γ0γ3 , Γ8 = iγ1γ2 ,

Γ9 = iγ1γ3 , Γ10 = iγ2γ3 , Γ11 = iγ0γ1γ2 , Γ12 = iγ0γ1γ3 ,

Γ13 = iγ0γ2γ3 , Γ14 = γ1γ2γ3 , Γ15 = iγ0γ1γ2γ3 , (13.155)

which we denote by Γk, k = 0, 1, 2, . . . , 15 ; and using the γ̂µ we construct an
analogous set Γ̂k in the same way. These have a few interesting properties.
In the first place, Γk

2 = 1 for all k. Secondly, for every pair j and k there
are numbers n and cn such that

Γj Γk = cn Γn , cn = 1,−1, i or − i. (13.156)

From these properties it follows that simultaneously

Γk Γj =
1

cn
Γn (13.157)
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We can thus construct the multiplication table given below23 , where the
possible values of j define the rows, and those for k the columns: the corre-
sponding entry is then the value of n. For instance,

Γ6 Γ4 = Γ13

(in this case c13 happens to be 1).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 5 6 7 2 3 4 11 12 13 8 9 10 15 14
2 2 5 0 8 9 1 11 12 3 4 14 6 7 15 10 13
3 3 6 8 0 10 11 1 13 2 14 4 5 15 7 9 12
4 4 7 9 10 0 12 13 1 14 2 3 15 5 6 8 11
5 5 2 1 11 12 0 8 9 6 7 15 3 4 14 13 10
6 6 3 11 1 13 8 0 10 5 15 7 2 14 4 12 9
7 7 4 12 13 1 9 10 0 15 5 6 14 2 3 11 8
8 8 11 3 2 14 6 5 15 0 10 9 1 13 12 4 7
9 9 12 4 14 2 7 15 5 10 0 8 13 1 11 3 6
10 10 13 14 4 3 15 7 6 9 8 0 12 11 1 2 5
11 11 8 6 5 15 3 2 14 1 13 12 0 10 9 7 4
12 12 9 7 15 5 4 14 2 13 1 11 10 0 8 6 3
13 13 10 15 7 6 14 4 3 12 11 1 9 8 0 5 2
14 14 15 10 9 8 13 12 11 4 3 2 7 6 5 0 1
15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note that in this table every row and every column contains each of the
numbers from 0 to 15 precisely once. Hence, if we keep j fixed and let k
run from 0 to 15, the value of n will also take on all values from 0 to 15
(although generally in a different order). Obviously, for the set Γ̂ exactly the
same multiplication table holds.

We are now ready to prove the theorem. Let A be an arbitrary matrix,
and define S by

S ≡
15∑
k=0

Γ̂k A Γk . (13.158)

23Kids! Don’t do this at home, since constructing this multiplication table is extremely
tedious. The numbers cn are not given: they are anyhow only defined up to a sign, since
we can always replace Γj by −Γj (using γ2γ0 instead of γ0γ2, say) without changing the
Dirac anticommutation relation.
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This has the desired property since

Γ̂j S Γj =
15∑
k=0

Γ̂j Γ̂k A Γk Γj

=
15∑
n=0

cn Γ̂n A
1

cn
Γn = S , (13.159)

in other words,
Γ̂j S = S Γj . (13.160)

It remains to ensure that the matrix S actually has an inverse. Since A can
be chosen at will (except A = 0) this is not a problem. Let us pick another
matrix B and construct

T =
15∑
k=0

Γk B Γ̂k . (13.161)

For this matrix we obviously have

Γj T = T Γ̂j . (13.162)

Combining Eq.(13.160) and (13.162) we see that the product TS commutes
with Γj (and the product ST commutes with Γ̂j). Therefore TS is propor-
tional to the unit matrix and we can adjust the elements of B such that
T = S−1.

It is an interesting observation that the dimensionality of the γµ and that
of the γ̂µ does not have to be the same. In that case the matrices A and
B are simply not square matrices but have different numbers of rows and
columns.

13.10.2 The charge conjugation matrix

An application of the fundamental theorem is the following. The anticom-
mutation relation, if satisfied by the Dirac matrices γµ, is automatically also
satisfied by the matrices −(γµ)T where T stands for the transpose. There
exists, therefore, a matrix C such that

γ̂µ = C γµ C−1 = −(γµ)T . (13.163)

This is called the charge conjugation matrix. In the representation given in
section 7.3.1, we have

γ̂0 = −γ0 , γ̂1 = γ1 , γ̂2 = −γ2 , γ̂3 = γ3 ; (13.164)
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and we see that a good choice is

C = C−1 = γ0γ2 . (13.165)

Since this form is not proof against change of representation, the use of the
charge conjugation matrix in arguments and derivations lacks somewhat in
elegance.

13.11 Dirac projection operators

13.11.1 Dirac projection operators

Formulation of the problem

The challenge discussed in this section is the following: given an element Π
of the Clifford algebra that satisfies

Π = Π , Π2 = Π , (13.166)

what is its generic form ? In addition, can we find several such elements Πj,
j = 1, 2, . . . , n that decompose unity, that is,

ΠjΠk = δj,k Πj ,
n∑
j=1

Πj = 1 ? (13.167)

If we can find solutions, then we see that the smallest possible size of the
Dirac matrices is n× n : also, we may be able to construct an operator that
can serve as the numerator of the Dirac propagator, with the understanding
that it will be (a) a projection operator of the type (13.166) on the mass shell,
and (b) dependent only on the particle’s momentum, in order to ensure that
all degrees of freedom propagate in the same manner. It is evident that any
uniqueness of the possible solutions corresponds directly to the uniqueness
of the Dirac equation.

The equivalence transform

It must be remembered that we may discuss the propagator of a free Dirac
particle without reference to any of its interactions whatsoever. Therefore we
may encounter the situation where two or more different forms of the prop-
agator are possible, that result in exactly the same physics simply because
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the different alternatives can be transformed into one another by a change
in the particle’s interactions. We adopt the following position: if there are
two projection operators of the type (13.166), Π and Π′, say, that can be
transformed into one another by means of a Clifford element Σ :

Π′ = Σ Π Σ , ΣΣ = 1 , (13.168)

where Σ depends only on the particle momentum24, the two alternatives Π
and Π′ will be deemed equivalent.

13.11.2 The first regular case

We may write a putative solution in the general form

Π =
1

4

(
(2− S) + /p+ γ5/q + iPγ5 + Tαβσ

αβ
)
, (13.169)

where S, pµ, qµ and P are real, and T µν is real and antisymmetric. The
requirement is now that N ≡ Π2 − Π vanish, and so its trace with any
Clifford element must also vanish. We can immediately find

2Tr
(
γ5/pN

)
= (p · q)S , 2Tr

(
(γ5/q − /p)N

)
= (p2 + q2)S . (13.170)

There are now several possibilities, the first of which is the regular case : it
is the case where S 6= 0 and p2 6= 0. We see that it implies that q2 = −p2

and p · q = 0, so that p and q are linearly independent and one of them must
be timelike. In that case we may form a Vierbein by finding two additional
vectors e1,2

µ with

p · e1,2 = q · e1,2 = e1 · e2 = 0 , e1,2
2 = −1 , (13.171)

so that the tensor T can be decomposed25 as follows:

Tαβ = cpqp
[αqβ] + c12e1

[αe2
β] +

∑
j=1,2

(
cpjp

[αej
β] + cqjq

[αej
β]
)
, (13.172)

24In order to avoid the situation where the different degrees of freedom propagate dif-
ferently after all.

25No matter that the vectors e1,2 are not unambiguous : the point is that a decompisition
is possible.
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where the coefficients are all real and the square brackets indicate antisym-
metrization over the indices. We can now find two more conditions:

1

p2S
Tr ((cp1p

µe1
ν − cq2qµe2

ν)σµνN) = cp1
2 + cq2

2 ,

1

p2S
Tr ((cp2p

µe2
ν − cq1qµe1

ν)σµνN) = cp2
2 + cq1

2 , (13.173)

which tells us that cp1 = cp2 = cq1 = cq2 = 0. The tensorial part can therefore
only consist of /p/q and /pγ5/q, and we may write

Π =
1

4

(
(2− S) + /p+ γ5/q + iPγ5 + ia/p/q + b/pγ5/q

)
(13.174)

with a and b real. Then, the results

− 2

p2
Tr (/pN) = S − p2b , 2iTr

(
γ5N

)
= SP + p4ab (13.175)

fix the values of a = −P/p2 and b = S/p2. Continuing, we evaluate

− 1

p2
εαβµνp

αqβTr (σµνN) = S2 + P 2 − p2 , (13.176)

which proves that pµ must actually be the timelike vector, and fixes |P |.
Using all the relations obtained, we finally have

Tr (N) = S2 − 1 , (13.177)

which tells us that if S 6= 0 we can take S = 1 (without loss of generality
since both Π and 1−Π satisfy Eq.(13.166)), and we must have p2 ≥ 1. The
generic form of Π in the regular case can be written as follows. We have an
angle χ such that p2 = cosh(χ)2 and P = sinh(χ), and two vectors kµ and
sµ such that k · k = 1, s · s = −1 and k · s = 0; then pµ = cosh(χ)kµ and
qµ = cosh(χ)sµ, and

Π(α, β) =
1

4

(
1 + αβ/kγ5/s+ α

[
cosh(χ)/k + i sinh(χ)γ5

]
+β

[
cosh(χ)γ5/s− i sinh(χ)/k/s

])
. (13.178)

The two parameters α and β satisfy α, β = ±1, and we have introduced them
here since the set of four elements Π(1, 1), Π(1,−1), Π(−1, 1) and Π(−1,−1)
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satisfy Eq.(13.167). The situation can be simplified further by the use of the
equivalence transform based on

Σ = cosh(χ/2)− i sinh(χ/2)γ5/k : (13.179)

the equivalent form is then given by the simpler

Π(α, β) =
1

4

(
1 + α/k

) (
1 + βγ5/s

)
. (13.180)

The only possible way to relate this projection operator to a massive on-shell
Dirac particle of mass m and momentum pµ is to choose kµ = pµ/m, while
sµ then embodies the remaining (spin) degree of freedom. The final result is
the well-known Dirac form

Π(α, β) =
1

4m

(
m+ α/p

) (
1 + βγ5/s

)
,

p · p = m2 , s · s = −1 , p · s = 0 , α, β = ± . (13.181)

Obviously, the sum of any two or three of the above projection operators is
also a resolution to our quest.

13.11.3 Irregular cases

First irregular case

Let us now assume that, in Eq.(13.170), S 6= 0 and pµ 6= 0 but p2 = 0. In
that case qµ must be proportional to pµ, and we write qµ = c pµ. Now the
trace

−2Tr (γµN) = Spµ + cερµαβp
ρTαβ (13.182)

proves that both T and c must be nonzero. Then, the relation

−
(
Sgµκgνλ + Pεµνκλ

)
Tr (σµνN) = T κλ

(
S2 + P 2

)
(13.183)

shows that no solution is possible in this case since T must vanish.

Second irregular case

Let us now assume S 6= 0 and pµ = 0. From

2Tr
(
γ5γµN

)
= S qµ (13.184)
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we find that also q must vanish. Eq.(13.183) then says that the tensorial
term must also be absent, upon which

2iTr
(
γ5N

)
= SP (13.185)

proves that also P = 0. The only possibilities left are the trivial ones Π = 1
and Π = 0.

13.11.4 The second regular case

We have now examined all consequences of the assumption S 6= 0. The
remaining case S = 0 gives a projection operator that can be written as

Π =
1

2

(
1 + /p+ γ5/q + iPγ5 + Tαβσ

αβ
)
. (13.186)

The relation

−1

8
εµνκλ Tr (σµνN) = PT κλ − 1

2

(
qκpλ − pκqλ

)
(13.187)

allows us to distinguish two cases, P = 0 and P 6= 0.

The case P 6= 0

In this case the vectors p and q are not necessarily related to one another.
The projection operator reads

Π =
1

2

(
1 + /p+ γ5/q − i

2P
(/p/q − /q/p) + iPγ5

)
, (13.188)

under the single condition (from Tr (N)) that

1

P 2

(
p2q2 − (p · q)2

)
+ p2 − q2 − P 2 = 1 . (13.189)

Now, we can always find a vector rµ with p · r = q · r = 0 and r2 = −1. The
equivalence transform

Σ =
1√
2

(
1− iγ5/r

)
(13.190)

will then eliminate both the axial-vector and the pseudoscalar term, so that
we actually arrive at a special case of the situation for P = 0.
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The case P = 0

In this case p and q must be proportional to one another. The projection
operator then takes the form26

Π =
1

2

(
1 + a/k + bγ5/k + i/k/r

)
, (13.191)

with k2 = ±1 or 0, k · r = 0, and a, b real. The single condition that can be
found is

k2(a2 − b2 + r2) = 1 , (13.192)

so that k2 cannot vanish.

Now, assume that k2 = +1. The equivalence transforn

Σ =
1√
2

(1− i/k) (13.193)

then eliminates the axial-vector and tensorial term at the cost of introducing
a pseudoscalar one, and we find the equivalent form27

Π =
1

2

(
1 + c/k + iPγ5

)
, k2 = 1 , c2 = 1 + P 2 , (13.194)

in other words, there is an angle α such that

Π =
1

2

(
1 + cosh(α)/k + i sinh(α)γ5

)
. (13.195)

The equivalence transform

Σ = cosh(α/2)− i sinh(α/2)γ5/k (13.196)

then suffices to produce the equivalent form

Π =
1

2
(1 + /k) , (13.197)

which we recognize as the combination Π(1, 1) + Π(1,−1) of the first regular
case.

26This is most easily imagined by letting q become parallel to p as P diminishes towards
zero.

27Here, kµ has be redefined, but still k2 = +1.
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The remaining alternative is that the vector kµ of Eq.(13.191) obeys k2 =
−1. Now the equivalence transform

Σ =
1√
2

(
1− iγ5/k

)
(13.198)

gives28

Π =
1

2

(
1 + cosh(α)γ5/k + i sinh(α)γ5

)
, k2 = −1 (13.199)

The next equivalence transform,

Σ = cosh(α/2) + i sinh(α/2)γ5/k (13.200)

produces the final form

Π =
1

2

(
1 + γ5/k

)
, (13.201)

that is included in the first regular case as Π(1, 1) + Π(−1, 1).

13.11.5 Conclusions

We have established the following results:

• The finest decomposition of the unity in Clifford space is that into the
four projection operators given in Eq.(13.181);

• Consequently, the smallest possible size of the Dirac matrices is 4× 4;

• The Dirac equation in its well-known form is in fact the only possible
one, up to equivalence transforms that may obscure, but cannot change,
the physics since the interaction vertices can always compensate.

It must be noticed that, in the ‘second regular case’ we have been cavalier in
accepting equivalence transformations without determining that they depend
only on the particle momentum. In fact, since in that case we have S = 0
the unity is decomposed into two sectors, Π and 1 − Π, and so we may feel
confident that, whatever degrees of freedom are propagating, they will do so
identically. The real requirement of momentum-only dependence resides in
the ‘first regular case’.

28Again, under redefinition of k with k2 = −1.
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13.12 States of higher integer spin

13.12.1 The spin algebra for integer spins

In this Appendix we shall consider systems of spinning particles with arbi-
trary integer spin. Such particles states can be represented, in the Feynman
rules, as tensors of some rank r :

|s,m〉µ1µ2µ3···µr

where s stands for the total spin of the particle, and m denotes the spin along
some quantization axis, for which we shal take the z direction here. That is,
once we have found the correct operators of the spin algebra

(Sx,y,z)
µ1µ2···µr

ν1ν2···νr and (S2)µ1µ2···µrν1ν2···νr

Then we have, by definition,

(S2)µ1µ2···µrν1ν2···νr |s,m〉
ν1ν2···νr = h̄2 s(s+ 1) |s,m〉µ1µ2···µr ,

(Sz)
µ1µ2···µr

ν1ν2···νr |s,m〉
ν1ν2···νr = h̄m |s,m〉µ1µ2···µr . (13.202)

It is easy to see that the spin algebra is correctly constructed once we have
raising and lowering operators

(S±)µ1µ2···µrν1ν2···νr , S− = (S+)† ,

with
[[S+, S−], S+] = 2h̄2 S+. (13.203)

We can then find the other algebra elements via

Sx =
1

2

(
S+ + S−

)
, Sy =

1

2i

(
S+ − S−

)
, Sz =

1

2h̄
[S+, S−] ,

S2 =
1

2

{
S+, S−

}
+ (Sz)

2 . (13.204)

We will start with particles in their rest frame29. The spin representations
are built using four unit vectors, with obvious notation, as tµ, xµ, yµ and zµ,
which obey

t·t = 1 , x·x = y·y = z·z = −1 , t·x = t·y = t·z = x·y = x·z = y·z = 0 .
(13.205)

29This implies that the particles are massive. For massless partices, see later on.
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Things will become easier if we also define

x±
µ =

1√
2

(
xµ ± i yµ

)
(13.206)

so that

x± · x± = 0 , x+ · x− = −1 , x± · z = x± · t = 0 . (13.207)

Since the spin of a particle informs us about its behaviour under rotations in
the three-dimensional spacelike part of Minkowski space, we always require,
for particles in their rest frame,

|s,m〉µ1µ2···µr tµj = 0 , j = 1, 2, . . . , r . (13.208)

This means that the appropriate tensors in fact contain only the three vec-
tors x+, x−, and z ; for instance the rank-4 tensor |s,m〉µ1µ2µ3µ4 may contain
a term x+

µ1x−
µ2zµ3x+

µ4 . In general, the particle’s tensor is a linear combi-
nation of such terms : which precise linear combination it is depends on s
and m, and this is what we want to look into.

13.12.2 Rank one for spin one

The simplest nontrivial case is that of a rank-1 tensor, that is, a vector. We
have already considered these in Chapter 8. We can define

|1, 1〉µ = x+
µ , |1, 0〉µ = zµ , |1,−1〉µ = −x−µ , (13.209)

so that

〈1, 1|µ = x−
µ , 〈1, 0|µ = zµ , 〈1,−1|µ = −x+

µ . (13.210)

For brevity, we shall use the easily interpretable notation

|1, 1〉 = |+〉 , |1, 0〉 = |0〉 , |1,−1〉 = − |−〉 . (13.211)

These states are properly normalized, since

〈1,m1|1,m2〉 = 〈1,m1|µ |1,m2〉µ = − δm1,m2 . (13.212)

In addition, the states are complete in the sense that∑
λ=+,−,0

|1, λ〉µ 〈1, λ|ν = tµtν − δµν ≡ ∆µ
ν . (13.213)
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Note that

∆µα ∆αν = −∆µ
ν , ∆µ

µ = −3 . (13.214)

We now proceed to set up the spin algebra. A general raising operator can
always be written in the form

S+ =
√

2h̄

(
a |+〉 〈0|+ b |0〉 〈−|

)
, (13.215)

where a and b are some complex numbers ; and so

S− =
√

2h̄

(
a∗ |0〉 〈+|+ b∗ |−〉 〈0|

)
. (13.216)

From

S+S− = −2h̄2

(
|a|2 |+〉 〈+|+ |b|2 |0〉 〈0|

)
,

S−S+ = −2h̄2

(
|a|2 |0〉 〈0|+ |b|2 |−〉 〈−|

)
, (13.217)

we find that to get the correct form of Sz we have to take |a| = |b| = 1, since
only then30

Sz = −h̄
(
|+〉 〈+| − |−〉 〈−|

)
; (13.218)

furthermore, we find automatically

S2 = −2h̄2

(
|+〉 〈+|+ |0〉 〈0|+ |−〉 〈−|

)
, (13.219)

which shows that we have here indeed a spin-one system. For reasons that
will become clear later on we shall choose a = −1 and b = 1. Thus,

S+ |+〉 = 0 , S+ |0〉 =
√

2h̄ |+〉 , S+ |−〉 = −
√

2h̄ |0〉 . (13.220)

30Do not be confused with the overall minus signs emerging here ! Remember that the
states are normalized to minus unity. This is a consequence of our dealing with spacelike
objects in an essentially Minkowski space.
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In more explicit tensorial language, we have the following matrix forms :

S+
µ
ν =

√
2h̄

(
−x+

µzν + zµx+ν

)
,

S−
µ
ν =

√
2h̄

(
−zµx−ν + x−

µzν

)
,

Sz
µ
ν = h̄

(
−x+

µx−ν + x−
µx+ν

)
,

S2µ
ν = −2h̄2

(
x+

µx−ν + x−
µx+ν + zµzν

)
. (13.221)

13.12.3 Rank-2 tensors

By taking tensor products of vectors we can build more complicated systems.
Let us attempt rank-2 tensors. We can easily construct the spin algebra for
this system as follows :

Σj
µν
αβ = Sj

µ
αδ

ν
β + δµαSj

ν
β , j = +,−, z , (13.222)

and it is easily checked that these also obey the correct commutation relations

[Σ+,Σ−] = 2h̄Σz , [Σz,Σ+] = h̄Σ+ ; (13.223)

the operator for the total spin is of course

Σ2µν
αβ = S2µ

αδ
ν
β+δµαS

2ν
β+S+

µ
αS−

ν
β+S−

µ
αS+

ν
β+2Sz

µ
αSz

ν
β . (13.224)

There is precisely one rank-2 tensor with a spin 2h̄ along the z axis : it is
the tensor product

|2, 2〉µν = |1, 1〉µ |1, 1〉ν = x+
µx+

ν ≡ |++〉 , (13.225)

with obvious notation. It is straightforward to check that the total spin of
this object is, indeed, equal to 2h̄. By applying the lowering operator as
given in Eq.(13.222), and normalizing, we can immediately recover the other
states in the spin-2 sector :

|2, 2〉 = |++〉 ,

|2, 1〉 =

(
|+0〉+ |0+〉

)
/
√

2 ,
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|2, 0〉 =

(
− |+−〉 − |−+〉+ 2 |00〉

)
/
√

6 ,

|2,−1〉 =

(
− |−0〉 − |0−〉

)
/
√

2 ,

|2,−2〉 = |−−〉 . (13.226)

These five objects are totally symmetric. They are also traceless in the sense
that |2,m〉µν gµν = 0 ; this is due to our choice for the constants a and b made
above. The one object made up from |+0〉 and |0+〉 that is orthonormal to
|2, 1〉 is |+0〉 − |0+〉, which forms the basis of a spin-1 sector :

|1, 1〉 =

(
|+0〉 − |0+〉

)
/
√

2 ,

|1, 0〉 =

(
|−+〉 − |+−〉

)
/
√

2 ,

|1,−1〉 =

(
|−0〉 − |0−〉

)
/
√

2 . (13.227)

Finally, one single state is left :

|0, 0〉 =

(
|+−〉+ |−+〉+ |00〉

)
/
√

3 , (13.228)

which upon inspection is seen to have zero spin. The orthonormality of these
nine states is easily checked. Some simple algebra also tells us that

2∑
m=−2

|2,m〉µν 〈2,m|αβ =
1

2
∆µ

α ∆ν
β +

1

2
∆µ

β ∆ν
α −

1

3
∆µν ∆αβ ,

1∑
m=−1

|1,m〉µν 〈1,m|αβ =
1

2
∆µ

α ∆ν
β −

1

2
∆µ

β ∆ν
α ,

|0, 0〉µν 〈0, 0|αβ =
1

3
∆µν ∆αβ , (13.229)

so that there is a completeness relation of the form

2∑
s=0

s∑
m=−s

|s,m〉µν 〈s,m|αβ = ∆µ
α ∆ν

β . (13.230)

This confirms that no states have been overlooked.



March 26, 2017 421

13.12.4 Rank-3 tensors

For the sake of illustration we also give the complete set of rank-3 tenso-
rial states. These fall apart in one spin-3, two spin-2, three spin-1 and
a single spin-0 sector, giving the correct total of 27 possible orthonormal
states, listed below. For reasons of typography I have left out the normaliz-
ing denominators ; these can of course be trivially recovered.

spin-3 :

|3, 3〉 = |+ + +〉
|3, 2〉 = |+ + 0〉+ |+0+〉+ |0 + +〉
|3, 1〉 = 2 |+00〉+ 2 |0 + 0〉+ 2 |00+〉

− |+ +−〉 − |+−+〉 − |−+ +〉
|3, 0〉 = 2 |000〉 − |+0−〉 − |0−+〉 − |−+ 0〉

− |−0+〉 − |+− 0〉 − |0 +−〉
|3,−1〉 = |+−−〉+ |−+−〉+ |− −+〉

−2 |−00〉 − 2 |0− 0〉 − 2 |00−〉
|3,−2〉 = |− − 0〉+ |−0−〉+ |0−−〉
|3,−3〉 = − |− −−〉

spin-2(1) :

|2, 2〉 = |+0+〉+ |0 + +〉 − 2 |+ + 0〉
|2, 1〉 = 2 |00+〉 − |+−+〉 − |−+ +〉

− |+00〉 − |0 + 0〉+ 2 |+ +−〉
|2, 0〉 = |+0−〉+ |0 +−〉 − |−0+〉 − |0−+〉
|2,−1〉 = 2 |00−〉 − |+−−〉 − |−+−〉

− |0− 0〉 − |−00〉+ 2 |− −+〉
|2,−2〉 = 2 |− − 0〉 − |0−−〉 − |−0−〉

spin-2(2) :

|2, 2〉 = |+0+〉 − |0 + +〉
|2, 1〉 = |+00〉 − |0 + 0〉 − |+−+〉+ |−+ +〉
|2, 0〉 = − |0−+〉+ |−0+〉 − |+0−〉

+ |0 +−〉 − 2 |+− 0〉+ 2 |−+ 0〉
|2,−1〉 = |+−−〉 − |−+−〉+ |−00〉 − |0− 0〉



422 March 26, 2017

|2,−2〉 = |0−−〉 − |−0−〉
spin-1(1) :

|1, 1〉 = 6 |+ +−〉+ 3 |0 + 0〉+ 3 |+00〉
+ |+−+〉+ |−+ +〉 − 2 |00+〉

|1, 0〉 = 3 |0 +−〉+ 3 |+0−〉+ 3 |−0+〉
+3 |0−+〉 − 2 |+− 0〉 − 2 |−+ 0〉+ 4 |000〉

|1,−1〉 = 2 |00−〉 − 3 |−00〉 − 3 |0− 0〉
− |+−−〉 − |−+−〉 − 6 |− −+〉

spin-1(2) :

|1, 1〉 = |+00〉 − |0 + 0〉+ |+−+〉 − |−+ +〉
|1, 0〉 = |0 +−〉 − |+0−〉+ |0−+〉 − |−0+〉
|1,−1〉 = |+−−〉 − |−+−〉+ |0− 0〉 − |−00〉

spin-1(3) :

|1, 1〉 = |+−+〉+ |−+ +〉+ |00+〉
|1, 0〉 = |+− 0〉+ |−+ 0〉+ |000〉
|1,−1〉 = |+−−〉+ |−+−〉+ |00−〉

spin-0 :

|0, 0〉 = |+− 0〉+ |−0+〉+ |0 +−〉
− |0−+〉 − |+0−〉 − |−+ 0〉 (13.231)

Note that the spin-0 state is totally antisymmetric : obviously, this is the
only possible such state in three space dimensions. We can also compute the
‘partial’ completeness relations pertaining to each spin sector. Some algebra
teaches us that these are the following set of mutually orthogonal projection
operators :

spin-3 :
3∑

m=−3

|3,m〉µνρ 〈3,m|αβγ =

1

6

(
∆µ

α∆ν
β∆ρ

γ + ∆µ
β∆ν

γ∆
ρ
α + ∆µ

γ∆
ν
α∆ρ

β

+ ∆µ
β∆ν

α∆ρ
γ + ∆µ

α∆ν
γ∆

ρ
β + ∆µ

γ∆
ν
β∆ρ

α

)

− 1

15

(
∆µν

(
∆ρ

α∆βγ + ∆ρ
β∆γα + ∆ρ

γ∆αβ

)
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+ ∆νρ
(
∆µ

α∆βγ + ∆µ
β∆γα + ∆µ

γ∆αβ

)
+ ∆ρµ

(
∆ν

α∆βγ + ∆ν
β∆γα + ∆ν

γ∆αβ

))

spin-2(1) :
2∑

m=−2

|2,m〉µνρ 〈2,m|αβγ =

1

3

(
∆µ

α∆ν
β + ∆ν

α∆µ
β

)
∆ρ

γ

−1

6

((
∆µ

β∆ν
γ + ∆ν

β∆µ
γ

)
∆ρ

α +
(
∆µ

α∆ν
γ + ∆ν

α∆µ
γ

)
∆ρ

β

)

+
1

6
∆µν

(
∆ρ

α∆βγ + ∆ρ
β∆αγ

)

+
1

6

(
∆µρ∆ν

γ + ∆νρ∆µ
γ

)
∆αβ

− 1

12

(
∆µρ∆ν

α∆βγ + ∆µρ∆ν
β∆αγ + ∆νρ∆µ

α∆βγ + ∆νρ∆µ
β∆αγ

)

−1

3
∆µν∆ρ

γ∆αβ

spin-2(2) :
2∑

m=−2

|2,m〉µνρ 〈2,m|αβγ =

1

3

(
∆µ

α∆ν
β −∆ν

α∆µ
β

)
∆ρ

γ

+
1

6

(
∆µ

γ∆
ν
β∆ρ

α −∆µ
γ∆

ν
α∆ρ

β −∆ν
γ∆

µ
β∆ρ

α + ∆ν
γ∆

µ
α∆ρ

β

)

+
1

4

(
∆µρ∆ν

α∆βγ −∆µρ∆ν
β∆αγ −∆νρ∆µ

α∆βγ + ∆νρ∆µ
β∆αγ

)

spin-1(1) :
1∑

m=−1

|1,m〉µνρ 〈1,m|αβγ =

1

15
∆µν∆ρ

γ∆αβ

− 1

10
∆µν

(
∆ρ

α∆βγ + ∆ρ
β∆αγ

)



424 March 26, 2017

− 1

10

(
∆µρ∆ν

γ + ∆νρ∆µ
γ

)
∆αβ

+
3

20

(
∆µρ∆ν

α∆βγ + ∆µρ∆ν
β∆αγ + ∆νρ∆µ

α∆βγ + ∆νρ∆µ
β∆αγ

)

spin-1(2) :
1∑

m=−1

|1,m〉µνρ 〈1,m|αβγ =

−1

4

(
∆µρ∆ν

α∆βγ −∆µρ∆ν
β∆αγ −∆νρ∆µ

α∆βγ + ∆νρ∆µ
β∆αγ

)

spin-1(3) :
1∑

m=−1

|1,m〉µνρ 〈1,m|αβγ =

1

3
∆µν∆ρ

γ∆αβ

spin-0 : |0, 0〉µνρ 〈0, 0|αβγ =

1

6

(
∆µ

α∆ν
β∆ρ

γ + ∆µ
β∆ν

γ∆
ρ
α + ∆µ

γ∆
ν
α∆ρ

β

−∆ν
α∆µ

β∆ρ
γ −∆ν

β∆µ
γ∆

ρ
α −∆ν

γ∆
µ
α∆ρ

β

)
. (13.232)

The total completeness relations is also valid :

3∑
s=0

s∑
m=−s

|s,m〉µνρ 〈s,m|αβγ = ∆µ
α ∆ν

β ∆ρ
γ , (13.233)

provided we sum over all sectors with the same s.

13.12.5 Massless particles : surviving states

So far, we have taken our particles to be at rest, with a momentum p for
which

pµ = mtµ .

For moving particles, we can obtain the correct states by simply performing
the appropriate Lorentz boost. As already indicated, we shall take the motion
of the particles to be along the z axis ; our states have been prepared for this
by taking z as the spin quantization axis. The momentum of the particle
will then be

pµ = mtµ → pµ = p0 tµ + |~p| zµ , (13.234)
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and the vector zµ becomes, under the same boost

zµ →
(
|~p|
m

)
tµ +

(
p0

m

)
zµ . (13.235)

The vectors x± are not affected by the boost. It is therefore sufficient to
replace, in Eqns.(13.209),(13.226), (13.227),(13.228), and (13.231), z by its
boosted form.

Let us now consider the extreme case : that of a massless particle. We
can view this as the limit p0/m → ∞ of a massive particle. In that limit,
zµ diverges badly, and we must again adopt the point of view presented in
chapter 8 : the theory wil only be viable if those tensors that diverge
in the massless limit decouple completely. That is, the only observable
states must be those that do not diverge, i.e. those that contain x+’s and
x−’s but not any trace of a z. A quick inspection in our inventory of states
reveals that only a handful of states are left :

rank-1, spin-1 : |1, 1〉 = |+〉 , |1,−1〉 = − |−〉
rank-2, spin-2 : |2, 2〉 = |++〉 , |2,−2〉 = |−−〉
rank-2, spin-1 : |1, 0〉 = (|+−〉 − |−+〉)/

√
2

rank-3, spin-3 : |3, 3〉 = |+ + +〉 , |3,−3〉 = − |− −−〉(13.236)

With the exception of the rank-2, spin-1 state, the so-called Kalb-Ramond
state, all the surviving states have m = ±s and are totally symmetric. Is this
general ? In other words, how do we know that there is no rank-31, spin-17
state that is built up from only x+’s and x−’s ? We can answer this question
by the following pleasing argument. Since the ladder operators Σ± transform
physical states into one another, any physical state must be an eigenstate of
Σ+Σ− or Σ−Σ+

31. Disregarding, for simplicity, minus signs and factors
√

2,
the effect of Σ+ is 0→ +, − → 0, and that of Σ− is +→ 0, 0→ −. We can
therefore write

Σ+Σ− |+−〉 → Σ+ |0−〉 → |+−〉+ |00〉 . (13.237)

31It is of course possible that Σ+ acting on our state, say, will give zero, and then it is
an eigenstate of Σ−Σ+ with eigenvalue zero. We may avoid this trivial case by choosing,
instead, Σ+Σ−, under which our state will have a nonzero eigenvalue.



426 March 26, 2017

Let us now consider a hypothetical massless-particle candidate state. It will
be a linear combination of kets with lots of +’s and −’s. Among these we
concentrate on three kets in particular :

T1 = |· · ·+ +− · · ·〉 , T2 = |· · ·+−+ · · ·〉 , T3 = |· · · −+ + · · ·〉 .
(13.238)

The rest of the content of the kets (indicated by the ellipses, and consisting of
some sequences of +’s and −’s) is identical for the three kets. The candidate
state contains these T ’s in some linear combination :

C1T1 + C2T2 + C3T3 + lots of other terms

Let us now consider what happens if we let Σ+Σ− work on these kets. T1

will turn into a lot of terms, among which we can recognize two important
ones :

T1 → |· · ·+ 00 · · ·〉+ |· · · 0 + 0 · · ·〉+ · · · . (13.239)

Similarly, we find for T2 and T3 :

T2 → |· · · 00 + · · ·〉+ |· · ·+ 00 · · ·〉+ · · · ,
T3 → |· · · 00 + · · ·〉+ |· · · 0 + 0 · · ·〉+ · · · . (13.240)

We now note a few things. In the first place, a resulting ket like |· · · 0 + 0 · · ·〉
can only come from the T ’s (in this case, from T1 and T3). In the second
place, our candidate state cannot contain this ket by itself, since it must be
free of 0’s. In the third place, such unwanted kets must drop out because our
state is an eigenstate of Σ2. We must therefore rely on cancellations between
the T ’s. In fact, we need simultaneously

C1 = −C2 , C2 = −C3 , C3 = −C1 . (13.241)

Obviously, C1,2,3 = 0 : our three T ’s do not occur at all32 ! But of course
we can repeat the same argument for any other such three kets. We see that
the only possibilities to have admissible massless-particle states are twofold:

• Only +’s, or only −’s, occur. These are precisely the rank-s, spin-s
states such as we have found, and this persists also for s > 3. Note that
these states are totally symmetric — not for some deep field-theoretical
reason, but because they can’t help it.

• Precisely one + and one − occur. This is the Kalb-Ramond state,
which now stands revealed as a lone exception.

32A three-cornered argument such as this, in which all T ’s disappear, deserves to be
called a Bermuda triangle.
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13.12.6 Massless propagators

For massless states, the spin sums cannot be built up from objects like ∆µ
α

since these diverge. An often-used recipe is the following. For a massless
particle of momentum pµ, define

pµ = (p0, ~p) , p̄µ = (p0,−~p) . (13.242)

Obviously, this is not a Lorentz-invariant definition, but as we shall see that
is not a problem. The point is that a p̄ can be found whatever the Lorentz
frame is. We can now write

|+〉µ 〈+|ν + |−〉µ 〈−|ν = x+
µx−ν + x−

µx+ν

=
1

p · p̄

(
pµp̄ν + p̄µpν

)
− δµν ≡ ∇µ

ν . (13.243)

In analogy to Eq.(13.214) we now have

∇µα∇αν = −∇µ
ν , ∇µ

µ = −2 . (13.244)

If, as we must promise ourselves, massless states only couple to conserved
sources (on which the handlebar operation gives zero), the terms containing
p̄ will always drop out. We can now write the spin sums for the surviving
massless states as follows :

rank-1, spin-1 : ∇µ
α ,

rank-2, spin-2 :
1

2

(
∇µ

α∇ν
β +∇µ

β∇ν
α

)
− 1

2
∇µν∇αβ ,

rank-2, spin-1 :
1

2

(
∇µ

α∇ν
β −∇µ

β∇ν
α

)
,

rank-3, spin-3 :
1

6

(
∇µ

α∇ν
β∇ρ

γ +∇µ
β∇ν

γ∇ρ
α +∇µ

γ∇ν
α∇ρ

β

+∇µ
β∇ν

α∇ρ
γ +∇µ

α∇ν
γ∇ρ

β +∇µ
γ∇ν

β∇ρ
α

)

− 1

12

(
∇µν

(
∇ρ

α∇βγ +∇ρ
β∇γα +∇ρ

γ∇αβ

)
+ ∇νρ

(
∇µ

α∇βγ +∇µ
β∇γα +∇µ

γ∇αβ

)
+ ∇ρµ

(
∇ν

α∇βγ +∇ν
β∇γα +∇ν

γ∇αβ

))
(13.245)
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Compared to the massive case, some coefficients are different : -1/2 rather
than -1/3 in the spin-2 case, and -1/12 instead of -1/15 for spin-3. This is
due, of course, to the different traces of ∆ and ∇. The spin sum for the
massless vector particle (rank-1, spin-1) is in fact that of the axial gauge
discussed in Chapter 8, with the gauge vector r chosen to be p̄. Note that,
whatever rµ, we can always move to the centre-of-mass frame of pµ and rµ,
and in that frame we have precisely rµ = p̄µ.

13.12.7 Spin of the Kalb-Ramond state

Concerning the Kalb-Ramond (KR) state, there may be some controversy.
For a massless particle in this state, the spin along the axis of motion must,
under measurement, always come out zero. It is not easy to see how such a
particle can be distinguished from a scalar one. Indeed, in string theory where
the KR state comes up naturally, it is considered to describe a (pseudo)scalar
particle called the axion. In order to talk sensibly about the spin of the KR
state it is useful to consider how it may be measured, for instance using
fermions. We therefore consider the coupling of a rank-2, spin-1 state to
fermions. The interaction vertex must have the properties that (a) it is an
antisymmetric rank-2 tensor, and (b) it is current-conserving, in order to
make sense in the massless limit. Denoting the two fermions by ψ and ψ the
simplest choice appears to be

ψ εµνρσ pρ (A+Bγ5) γσ ψ

where p is the momentum of the antisymmetric tensor state, and A and B
are constants. This interaction vertex vanishes trivially under the handlebar
operation. For the process

f̄(p1) f(p2) → f(p3) f̄(p4)

by the exchange of a KR state of mass M , we then have the amplitude

M = ih̄ v(p1) εµνρσ pρ (A+Bγ5) γσu(p2)

× ∆µα∆νβ −∆µβ∆να

2(s−M2)

× u(p3) εαβκλ pκ (A′ +B′γ5) γλv(p4) ,

s = p · p , p = p1 + p2 = p3 + p4 . (13.246)
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Because of the current conservation and the antisymmetry of the vertices,
we may replace ∆µα∆νβ −∆µβ∆να by 2gµαgνβ. Furthermore, since

εµνρσ pρ εµν
κλ pκ = 2

(
pσ pλ − s gσλ

)
(13.247)

we have

M = −2ih̄
1

s−M2((
v(p1)

(
A(m2 −m1) +B(m1 +m2)γ5

)
u(p2)

× u(p3)
(
A′(m3 −m4)−B′(m3 +m4)γ5

)
v(p4)

)

−s
(
v(p1)

(
A+Bγ5

)
γµ u(p2)

× u(p3)
(
A′ +B′γ5

)
γµ v(p4)

))
. (13.248)

Here mj is the mass of momentum pj. Note that, in contrast to e.g. the
case of QED, m1 = m2 or m3 = m4 is not necessary for current conservation.
We can now investigate several situations. In the first place, if M 6= 0 the
amplitude has a pole for some nonzero s value, which we may take as the
signal of a particle. The second term in brackets in Eq.(13.248) then tells us
that, indeed, a spin-1 particle has been exchanged33. The occurrence of the
first term is, then, not surprising : a similar contribution is found in e.g. the
W exchange in muon decay. Secondly, we may take M = 0. In that case, the
second term no longer has a pole. It can therefore not survive a truncation
argument, and must not be counted as coming from any particle propagation.
The first term does survive ; if we also assume flavour conservation so that
m1 = m2 and m3 = m4, the only degree of freedom that propagates is,
indeed, that of a pseudoscalar.

33We can measure this, for instance by looking at the angular distribution of the pro-
duced fermion-antifermion pair ; see also Appendix ??.
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13.13 Unitarity bounds

13.13.1 Resonances

In this appendix we shall establish bounds on total cross sections as implied
by the unitarity of the theory. We are interested in upper bounds on cross
sections, that is we want to investigate the most efficient way to get rid
of the initial state in favour of some final state. Now, as is known from
the elementary theory of coupled oscillators, the most efficient way to pump
energy (i.e. the energy content of the initial-state particles) into another
state is by resonance. In our language, this means that we shall consider two
initial-state particles colliding and coupling to another particle with just the
right energy to put that particle on its mass shell. Unavoidably, if the new
particle can be made in such a way it can also decay, and it therefore must
have a nonzero decay width which protects its propagator from exploding.
We shall investigate this process in some detail.

13.13.2 Preliminaries : decay widths

We shall investigate the unitarity bound on the cross section for a given
initial two-particle state 1 to evolve into a given n-particle state 2 by way of
a resonant particle X of rest mass M and total decay width Γ. This means
that particle X must couple both to 1 and to 2. There is therefore a possible
decay X→1, given by the Feynman diagram
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X 1

The corresponding matrix element can be written as

MX→1 = i Ak · uj . (13.249)

In this admittedly abstract expression, u stands for the external-line factor34

for the incoming X particle that has, in addition to energy and momentum, a
discrete quantum number j denoting its angular momentum (for brevity we
shall use the smaller word ‘spin’ throughout this section). We shall assume
that j runs from 1 to N , so that there are in total N spin states : for a spin-J
particle, therefore, N = 2J+1. Similarly the final state is characterized by a

34This might be just a number, or a spinor, or a polarization vector,. . . take your pick.
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discrete quantum number k alongside the continuous energy and momentum
variables, and k is assumed to run from 1 to K. For instance, if 1 stands
for an electron-positron state, K = 4 since there are two spin states for
the electron and two for the positron. Thus, Ak denotes the total of the
connected diagrams (the blob) and any external-line factors for a final state
with discrete quantum number k. The total decay width Γ1 for X to go into
the two-particle state 1 is given by

Γ1 =
1

2M

1

N

∑
j,k

∫
Ak ·uj uj ·Ak

1

(2π)2

dΩ

8

λ(M2,m2,m′2)1/2

M2
S1 , (13.250)

where m and m′ are the masses of the two particles in 1. The symmetry
factor S1 equals 1 if the particles are distinguishable, and 1/2 if they are not.
Ω is of course the solid angle of one of the particles in the rest frame of X.
The angle- and spin-averaged transition rate is therefore

1

K

∑
j,k

∫ dΩ

4π
Ak · uj uj · Ak =

16πMΓ1N

S1K

M2

λ1/2
, (13.251)

with λ1/2 = λ(M2,m2,m′2)1/2.

The process X→2 is described by the Feynman diagrams contained in
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and is written

MX→2 = i Bl · uj , (13.252)

where l denotes the discrete quantum numbers in the state 2. The width for
the process is given by

Γ2 =
1

2M

1

N

∑
j,l

∫
Bl · uj uj ·Bl dVn S2 , (13.253)

where dVn is the n-particle phase space factor going with the state 2, and S2

is the appropriate symmetry factor.
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13.13.3 The rôle of angular momentum conservation

Let us consider the process X→2 in some greater detail. It is easy to conceive
of a final state 2 that couples only to a particle of spin J and to no other
spin. Now, our important supposition : if the initial particle is at rest, and
if space is isotropic so that there is no preferred direction, this does not only
mean that angular momentum is conserved but also that the various 2J + 1
spin states of the X particle are to be treated on the same footing, so that
each spin state must have the same decay width. This in its turn implies that
the integrated-over final state must form a projection onto the pure spin-J
state : ∑

l

Bl Bl = B(M2)
∑
n

unun (13.254)

where n runs, of course, from 1 to N. Obviously, under the isotropy assump-
tion B can only depend on M2. We find that∫ ∑

l

Bl · uj uj′ ·Bl = B(M2)
∑
n

un · uj uj′ · un ∝ δj,j′ , (13.255)

or, in other words,

∑
l

∫
Bl · uj uj′ ·Bl = 2 M Γ2 δj,j′ . (13.256)

13.13.4 The unitarity bound

We now consider the process 1→2 by X exchange. For total scattering in-
variant mass

√
s, it is given by the diagram
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and the amplitude reads

M =
−i

s−M2 + iMΓ
Bl · Π · Ak . (13.257)

Here, Π is the numerator of the X propagator : on the mass shell, therefore,
we must have

Πcs=M2 =
∑
n

uj uj . (13.258)
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For the total cross section we therefore have

σ =
1

2λ(s,m2,m′2)1/2

1

(s−M2)2 +m2Γ2

1

K

×
∑
k,l

∫
(Bl · Π · Ak) (Ak · Π ·Bl) dVn S2 . (13.259)

On the X mass shell, we can write, with the help of Eq.(13.256),

σ =
1

2λ1/2

1

M2Γ2

1

K

∑
k,l,j,j′

∫
(Bl · uj uj · Ak) (Ak · uj′ uj′ ·Bl) dVn S2

=
1

2λ1/2

1

M2Γ2

1

K

∑
k,l,j,j′

∫
(Bl · uj uj′ ·Bl) (Ak · uj′ uj · Ak) dVn S2

=
1

2λ1/2

1

M2Γ2

2MΓ
2

K

∑
k,j,j′

∫ dΩ

4π
Ak · uj′ uj · Ak δj,j′ , (13.260)

where it must be realized that we have rewritten the integral over B-cum-A
by the integral over B times the average over A. Due to angular-momentum
conservation we can now write, using Eq.(13.251),

σcs=M2 =
(

Γ1

Γ

)(
Γ2

Γ

)
N

S1K

16π s

λ(s,m2,m′2)
. (13.261)

Now, the factor Γ2/Γ is understandable since the X particle has only a frac-
tional probability to decay into state 2 (there may be other decay channels
available, in fact at least the decay X→1), and then symmetry between the
reactions 1→2 and 2→1 requires also the presence of the factor Γ1/Γ. We
conclude that the cross section for the initial state 1 to go into any final state
with spin J is bounded by the unitarity limit

σUL =
2J + 1

S1K

16π s

λ(s,m2,m′2)
, (13.262)

where as mentioned before S1 is 1/2 for indistinguishable particles and 1 for
distinguishable ones, and K is the total number of possible discrete quantum
numbers for the initial state35.

35For example, for an initial e+e− state we have S1 = 1, K = 4 : for an initial state of
two photons S1 = 1/2, K = 4, and for an initial state of two gluons S1 = 1/2, K = 256
since gluons come with 2 possible spin states and 8 different colour states.
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13.14 The CPT theorem

In this appendix, we shall discuss the very fundamental CPT theorem36 for
theories with interacting particles. This theorem deals with what happens (or
ought to happen) to scattering amplitudes when we relate various physical
scattering processes37. As usual, we shall start by looking at Dirac particles.

13.14.1 Transforming spinors

In Chapter 7, we defined the standard form for the various spinors corre-
sponding to an on-shell (anti)-particle with mass m and momentum pµ. We
recapitulate them here :

u±(p) = N(p) (/p+m)u∓(k0) ,

v±(p) = N(p) (/p−m)u∓(k0) ,

u+(k0) = /k1 u−(k0) , u−(k0)u−(k0) = ω−/k0 ,

N(p) = 1/
√

2(pk0) , k0
2 = (k0k1) = 0 , k1

2 = −1 . (13.263)

This is, of course, only a phase convention, where the phase choice is not
explicit but implied by the choice of k0, k1 and the complex phase of u−(k0).
Now, let us apply γ5 to these states. It is easy to see that

γ5 u+(p) = v+(p) , γ5 u−(p) = − v−(p) ,

u+(p) γ5 = −v+(p) , u−(p) γ5 = v−(p) . (13.264)

In words, what this transformation does is to change an incoming, right(left)-
handed fermion into an outgoing, left(right)-handed antifermion (and vice
versa). Thus we have (a) the interchange of particle and anti-particle (charge
conjugation, C), (b) the interchange of right- and left-handedness38 (parity
inversion, P), and (c) the interchange of initial and final state (time reversal
T), which goes by the name of CPT transformation39. Applied to Feyn-
man diagrams, we can depict this as follows (where we have indicated the

36Also known as the CTP theorem, the TCP theorem, the TPC theorem, the PTC
theorem, or the PCT theorem.

37Recall that, in these notes, we concentrate on the (perturbative)processes that are
going on, that is, scattering described by diagrams and amplitudes.

38Recall that for a particle + means right-handed, but for an antiparticle it means
left-handed (cf section 7.6.6)

39There is a slight subtlety here. An ingoing particle with three-momentum ~p is trans-
formed into an outgoing antiparticle with the same momentum ~p. Under P, momenta are
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helicity) :

+
→

+
, − → − −

+
→ −

+
, − → − . (13.265)

As we can see, the effect of CPT on any diagram is not only to interchange
initial and final states, but also to reverse the arrows on intermediate fermion
lines.

13.14.2 CPT transformation on sandwiches

Let us consider the scalar current for two on-shell momenta p1,2, with respec-
tive masses m1,2 :

Jλ1λ2 = uλ1(p1)uλ2(p2) . (13.266)

Under CPT, this scalar current behaves as follows :

J++ → Ĵ++ = −v+(p1)v+(p2) ,

J+− → Ĵ+− = v+(p1)v−(p2) . (13.267)

At first sight, these CPT transforms look nothing like the original. Note,
however, that using the standard form we can write them as traces :

J++ = N(p1)N(p2) Tr (ω−/k0(/p1 +m1)(/p2 +m2)) ,

J+− = N(p1)N(p2) Tr (ω−/k0(/p1 +m1)(/p2 +m2)/k1) , (13.268)

whereas

Ĵ++ = − N(p1)N(p2) Tr (ω−/k0(/p1 −m1)(/p2 −m2)) ,

Ĵ+− = N(p1)N(p2) Tr (ω−/k0(/p1 −m1)(/p2 −m2)/k1) , (13.269)

Keeping track of which terms in these traces actually survive40, we see that,
appearances notwithstanding,

Ĵλ1λ2 = Jλ1λ2 . (13.270)

inverted so that ~p becomes −~p : but under T the velocities are again inverted. The same
holds, of course, for spin vectors. It is only the fact that ”+” means right-handed for
particles and left-handed for antiparticles that ensures that the net result is just a change
of handedness.

40For J±±, these are the terms that contain an odd number of masses, for J±∓ those
with even numbers of masses survive.
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Similar (almost trivial) trace arguments show that, under CPT,

Jλ1λ2
µ = uλ1(p1) γµ uλ2(p2) → − Jλ1λ2

µ ,

Jλ1λ2
µν = uλ1(p1) γµγν uλ2(p2) → + Jλ1λ2

µν ,

Jλ1λ2
µνα = uλ1(p1) γµγνγα uλ2(p2)→ − Jλ1λ2

µνα , (13.271)

and so on.

13.14.3 CPT transformation on diagrams

Consider a nontrivial but very simple diagram, for simplicity taken from the
electroweak process

e−(p1)γ(q1)→ e−(p2)Z0(q2) :

(13.272)

Leaving out overall constants and denominators, this can be written as

M = Aµν ε̄µλZ (q2) ελγ
ν(q1) ,

Aµν = uλ2(p2)ωγµ (/q +m) γν uλ1(p1) ,

q = p1 + q1 = p2 + q2 , ω = gv + gaγ
5 , (13.273)

where we have indicated the handedness (helicity) of the external particles.
For the polarization vectors we take the representation given in Eq.(8.35),
and for /q we may, if we wish, use Eq.(7.69) to write

/q =
1

2
γα u+(q)γαu+(q) . (13.274)

Let us now see what happens if we apply CPT. In the first place,

/q → − /q , (13.275)

following immediately from Eq.(13.274)41 Therefore, Aµν transforms as

Aµν → −λ1λ2 vλ1(p2)ωγµ (−/q +m) γν vλ2(p1) . (13.276)

41Antoher approach might be to find a set of timelike, positive-energy momenta
k1,2,3,... with masses m1,2,3,..., and a set of constants c1,2,3,... such that

∑
j cjkj

α =
qα and

∑
j cjmj = m. Obviously, this is always possible. We can then write

/q + m =
∑
j cj(u+(kj)u+(kj) + u−(kj)u−(kj)), which under CPT are transformed into∑

j cj(−v+(kj)v+(kj)− v−(kj)v−(kj)) = −/q +m.
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The arguments given in the previous section show that this evaluates again
to Aµν itself. Finally, for the polarization vectors we have, for instance,

ελγ
ν → − ελγ ν = − ε̄ν−λγ , (13.277)

so that the CPT transform of an incoming, left(right)-handed photon can be
interpreted as that of an outgoing, right(left)-handed photon with the same
momentum, up to an overall minus sign. The same goes of course for ελZ

µ.
We see that, under CPT, the amplitude M remains unchanged42 : but the
interpretation is now that of the process

e+(p2)Z0(q2)→ e+(p1)γ(q1) ,

with the understanding that left(right)-handed particles have been replaced
by right(left)-handed ones. The corresponding Feynman diagram is now

, (13.278)

which may help you to understand the replacing of /q by −/q : in diagrammatic
terms, it comes from the fact that now q runs against the propagator’s arrow.

It is now easy to see that we can perform similar operations on every
conceivable Feynman diagram in our theory43, and we shall always find that
it transforms into itself. We say that our theory is CPT-invariant : if we
(a) replace every external particle by its antiparticle (and vice versa), (b)
interchange the initial and final states, and (c) interchange right- and left-
handed, then all amplitudes remain the same. This is the CPT theorem.

13.14.4 How to kill CPT, and what it costs

Like all such theorems, the CPT theorem can only be valid under a number
of circumstances. Here, we mention the most important of these.

42You might think that the fact that the two minus signs coming from the polarization
vector cancel so nicely is suspicious : but you should realize that if three external bosons
were involved there would be two internal fermion propagators instead of one.

43If push comes to shove, we can always write every vector quantity in the diagram
with spinors : we then end up with a massively complicated object containing loads of
(anti)spinors and their conjugates, but for the rest only fixed numbers or matrices ; for
such structures, we have already proven everything that is needed.
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In the first place, comparing the diagrams (13.272) and (13.278) we see
that we have implicitly assumed that the vertices of the theory are insensitive
to what is the ‘incoming’, and what the ‘outgoing’ particle : for instance, the
two vertices

µ

_
e

and

µ

e+

are both assigned the value iQγµ/h̄. More poignantly, in the electroweak
sector we use the same vertex for

U D

W
+

and

W
_

D
U

It is, of course, possible to let the vertex depend on the ‘orientation’ of
the (sub)process : such theories, which as we see are not easily expressed di-
agrammatically44, are called non-Hermitian. A non-Hermitian action would
ruin CPT.

In the second place, and more subtly, we have assumed that there is,
at least, the very possibility of a vacuum state through which particles can
move ; in the literature, this means that there is a state with lowest energy.
If the spectrum of the theory is not bounded from below, CPT is ruined :
but, again, it is not easy to see how any ordinary particle physics could be
alive under such circumstances45, whether CPT invariant or not.

In the last place, there is the issue of Lorentz invariance. We have as-
sumed that every vector hµ will, under CPT, turn into −hµ, and this is very
important for proving the CPT invariance of amplitudes. Suppose, now, that
we introduce into our theory a fixed vector46 fµ, simply a set of four uni-
versally defined47 numbers which enter nontrivially into the Feynman rules.
Such a vector would, under CPT, not turn into its opposite ; but neither
would it change under Lorentz transformations, it would simply remain fµ.
CPT would be ruined together with Lorentz invariance. A theory violating
CPT will therefore manifest itself in being Lorentz-noninvariant. You might

44At least in the way we have formulated things.
45In these notes, we take the existence of particles with a perturbative description for

granted.
46We speak of a ‘vector’ here in the sense that it has four components, not in the sense of

its behavior under coordinate transformations : indeed, the whole point is that it doesn’t
transform at all.

47Think of having some inspiration, or a voice from heaven engraving these numbers on
stone tablets.
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hope to avoid this by having, built into the fabric of the universe, some
physically meaningful vector quantity fµ, that does change with Lorentz
transformations48. Still, CPT would be ruined, but we must also conclude
that the ‘vacuum’ state is itself simply not Lorentz invariant since there is a
‘preferred momentum’.

Note that it is, in principle, possible to violate Lorentz invariance without
destroying CPT. For instance we can use a fixed ‘tensor’ fµν rather than a
vector fµ. Such a tensor does not change sign under CPT, exactly as it
should. We can then construct theories where Lorentz invariance is violated
but CPT invariance is not49.

We see that the conditions under which CPT symmetry holds are very
plausible and general, but they are not unavoidable. CPT may be ruined,
but we can see that by the concomitant violation of Lorentz invariance, either
in the interactions of the theory or in the structure of the vacuum itself !

13.15 Mathematical Miscellanies

In this section some collected mathematical issues are discussed which are
usueful in the main text, or maybe just of some interest.

13.15.1 The Gaussian doubling trick

The Gaussian integral

G =

∞∫
−∞

dx exp
(
−x2

)
(13.279)

is not easily computed in the standard manner. However, there is a ‘once
seen, never forgotten’ way of doing it, by doubling the integral and going
over to polar variables :

G2 =

∞∫
−∞

dx dy exp
(
−
(
x2 + y2

))
=

2π∫
0

dφ

∞∫
0

dr r exp
(
−r2

)
48Such a thing would be, for instance, the ‘momentum of the æther’.
49As an example, we can use, for the kinetic part of a Lagrangian, the object fµν∂µϕ ∂νϕ

rather than the usual gµν∂µϕ ∂νϕ.
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= 2π

∞∫
0

dr r exp
(
−r2

)
= π

∞∫
0

ds exp(−s) = π . (13.280)

13.15.2 The Dirac delta distribution

The Kronecker delta, as introduced in chapter 0, is defined for integer argu-
ments and reads

δm,n = θ(m = n) , (13.281)

so that

δn,m = 0 for m 6= n ,
∞∑

n=−∞
δm,n = 1 . (13.282)

The Dirac delta distribution50 is the continuum variant of this. Being a
distribution, it is really defined in the context of integration with a test
function51. The Dirac delta is commonly denoted by (surprise ! ) δ(x) and
its definition is

∞∫
−∞

dx δ(x− a) f(x) = f(a) (13.283)

for all test functions f(x). Viewed as some kind of function it therefore has
properties analogous to those in Eq.(13.282) :

δ(x) = 0 for x 6= 0 ,

∞∫
−∞

dx δ(x) = 1 . (13.284)

Applying partial integration (and assuming cavalierly that this is allowed ! )
we also find properties of its derivatives :

∞∫
−∞

dx δ′(x− a) f(x) = −f ′(a) ,

∞∫
−∞

dx δ′′(x− a) f(x) = +f ′′(a) ,

(13.285)
and so on. The Dirac delta can be viewed as the limit of a set of nonnegative
functions with unit integral, that are increasingly narrow and more and more

50Colloquially, the Dirac delta function, but it is really a distribution in the sense of
Schwartz.

51A test function has compact support and is inifinitely many times differentiable :
simplistically, it is a nice function.
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peaked at zero.

An important result that we use extensively in the text is

∞∫
−∞

dx exp(ixz) = 2π δ(z) , (13.286)

which we now ‘prove’. The above integral is not absolultely convergent since
| exp(izx)| = 1 and the integrand keeps oscillating between -1 and 1 forever.
To bring this under control, we introduce a small but positive number ε and
write

∞∫
−∞

dx exp(ixz) = lim
ε→0

∞∫
−∞

dx exp(−εx2 + ixz)

= lim
ε→0

∞∫
−∞

dx exp

(
−ε

(
x− iz

2ε

)2

− z2

4ε

)

= lim
ε→0

√
π

ε
exp

(
−z

2

4ε

)

= 2π lim
ε→0

1√
4πε

exp

(
−z

2

4ε

)
, (13.287)

and this is precisely a limit as discussed above. The use of the vanishingly
small but positive parameter ε here is, in fact, the same as its rôle in the
regularization of the path integral in section 5.2.2.

13.15.3 Generating the Bell numbers

In order to arrive at the generating function for the Bell number B(n), we
start with a more basic concept. By Bn(k) we denote the number of ways
to divide n distinct objects into k non-empty groups: we shall then have
B(n) =

∑
k≥0Bn(k). For zero objects, there is obviously only one way to

divide them, namely in zero groups:

B0(k) = δk,0 . (13.288)

If we have n− 1 objects distributed into k groups, we can let the nth object
form its own group, or add to one of the existing groups in k different ways.
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This gives us the recursion

Bn(k) = Bn−1(k − 1) + k Bn−1(k) , n ≥ 1 . (13.289)

Let now form the set of generating functions

φk(z) =
∑
n≥0

zn

n!
Bn(k) , k = 0, 1, 2, . . . (13.290)

From Eq.(13.288) we have that φ0(z) = 1, and from Eq.(13.289)

φ′k(z) = k φk(z) + φk−1(z) , φ0(z) = 1 (k ≥ 1) . (13.291)

It is easily checked that the unique solution to these inhomogeneous first-
order differential equations is

φk(z) =
1

k!

(
ez − 1

)k
, (13.292)

so that ∑
n≥0

zn

n!
B(n) =

∑
k≥0

φk(z) = e(ez−1) . (13.293)

13.15.4 Euler’s formula

Consider the following identity:

n∏
j=1

Γ(mj + 1) =

∞∫
0

n∏
j=1

(
dzj zj

mj e−zj
)
. (13.294)

In this integral, we employ the same technique as in sect.(13.9.1):

n∏
j=1

Γ(mj + 1) =

∞∫
0

n∏
j=1

(dzj zj
mj) exp

− n∑
j=1

zj


× ds δ

s− n∑
j=1

zj

 n∏
j=1

(
dxj δ

(
xj −

zj
s

))
. (13.295)



March 26, 2017 443

Eliminating the z’s in favor of the x’s gives

n∏
j=1

Γ(mj + 1) =

∞∫
0

ds dx1 · · · dxn sm1+···+mn+n−1 e−s

× x1
m1 · · ·xnmn δ(x1 + · · ·+ xn − 1) , (13.296)

and the final integral over s results in Euler’s formula:

1∫
0

dx1 · · · dxn x1
m1 · · ·xnmnδ(x1 + · · ·+ xn − 1) =

Γ(m1 + 1)Γ(m2 + 1) · · ·Γ(mn + 1)

Γ(m1 +m2 + · · ·+mn + n)
. (13.297)

13.15.5 The Kramers-Kronig relation

We consider a function f(z) that is analytic for =(z) > 0, and goes to zero
sufficiently fast as |z| → ∞,=(z) > 0. We may then construct a contour Γ
as indicated below :

Γ

x
Re z

Im z

The contour runs along the real axis from −∞ to +∞. At the point x it
circles around it, and a big half-circle then leads back from +∞ to −∞. By
Cauchy’s theorem, we have

∮
Γ

f(z)

z − x
dz = 0 ,
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since also f(z)/(z − x) is analytic on, and inside, Γ. Splitting the integral
into its various contributions, we therefore have

0 =

x−ε∫
−∞

f(z)

z − x
dz +

+∞∫
x+ε

f(z)

z − x
dz − 1

2

∮
z∼x

f(z)

z − x
dz , (13.298)

where we have assumed that the big half-circle does not contribute since
f(z)/(z − x) vanishes fast enough. The number ε is infinitesimal, and the
sum of the first two terms is called the principal value integral :

P
+∞∫
−∞

f(z)

z − x
dz ≡ lim

ε→0


x−ε∫
−∞

f(z)

z − x
dz +

+∞∫
x+ε

f(z)

z − x
dz

 . (13.299)

We therefore have the following equality:

P
+∞∫
−∞

f(z)

z − x
dz = iπ f(x) ; (13.300)

and by inspecting the real and imaginary parts separately we arrive at the
Kramers-Kronig relations

<f(x) =
1

π
P

+∞∫
−∞

=f(z)

z − x
dz = iπ f(x)

=f(x) =
−1

π
P

+∞∫
−∞

<f(z)

z − x
dz = iπ f(x) . (13.301)

13.15.6 The dilogarithm function

The dilogarithm function Li2(z) is defined by the following integral :

Li2(z) = −
z∫

0

du
1

u
log(1− u) , (13.302)

where the integration contour should not cross the cut in the logarithm (this
is usually chosen to be the real axis at z values larger than 1). By expanding
the logarithm for small values, we see immediately that

Li2(z) =
∑
n≥1

zn

n2
, |z| < 1 , (13.303)
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which is handy for evaluating the dilogarithm for small arguments. We also
see immediately that

Li2(1) =
∑
n≥1

1

n2
= ζ(2) =

π2

6
. (13.304)

There are a number of useful identities for the dilogarithm, of which we give
a number below. You can prove them by differentiating the left-hand and
right-hand sides with respect to z, and additionally checking them for some
special value such as z = 0 or z = 1 or so.

Li2(z) + Li2(−z) =
1

2
Li2(z2) ,

Li2(z) + Li2(1− z) =
π2

6
− log(z) log(1− z) ,

Li2(z) + Li2

(
1

z

)
= −π

2

6
− 1

2

(
log(−z)

)2
,

Li2(1− z) + Li2

(
1− 1

z

)
= −1

2

(
log(z)

)2
,

Li2(−z)− Li2(1− z) +
1

2
Li2

(
1− z2

)
= −π

2

12
− log(z) log(1 + z) .

(13.305)

Some other special values can also be derived using the above identitites :

Li2(−1) = −π
2

12
, Li2(0) = 0 ,

Li2(1/2) =
π2

12
− 1

2

(
log(2)

)2
, Li2(2) =

π2

4
− iπ log(2) .(13.306)

13.15.7 On values of the Zeta function

The value of ζ(2) given in the previous section, and more, can be found
using a beautiful almost-rigorous method due to Euler, which I cannot resist
including here. Consider the function sin(x)/x. This is an analytic function
that equals 1 for x = 0 and has zeroes whenever x = nπ, n = ±1,±2,±3, . . ..
We therefore have

sin(x)

x
=

∞∏
n=1

(
1− x2

n2π2

)

= 1− x2

π2

∞∑
n=1

1

n2
+
x4

π4

∞∑
n,m=1

θ(n < m)

n2m2
− · · · (13.307)
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Also, by Taylor expanding we have

sin(x)

x
= 1− x2

6
+

x4

120
− · · · (13.308)

By comparing the various powers of x in both expressions, we can immedi-
ately see that ζ(2) = π2/6. Also ζ(4) can be inferred :

ζ(4) =
∞∑
n=1

1

n4
=

( ∞∑
n=1

1

n2

)2

−
∞∑

n,m=1

θ(n 6= m)

n2m2

=

(
π2

6

)2

− 2

(
π4

120

)
=
π4

90
; (13.309)

and you can go much higher by hand — if you are Euler.

13.15.8 The Lagrange expansion

Here we deal with the solution of the equation

ξ = x+ f(ξ) . (13.310)

We shall assume that f(0) = 0 so that x and ξ ‘tend to be close’, especially
for small x. The task is to express ξ as a function of x and f(x) only. First
we note that ξ is given as the root of the equation

φ(y) = 0 , φ(y) = y − x− f(y) , (13.311)

which by our assumption of smallishness has only a single simple root in a
sufficiently small neighbourhood of y = 0. The function φ′(y)/φ(y) therefore
only has a simple pole at y = ξ, and we may write

ξ =
1

2πi

∮
dy y

φ′(y)

φ(y)
=

1

2πi

∮
dy

y
(
1− f ′(y)

)
y − x− f(y)

, (13.312)

where the contour is taken inside the region that contains only the single
pole. Since f(y) is small if x and y are in the neighbourhood of zero, we may
expand

ξ =
1

2πi

∮
dy
∑
n≥0

1

(y − x)n+1
y
(
1− f ′(y)

)
f(y)n

=
∑
n≥0

1

n!

(
∂

∂x

)n (
x f(x)n − x f ′(x) f(x)n

)
(13.313)
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The first term in the second line reads

x+
∑
n≥1

1

n!

(
∂

∂x

)n (
x f(x)n

)

which we can rewrite as

x+
∑
n≥1

1

n!

(
∂

∂x

)n−1

f(x)n +
∑
n≥1

1

(n− 1)!

(
∂

∂x

)n−1 (
x f ′(x) f(x)n−1

)
:

and the last term of this expression cancels against the last term in Eq.(13.313).
We are left with the following :

ξ = x+
∑
n≥1

1

n!

(
∂

∂x

)n−1

f(x)n . (13.314)

A note is in order here about the computational properties of this relation.
One might simply iterate Eq.(13.310) to arrive at the result, in the following
manner :

ξ = x ,

ξ = x+ f(x) ,

ξ = x+ f(x+ f(x)) ≈ x+ f(x) + f ′(x)f(x) , (13.315)

and so on, assuming f(x) and its derivatives to be small enough to warrant
Taylor expansion. This reproduces the Lagrange expansion.


