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Charged particle tracking with transformers
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Introduction

® \With modern layered detector design and electronic readout systems the
situation looks rather different

® However, constructing tracks by hand has for a while been completely unfeasible,
and so computational techniques such as the Kalman filter have been adopted

® But with upcoming HL-LHC even traditional computational techniques such as the

Kalman filter may prove too inefficient
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Transformers T
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u Hi ChatGPT, could you convert for me the following matrix of hits in three dimensions (n_hits, :
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3) to tracks?
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Certainly! Here are the hits that are part of one track based on the calculated z-coordinates:

® Asking ChatGPT is not the way...
® We have to do something more sophisticated
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Transformers - Encoder-only Regressor

® This architecture only uses an only an encoder as a regressor (sequence to sequence)
® Regresses track parameters, followed by clustering
® A one-shot approach, although extra clustering step is required
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https://arxiv.org/pdf/2407.07179

Transformers - Encoder-only Regressor

® What is the model actually learning? We can zoom into and print the attention scores of

the model

First attention layer Last attention layer




Current developments

® One of the main challenges is memory, HL-LHC data has O(100k) hits per event,
attention matrix 100k x 100k explodes quickly
® Transformers were originally designed for text processing, with limited max sequence

lengths (certainly less than 100k words!)
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® One of the main challenges is memory, HL-LHC data has O(100k) hits per event,
attention matrix 100k x 100k explodes quickly
® Transformers were originally designed for text processing, with limited max sequence
lengths (certainly less than 100k words!)
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Current developments

® One of the main challenges is memory, HL-LHC data has O(100k) hits per event,

attention matrix 100k x 100k explodes quickly
® Transformers were originally designed for text processing, with limited max sequence

lengths (certainly less than 100k words!)
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® Currently using preprocessing steps to evaluate what hits are certainly not in the s
track, and exclude them from calculation in the attention mechanism
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Submanifold Sparse Convolutions
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Sparse convolutions only consider input
"active sites” and the kernel does
process the entire image

This still causes sub manifold dilation

To remedly this, submanifold Sparse Output Submanifold Output
convolutions are proposed, which only a [mane| a2 n
calculate outputs for active input sites, gl i n

i.e. no dilation s




DBSCAN

e A point pis a core point if at least
minPts points are within distance € of it
(including p).

e A point gis directly reachable from p it
point g is within distance &€ from core
point p. Points are only said to be
directly reachable from core points.

e A point g is reachable from p if there is a

path p1, ..., pn wWith p1 = pand p, = g, In this diagram, minPts = 4. Point A and the other red points
where each pi.1 is directly reachable are core points, because the area surrounding these points
in an € radius contain at least 4 points (including the point
itself). Because they are all reachable from one another, they
form a single cluster. Points B and C are not core points, but
are reachable from A (via other core points) and thus belong

exception of q. to the cluster as well. Point N is a noise point that is neither
o All points not reachable from any other a core point nor directly-reachable.

from p;. Note that this implies that the
initial point and all points on the path
must be core points, with the possible

point are outliers or noise points




Spectral Clustering

Clusters uses connectivity between datapoints to create clusters.

Uses eigenvalues and eigenvectors of the data matrix to forecast the data into lower
dimensions space to cluster the data points. Based on the idea of a graph
representation of data where the data point are represented as nodes and the similarity
between the data points are represented by an edge.

K-means Spectral clustering
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The Davies-Bouldin score is defined as the average similarity measure of each cluster
with its most similar cluster, where similarity is the ratio of within-cluster distances to

between-cluster distances. Thus, clusters which are farther apart and less dispers
result in a better score.




Agglomerative Clustering

Agglomerative clustering iteratively adds closest points to clusters, starting with all
points as singleton clusters, until all points are connected, at which state a cut in the
distance results in a corresponding number of clusters
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Charformer
(Tay et al., 2021)

TokenLearner

Perceiver (Ryoo etal., 2021)

(Jaegle et al., 2021)

Transformer-XL
(Dai et al., 2019)

Nystromformer
(Xiong et al., 2019)

Memory /
Downsampling

Memory

Compressed
(Liu et al,, 2018)

Recurrence

Compressive

Transformer
(Rae et al., 2018)

Performer \
(Choromanski et al., 2020) \

Low-Rank Transformer
(Winata et al., 2020)

Set Transformer
(Lee etal., 2019)

. Clusterformer
Routing (Wang et al., 2020)
Transformer

(Roy et al., 2020)

Funnel
Transformer
(Dai et al., 2020)
ETC Big Bird

(Ainslie et al., 2020) (Zaheer et al., 2020)

Poolingformer
(Zhang et al., 2021)

Reformer
(Kitaev et al., 2020)

Longformer Swin
(Beltagy et al., 2020) Transformer

Clustered Attention

/ Sinkhorn (Vyas et al., 2020)
/ (Liu et al., 2020)
i Low Rank/ | Lona Short Transforme
Linformer ,‘ = gf i . (Tay etal., 2020b) |
wees.mm  Kernels —[Transtomer|  Fixed/Factorized/ | AN
— Random Patterns .
; ynthesizer '
Random Feature Atiention \SPBESES)/ CoNet Gshard  Transformer
SBT3 TS sy (Huang et al, 2018) (Lepikhin et al. 2020) (Conaass 2w
(Qiuetal., 2019)
Linear Sparse  clam
Transformer Sparse Transformer P (Du etal, 2021)
(Katharopoulos et al., 2020) Image Transformer €], Z5P) Switch
(Parmar et al., 2018) Transformer Product Key
Axial Transformer (Fedus et al, 2021) Memory

(Hoetal, 2019) (Lample et al,, 2019)

Scaling Transformer
(Jaszczur et al,, 2021)
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Efficient Transformers

Model / Paper Complexity | Decode | Class
Memory Compressed (Liu et al., 2018) O(N?) v FP+M
Image Transformer (Parmar et al., 2018) O(N.m) v FP

Set Transformer (Lee et al., 2019) O(kN) X M
Transformer-XL (Dai et al., 2019) O(N?) v RC
Sparse Transformer (Child et al., 2019) O(NVN) v FP
Reformer (Kitaev et al., 2020) O(NlogN) v LP
Routing Transformer (Roy et al., 2020) O(N+/N) v LP
Axial Transformer (Ho et al., 2019) O(NVN) v FP
Compressive Transformer (Rae et al., 2020) O(N?) v RC
Sinkhorn Transformer (Tay et al., 2020b) O(B?) v LP
Longformer (Beltagy et al., 2020) O(n(k +m)) v FP+M
ETC (Ainslie et al., 2020) O(NZ + NNg) X FP+M
Synthesizer (Tay et al., 2020a) O(N?) v LR+LP
Performer (Choromanski et al., 2020a) O(N) v KR
Funnel Transformer (Dai et al., 2020) O(N?) v FP+DS
Linformer (Wang et al., 2020c) O(N) X LR
Linear Transformers (Katharopoulos et al., 2020) O(N) v KR
Big Bird (Zaheer et al., 2020) O(N) X FP+M
Random Feature Attention (Peng et al., 2021) O(N) v KR
Long Short Transformers (Zhu et al., 2021) O(kN) v FP + LR
Poolingformer (Zhang et al., 2021) O(N) X FP+M
Nystromformer (Xiong et al., 2021b) O(kN) X M+DS
Perceiver (Jaegle et al., 2021) O(kN) v M-+DS
Clusterformer (Wang et al., 2020b) O(NlogN) X LP
Luna (Ma et al., 2021) O(kN) v M
TokenLearner (Ryoo et al., 2021) O(k?) X DS
Adaptive Sparse Transformer (Correia et al., 2019) O(N?) v Sparse
Product Key Memory (Lample et al., 2019) O(N?) v Sparse
Switch Transformer (Fedus et al., 2021) O(N?) v Sparse
ST-MoE (Zoph et al., 2022) O(N?) v Sparse
GShard (Lepikhin et al., 2020) O(N?) v Sparse
Scaling Transformers (Jaszczur et al., 2021) O(N?) v Sparse
GLaM (Du et al., 2021) O(N?) v Sparse
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Fitaccuracy scores

FitAccuracy Score
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