
A Hitchhikers Guide to Practical Quantum

Computing for High Energy Physics

Vincent Croft, Elias Combarro, Michele Grossi

November 2024



Chapter 1

Introduction - Shared
Concepts

1



Chapter 2

Wave Particle Duality...
without the Waves: A
Quantum Friendly
Introduction to the
Standard Model of Particle
Physics

2



Chapter 3

The Shortest of Circuits: A
physics friendly
introduction to quantum
computing with circuits

We have mentioned that quantum computing relies on quantum phenomena
such as superposition, entanglement, and interference to perform computations.
But what does this really mean? To make this explicit, we need to define a
particular computational model that allow us to describe mathematically how
to take advantage of all these properties.

There are many such models, including quantum Turing machines, measure-
ment based quantum computing (also known as one-way quantum computing),
or adiabatic quantum computing, and all of them are equivalent in power. How-
ever, the most popular one — and the one that we will be using today is the
quantum circuit model.

Every computation has three elements: data, operations, and output. In
the quantum circuit model, these correspond to some concepts that you may
have already heard about: qubits, quantum gates, and measurements. Through
the remainder of this chapter, we will briefly review all of them, highlighting
some special details that will be of particular importance when talking about
quantum machine learning and quantum optimization algorithms; at the same
time, we will show the notation that will be used throughout the book. But
before committing to that, let us have a quick overview of what a quantum
circuit is.

One of the advantages of using a computational model is that you can forget
about the particularities of the physical implementation of your computer and
focus instead on the properties of the elements on which you store information
and the operations you can perform on them. For instance, we could define a

3



qubit as a (physical) quantum system that is capable of being in two different
states. In practice, it could be a photon with two possible polarizations, a
particle with two possible values for its spin, or a superconducting circuit, whose
current can be flowing in one of two directions. When using the quantum
circuit model, we can forget about those implementation details and just define
a qubit... as a mathematical vector!

3.1 What is a qubit?

In fact, a qubit (short for quantum bit, sometimes also written as qbit, Qbit or
even q-bit) is the minimal information unit in quantum computing. In the same
way that a bit (short for binary digit) can be in state 0 or in state 1, a qubit
can be in state |0⟩ or in state |1⟩ using standard Dirac notation.

The possible values for the state of a single qubit are vectors that live in a
complex vector space of dimension 2 (in fact, they live in what is called a Hilbert
space, but since we will be working today only with finite dimensions, there is
no real difference). Thus we shall fix the vectors —0〉 and —1〉 as elements
of a special basis, which we will refer to as the computational basis. We will
represent these vectors, constituents of the computational basis, as the column
vectors

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
and hence

a |0⟩+ b |1⟩ = a

(
1
0

)
+ b

(
0
1

)
=

(
a
b

)
If we are given a qubit and we want to determine or, rather, estimate its

state, all we can do is perform a measurement and get one of two possible results:
0 or 1. We have nonetheless seen how a qubit can be in infinitely many states,
so how does the state of a qubit determine the outcome of a measurement?
As you likely already know, in quantum physics, these measurements are not
deterministic, but probabilistic. In particular, given any qubit a |0⟩+ b |1⟩, the
probability of getting 0 upon a measurement is |a|2, while that of getting 1 is
|b|2. Naturally, these two probabilities must add up to 1, hence the need for the
normalization condition |a|2 + |b|2 = 1

If upon measuring a qubit we get, let’s say, 0, we then know that, after
the measurement, the state of the qubit is |0⟩, and we say that the qubit has
collapsed into that state. If we obtain 1, the state collapses to |0⟩. Since we are
obtaining results that correspond to |0⟩ and |1⟩, we say that we are measuring in
the computational basis and a qubit is, mathematically, just a 2-dimensional
vector that satisfies a normalization condition.

4



3.2 Gates

Since a qubit is, fundamentally, a quantum system, its evolution follows the
laws of quantum mechanics. More precisely, if we suppose that our system is
isolated from its environment, it obeys the Schrödinger equation. However,
the only thing that you really need to know about quantum mechanics at this
stage is that its solutions are always a special type of linear transformations.
For the purposes of the quantum circuit model, since we are working in finite-
dimensional spaces and we have fixed a basis, the operations can be described by
matrices that are applied to the vectors that represent the states of the qubits.

3.2.1 Unitarity

But not any kind of matrix does the trick. According to quantum mechanics,
the only matrices that we can use unitary matrices, which are matrices U
such that

U†U = UU† = I

where I is the identity matrix and U† is the adjoint of U , that is, the matrix
obtained by transposing U and replacing each element by its complex conjugate.
This means that any unitary matrix U is invertible and its inverse is given by
U†. In the context of the quantum circuit model, the operations represented by
these matrices are called quantum gates.

3.2.2 X Gate (Not)

When we have just one qubit, our unitary matrices need to be of size 2×2
because the state vector is of dimension 2. Thus, the simplest example of a
quantum gate is the identity matrix of dimension 2, which transforms the state
of the qubit by... well, by not transforming it at all. A less boring example is
the X gate, whose matrix is given by

X =

(
0 1
1 0

)
The X gate is also called the NOT gate, because its action on the elements

of the computational basis is:

X |0⟩ =
(
0 1
1 0

)(
1 0

)
=

(
0
1

)
= |1⟩

and

X |1⟩ =
(
0 1
1 0

)(
0 1

)
=

(
1
0

)
= |0⟩

which is exactly what the NOT gate does in classical digital circuits.

5



3.2.3 Hadamard gate

A quantum gate with no classical analog is the Hadamard or H gate, given by

H =

(
1√
2

1√
2

1√
2

− 1√
2

)
=

1√
2

(
1 1
1 −1

)
This gate is extremely useful in quantum computing, for it can create su-

perposition. To be precise, if we apply the H gate on a qubit in state |0⟩, we
obtain

H |0⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ = 1√

2
(|0⟩+ |1⟩)

This state is so important that it has its own name and symbol. It is called the
plus state and it is denoted by |+⟩. In a similar way, we have that

H |1⟩ = 1√
2
(|0⟩ − |1⟩)

is called the minus state denoted by |−⟩

3.2.4 Z gate

Now we can start to apply several gates to the same qubit one after the other
constructing simple circuits. E.g. the circuit HXH transforms a |0⟩ state into
|0⟩ but |1⟩ into − |1⟩ this operation is also very important, and, of course, it has
its own name: we call it the Z gate. From its action on |0⟩ and |1⟩, we can tell
that its matrix will be

Z =

(
1 0
0 −1

)
something that we could have also deduced by multiplying the matrices of

the gates H, X, and H one after the other.

3.2.5 Pauli Matrices

Since there are X and Z gates, you may be wondering if there is also a Y gate.
Indeed, there is one, given by matrix

Y =

(
0 −i
i 0

)
The set I,X, Y, Z, are of course also known as the set of Pauli matrices, as

seen in your particle theory lectures. They are of great importance in quantum
computing. One of its many interesting properties is that it constitutes a basis
of the vector space of 2×2 complex matrices.

6



3.2.6 More gates

Other important one-qubit gates include the S and T gates, whose matrices are

S =

(
1 0
0 ei

π
2

)
, T =

(
1 0
0 ei

π
4

)
But, of course, there is an (uncountably!) infinite number of 2-dimensional

unitary matrices and we cannot just list them all here. What we will do instead is
introduce a beautiful geometrical representation of single-qubit states, and, with
it, we will explain how all one-qubit quantum gates can, in fact, be understood
as certain kinds of rotations on the Bloch Sphere.

3.3 Constructing Circuits

To put together everything that we have learned, we are going to create our
very first complete quantum circuit. It looks like this:

H

It doesn’t seem very impressive, but let’s analyze it part by part. As you
know, following convention, the initial state of our qubit is assumed to be |0⟩,
so that’s what we have before we do anything. Then we apply the H gate, so
the state changes to

√
1/2 |0⟩ +

√
1/2 |1⟩. Finally, we measure the qubit. The

probability of obtaining 0 will be |
√

1/2|2 = 1/2 and that of getting 1 will also
be 1/2, so we have created a circuit that — at least in theory — generates
random bits following a perfectly uniform distribution.

3.3.1 Rotations

We can modify the previous circuit to obtain any distribution over 0 and 1 that
we desire. If we want the probability of measuring 0 to be p ∈ [0, 1], we just
need to consider θ = 2arccos

√
p and the following circuit:

RY (θ)

With this we can now perform arbitary operations on each qubit of our
system. But not yet associate these qubits with each other.

7



3.4 Entangling gates

So far, we have worked with qubits in isolation. But the real power of quantum
computing cannot be unleashed unless qubits can talk to each other. We will
start by considering the simplest case of quantum systems in which there is
qubit interaction: two-qubit systems. Of course, in a two-qubit system, each
of the qubits can be in state |0⟩ or in state |1⟩. Thus, for the two qubits, we
have four possible combinations: both are in state |0⟩, the first one is in state
|0⟩ and the second one in state |1⟩, the first one is in state |1⟩ and the second
one in state |0⟩, or both are in state |1⟩. These four possibilities form a basis
(called the computational basis) of a 4-dimensional space and we denote them,
respectively, by

|0⟩ ⊗ |0⟩ , |0⟩ ⊗ |1⟩ , |1⟩ ⊗ |0⟩ , |1⟩ ⊗ |1⟩

Hence, the four basis states can be represented by four-dimensional column
vectors given by

|0⟩ ⊗ |0⟩ =


1
0
0
0

 , |0⟩ ⊗ |1⟩ =


0
1
0
0

 , |1⟩ ⊗ |0⟩ =


0
0
1
0

 , |1⟩ ⊗ |1⟩ =


0
0
0
1


Usually, we omit the ⊗ symbol and just write

|0⟩ |0⟩ , |0⟩ |1⟩ , |1⟩ |0⟩ , |1⟩ |1⟩

or

|00⟩ , |01⟩ , |10⟩ , |11⟩

or even

|0⟩ , |1⟩ , |2⟩ , |3⟩

As we have mentioned, these four states constitute a basis of the vector space
of possible states for a two-qubit system. The general expression for the state
of such a system is

|ψ⟩ = a00 |00⟩+ a01 |01⟩+ a10 |10⟩+ a11 |11⟩

where a00, a01, a10, and a11 are complex numbers representing the amplitudes.
If we measure in the computational basis both qubits at this generic state

that we are considering, we will obtain 00 with probability |a00|2 , 01 with
probability |a01|2, 10 with probability |a10|2, and 11 with probability |a11|2. In
all those cases, the state will collapse to the state corresponding to the outcome
of the measurement, just as with one-qubit systems.

Let’s now say that we only measure one of the qubits. What happens then?
Suppose that we measure the first qubit. Then, the probability of obtaining 0

8



will be |a00|2 + |a01|2, which is the sum of the probabilities of all the outcomes
in which the first qubit can be 0. If we measure the first qubit and the result
turns out to be 0, the system will not collapse completely, but it will remain in
the state

a00 |00⟩+ a01 |01⟩√
|a00|2 + |a01|2

where we have divided by
√
|a00|2 + |a01|2 to keep the state normalized.

Of course, the operations that we can conduct on two-qubit systems need to
be unitary. Thus, two-qubit quantum gates are 4×4 unitary matrices that act
on 4-dimensional column vectors. The simplest way to construct such matrices
is by taking the tensor product of two one-qubit quantum gates. Namely, if we
consider two one-qubit gates U1 and U2 and two one-qubit states |ψ1⟩ and |ψ2⟩,
we can form a two-qubit gate U1 ⊗ U2 that acts on |ψ1⟩ ⊗ |ψ2⟩ as

(U1 ⊗ U2)(|ψ1⟩ ⊗ |ψ2⟩) = (U1 |ψ1⟩)⊗ (U2 |ψ2⟩)

By linearity, we can extend U1 ⊗ U2 to any combination of two-qubit states
and we can associate a matrix to U1 ⊗ U2. In fact, said matrix is given by the
tensor product of the matrices associated to U1 and U2. Now it is easy (and
a good excercise) to verify that this operation is indeed unitary and, hence,
deserves the name of quantum gate. It’s easy to see that tensor products of gates
occur naturally when we have circuits with two qubits and pairs of individual
one-qubit gates are acting on each of them.

You may complain that we haven’t done anything new so far. And you
would be right! In fact, quantum gates that are obtained as the tensor product
of one-qubit gates can be seen as operations on isolated qubits that just happen
to be applied at the same time. But wait and see! In the next subsection, we
will introduce a completely different way of acting on two-qubit systems.

3.4.1 CNOT

In the two-qubit case, probably the most important unitary matrix that cannot
be written as the tensor product of other simple matrices is the controlled-NOT
(or controlled-X) gate, usually called the CNOT gate, given by the unitary
matrix 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


It’s a good exercise to compute the operation of this matrix in different

circumstances has the effect that that the value of the second qubit is flipped
if and only if the value of the first qubit is 1. Or, to put it in other words,
the application of a NOT gate on the second qubit (that we call the target)

9



is controlled by the first qubit. Now the name of this gate makes much more
sense, doesn’t it?

In a quantum circuit, the CNOT gate is represented as follows

Notice that the control qubit is indicated by a solid black circle and the target
qubit is indicated by the ⊗ symbol (the symbol for an X gate can also be used
instead of ⊗).

The most prominent use of the CNOT gate is, without a doubt, the ability
to create entanglement.

3.4.2 Entanglement

Oddly enough, in order to define when a quantum system is entangled, we first
need to define when it is not entangled. We say that a state |ψ⟩ is a product
state if it can be written as the tensor product of two other states |ψ1⟩ and |ψ2⟩,
each of at least one qubit, as in

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩

if |ψ⟩ is not a product state, we say that it is entangled. For example, |01⟩ is a
product state, because we know that it is just another way of writing |0⟩ ⊗ |1⟩.
Also,

√
1/2(|00⟩ + |10⟩) is a product state, because we can factor |0⟩ on the

second qubit. On the other hand,
√

1/2(|00⟩ + |11⟩) is an entangled state.
No matter how hard you try, it is impossible to write it as a product of two
one-qubit states.

When measured, entangled states can show correlations that go beyond what
can be ex- plained with classical physics. For instance, if we have the entangled
state

√
1/2(|00⟩ + |11⟩) and we measure the first qubit, we can obtain 0 or 1,

each with probability 1/2. However, if we measure the second qubit afterwards,
the result will be completely determined by the value obtained when measuring
the first qubit and, in fact, will be exactly the same. If we invert the order
and measure first the second qubit, then the result will be 0 or 1, with equal
probability. But, in this case, the result of a subsequent measurement of the
first qubit will be completely determined!

This phenomena is the basis for Chapter 5: Quantum Observables at Col-
liders, And, very importantly for us, entanglement is one of the most powerful
resources available in quantum computing.

3.4.3 Controlled Gates

You may be wondering if, in addition to a controlled-X (or CNOT) gate, there
are also controlled-Y , controlled-Z, or controlled-H gates. The answer is a
resounding yes and, in fact, for any quantum gate U , it is possible to define a
controlled-U (or, simply, CU) gate whose action on the computational basis is

10



CU |00⟩ = |00⟩ , CU |01⟩ = |01⟩ , CU |10⟩ = |1⟩U |0⟩ , CU |11⟩ = |1⟩U |1⟩

The circuit representation of a CU gate is similar to the one that we use for
the CNOT gate, namely

U

where the solid black circle indicates the control and the box with U inside
indicates the target. Constructing a controlled gate is simpler than it seems,
provided your quantum computer already implements rotation gates and the
two-qubit CNOT gate.

3.4.4 Soldering it up

To finish up let’s create entangled states with the help of the CNOT gate.
Consider the following circuit:

|0⟩ H

|0⟩

Initially, the state of the system is —00〉. After we apply the H gate, we get
into the state

√
1/2(|00⟩ + |10⟩) Finally, when we apply the CNOT gate, the

state changes to
√
1/2(|00⟩+ |11⟩) which is indeed an entangled state.

The state
√
1/2(|00⟩+ |11⟩) is known as a Bell state of which there are 4

the others being
√
1/2(|00⟩ − |11⟩),

√
1/2(|10⟩ + |01⟩) and

√
1/2(|10⟩ − |01⟩)

All of them are entangled, and they can be prepared with circuits similar to the
preceding one.

3.4.5 Multiple qubits

Now that we have mastered working with two-qubit systems, it will be fairly
straightforward to generalize all the notions that we have been studying to the
case in which the number of qubits in our circuits is arbitrarily big. You know
the drill: we will start by defining, mathematically, what a multi-qubit system
is, we will then learn how to measure it and, finally, we will introduce quantum
gates that act on many qubits at the same time.

Since n-qubit states are represented by 2n-dimensional column vectors, n-
qubit gates can be identified with 2n2n unitary matrices. Similar to the two-
qubit case, we can construct n-qubit gates by taking the tensor product of gates
on a smaller number of qubits. Namely, if U1 is an n1-qubit gate and U2 is an
n2-qubit gate, then U1 ⊗ U2 is an (n1 + n2)-qubit gate and its matrix is given
by the tensor product of the matrices U1 and U2.

11



However, there are n-qubit gates that cannot be constructed as tensor prod-
ucts of smaller gates. One such example is the Toffoli or CCNOT gate, a
three-qubit gate that acts on the computational basis as

CCNOT |x⟩ |y⟩ |z⟩ = |x⟩ |y⟩ |z ⊕ (x ∧ y)⟩

where ⊕ is the XOR function and ∧ is the symbol for the AND Boolean
function. Thus, CCNOT applies a doubly controlled (in this case, by the first
two qubits) NOT gate to the third qubit — hence the name!

The Toffoli gate is important because, using it and with the help of auxiliary
qubits, we can construct any classical Boolean operator. This shows that, with
quantum circuits, we can simulate the behavior of any classical digital circuit at
the cost of using some additional ancillary qubits, since any Boolean function
can be built with just negations and conjunctions. This is somewhat surprising,
because we know that all quantum gates are invertible, while not all Boolean
functions are. It then follows that we could make all of our digital circuits
reversible just by implementing a classical version of the Toffoli gate!

12



Chapter 4

Quantum Machine Learning

4.1 Circuit Engineering

We are all very much looking forward to having a “Q1 Pro” quantum chip
in our laptops, but — much to our regret — the technology is not there just
yet. Nevertheless, we do have some actual quantum computers that, with their
limitations, are able to execute quantum algorithms. And, furthermore, our
good old classical computers can actually do a very decent job at simulating
ideal quantum computers, at least for a low number of qubits. In this chapter,
we will explore the tools that allow us to implement quantum algorithms using
the quantum circuit model and run them on our laptops. We will begin by going
through some excercises using one of the most widely-used quantum software
frame-works available to date. PennyLane. PennyLane (https://pennylane.ai/)
is a quantum framework built specifically for quantum machine learning, but it
can perfectly be used as a general-purpose quantum computing framework. It is
quite a newcomer to the quantum programming scene and it is being developed
at Xanadu. Like Qiskit, it uses Python as a host language. Any quantum
algorithms written in PennyLane can be sent to real quantum computers and
executed in a broad collection of simulators. PennyLane is one of the best
frameworks out there when it comes to interoperability. Thanks to a wide
collection of plugins, you can export PennyLane circuits to other frameworks and
execute them there — taking advantage of some of the features that these other
frameworks may have. When it comes to machine learning, PennyLane provides
some built-in tools, but it is also highly inter-operable with classical machine
learning frameworks such as scikit-learn, Keras, TensorFlow, and PyTorch.

The way quantum circuits are built in PennyLane is fundamentally different
to the way they are constructed in other software such as Qiskit. In Qiskit, if we
wanted to implement a quantum circuit, we would initialize a QuantumCircuit
object and manipulate it with some methods; some of these methods would be
used to add gates to the circuit, some to perform measurements, and some to
specify where we wanted to extract information about the state of the circuit.

13



In PennyLane, on the other hand, if you want to run a circuit, you need two
elements: a Device object and a function that specifies the circuit. To put it
in simple terms, a Device object is PennyLane’s virtual analog of a quantum
device. It is an object with methods that allow it to run any circuit that it
is given (through a simulator, through an interface with other platforms, or
however it may be!). For example, if we have a circuit and we want to run it on
the default.qubit simulator (more on that later in this section) using two qubits,
we will need to use this device:

dev = qml.device(’default.qubit’, wires = 2)

Notice, by the way, how the number of qubits available is a property of the
device object itself.

Now that we have a device, we need to define the specification of our circuit.
As we mentioned earlier, that is as easy as defining a function. In this function,
we will execute instructions that will correspond to the actions of the quantum
gates that we want to use. Lastly, the output of the function will be whichever
information we want to get out of the circuit — whether it be the state of
the circuit, some measurement samples, or whatever it may be. Of course, the
output that we can get will depend on the device that we are using.

Let us illustrate this with an example:

def qc():

qml.PauliX(wires = 0)

qml.Hadamard(wires = 0)

return qml.state()

Here we have a very basic circuit specification. In this circuit, we get the
state vector (with qml.state()), after we first apply anX gate on the first qubit
and then an H gate on the first qubit too. We do this by calling, in sequence,
qml.PauliX and qml.Hadamard, specifying the wires on which we want the gates
to act. In most non-parametrized gates, wires is the first positional argument,
and it does not have a default value, so you need to provide one. In the case
of single-qubit gates, this value must be an integer representing the qubit on
which the gate is meant to act. Analogously, for multi-qubit gates, wires must
be a list of integers.

In regard to rotation gates, we can apply RX , RY , and RZ parametrized
by theta on a wire w using the instructions qml.RX(phi=theta, wires=w),

qml.RY(phi=theta, wires=w), and qml.RZ(phi=theta, wires=w) respectively.
In addition, the universal single-qubit gate U(θ, ϕ, λ can be applied on a wire w
calling qml.U3(theta, phi, lambd, w).

Lastly, the controlled Pauli gates can be applied on a pair of qubits w =
[w0, w1] using the instructions qml.CNOT(w), qml.CY(w) and qml.CZ(w). The
first wire, w0, is meant to be the control qubit, while the second one must be
the target. Controlled X, Y , and Z rotations parametrized by an angle theta
can be added with the instructions qml.CRX(theta, w), qml.CRY(theta, w),

and qml.CRZ(theta, w) respectively.

14



In any case, we now have a two-qubit device dev and we have a circuit
function qc. How do we assemble these two together and run the circuit? Easy,
all we have to do is execute the following:

qcirc = qml.QNode(qc, dev) # Assemble the circuit & the device.

qcirc() # Run it!

If we run this, we will get the following result,

tensor([ 0.70710678+0.j, 0. +0.j, -0.70710678+0.j,

0. +0.j], requires_grad=True)

which makes perfect sense, for we know that

(HX ⊗ I |00⟩ = (H ⊗ I) |10⟩ = 1√
2
(|00⟩ − |10⟩) ≈ (0.7071. . . )(|00⟩ − |10⟩).

Notice how, consistent with PennyLane’s convention for labelling states, the
state vector is returned as a list with the amplitudes of the states in the com-
putational basis. The first element corresponds to the amplitude state |0 · · · 0⟩,
the second one to that of |0 · · · 01⟩, and so on.

But I’m lazy, all this process of defining a function and assembling it with
a device seems overwhelmingly exhausting. Thankfully, the folks at PennyLane
were kind enough to provide a shortcut. If you have a device dev and want to
define a circuit for it, you could just do the following:

@qml.qnode(dev) # We add this decorator to use the device dev.

def qcirc():

qml.PauliX(wires = 0)

qml.Hadamard(wires = 0)

return qml.state()

# Now qcirc is already a QNode. We can just run it!

qcirc()

Now that is much cuter! By placing the @qml.qnode(dev) decorator before
the definition of our circuit function, it automatically became a QNode without
us having to do anything else.

We have seen how circuits in PennyLane are implemented as simple func-
tions, and this begs the question: are we allowed then to use parameters in
these functions? The answer is a resounding yes. Let us say that we want to
construct a one-qubit circuit, parametrized by a certain theta, which performs
an X-rotation by this parameter. Doing so is as easy as this:

dev = qml.device(’default.qubit’, wires = 1)

@qml.qnode(dev)

def qcirc(theta):

qml.RX(theta, wires = 0)

return qml.state()

15



And, with this, for any value theta of our choice, we can run qcirc(theta)

and get our result. This way of handling parameters is very handy and con-
venient. Of course, you can use loops and conditionals dependent on circuit
parameters within the definition of a circuit. The possibilities are endless!

If at any point you need to draw a circuit in PennyLane, that is not an
issue: it is fairly straightforward. Once you have a quantum node qcirc, you
can pass this node to the qml.draw function. This will itself return a function,
qml.draw(qcirc), which will take the same arguments as qcirc and will give
you a string that draws the circuit for each choice of those arguments.

So far, we have only performed simulations that return the state vector of
the circuit at the end of its executions, but, naturally, that is just one of the
many options that PennyLane provides. These are some, but not all, of the
return values that we can have in a circuit function:

• If we want to get the state of the circuit at the end of its execution, we
can, as we have seen, return qml.state().

• If we wish to get a list with the probabilities of each state in the com-
putational basis of a list of wires w, we can return qml.probs(wires =

w).

• We can get a sample of measurements in the computational basis of some
wires w by returning qml.sample(wires = w); the wires argument is op-
tional (if no value is provided, all qubits are measured). When we get a
sample, we have to specify its size by either setting a shots argument when
invoking the device or by setting it when calling the QNode.

We will explore some additional possibilities for return values shortly. But for
now we already know how to get the state of the circuit. In order to illustrate
the other return values that we may use, let us execute the following piece of
code:

dev = qml.device(’default.qubit’, wires = 3)

# Get probabilities

@qml.qnode(dev)

def qcirc():

qml.Hadamard(wires = 1)

return qml.probs(wires = [1, 2]) # Only the last 2 wires.

prob = qcirc()

print("Probs. wires [1, 2] with H in wire 1:", prob)

# Get a sample, not having specified shots in the device.

@qml.qnode(dev)

def qcirc():

qml.Hadamard(wires = 0)

return qml.sample(wires = 0) # Only the first wire.

s1 = qcirc(shots = 4) # We specify the shots here.

16



print("Sample 1 after H:", s1)

# Get a sample with shots in the device.

dev = qml.device(’default.qubit’, wires = 2, shots = 4)

@qml.qnode(dev)

def qcirc():

qml.Hadamard(wires=0)

return qml.sample() # Will sample all wires.

s2 = qcirc()

print("Sample 2 after H x I:", s2)

The output we got with this execution is the following (the samples returned in
your case will probably be different):

Probs. wires [1, 2] with H in wire 1: [0.5 0. 0.5 0. ]

Sample 1 after H: [0 1 0 0]

Sample 2 after H x I: [[1 0], [0 0], [0 0], [1 0]]

There might be a bit to unpack here. So, first of all, we are returned a
list of probabilities; these are, in accordance with PennyLane’s conventions, the
probabilities of getting 00, 01, 10, and 11. In these possible outcomes, the first
(leftmost) bit represents the outcome of the first measured qubit: in our case,
since we are measuring wires [1, 2], the second wire of the circuit, wire 1. The
second (rightmost) bit represents the outcome of the second measured qubit: in
our case, the third wire of the circuit. For example, the first number in the list
of probabilities represents the probability of getting 00(that is, 0in both wires).
The second number in the list would be the probability of getting 01(0in wire 1
and 1 in wire 2). And so on.

Lastly, in the next two examples, we are getting some measurement samples.
In the first case, we specify that we want to measure only the first qubit (wire
0), and, when we call the QNode, we ask for 4 shots; since we hadn’t specified
a default number of shots when defining the device, we need to do it in the
execution. And with that, we have a sample of the first qubit. In our case, the
results were first 0, then 1, and then two more zeros. In the last example, we
define a two-qubit circuit and we measure all the wires. We already specified
a default number of shots (4) when we defined the device, so we don’t need to
do it when calling the QNode. And, upon execution, we are given a sample
of measurements. Each item in the list corresponds to a sample. Within each
sample, the first element gives the result of measuring the first qubit of the
circuit, the second element the result of measuring the second qubit, and so on
it would go. For example, in our case, we see that in the first measurement we
obtained 1 on the first qubit and 0 on the second one.

So far, we have been working with devices based on the default.qubit sim-
ulator, which is a Python-based simulator with some basic functionalities. We
will introduce more simulators when we dive into the world of quantum machine
learning. For now, however, you should at least know about the existence of
the lightning.qubit simulator, which relies on a C++ backend and provides a

17



significant boost in performance, especially for circuits with a large number of
qubits. Its usage is analogous to that of the default.qubit simulator. Further-
more, there is a lightning.gpu simulator that can enable the Lightning simulator
to rely on your GPU. It can be installed as a plugin however such technology is
currently in a massive state of flux as the community and software develops.

18


