Intro to QC

Miriam Lucio Martínez Nikhef Maastricht University

Disclaimer

Twofold goal for today: what and why

- 1. What: introduceQuantum Computing & Quantum Machine Learning
- 2. Why: kickstart a community to look for useful applications of QML for Nikhef's community within **Nikhef ML/AI**

There is %not one single% question too naive/too silly to ask

Please ask away!

The schedule for today

14:00 → 14:20	Introduction to Quantum Computing	🕲 20m	•
	Speaker: Miriam Lucio Martinez		
14:20 → 14:40	Building A Dutch Quantum Computer Speaker: Ariana Torres (SURF)	③ 20m	•
14:40 → 15:00	Variational Algorithms Speakers: George Scriven, Xenofon Chiotopoulos	🕲 20m	•
15:00 → 15:20	A Hitchhikers Guide to (practical) Quantum Computing for HEP Speaker: Vince Croft HitchhikersMini.pdf	③ 20m	•

Quantum Computing in a nutshell

- Instead of **bits** we use **qubits**, the fundamental units of quantum information
 - Not 0 or 1, but a two-state quantum system \rightarrow coherent superposition of both
 - They can be **measured** \rightarrow probabilistic results
- There are **quantum logic gates** that operate on these qubits
 - Unitary transformations
 - Quantum gates can be **single** or **multiple**

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$
$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

Quantum Computing in a nutshell

A sequence of gates acting on a register of qubits is called a **quantum circuit**

Some computational problems can profit from **Quantum Computing** using the principles of **superposition** and **interference**.

Quantum Computing - Hardware

Several technologies are being explored as physical qubits:

Superconducting

IBM Google

Superconducting electric circuits at 10mK behave as quantum systems with discrete energy levels

Trapped ions

Charged atoms constrained in electromagnetic traps and manipulated with laser

Annealing

Ising-chain qubits interacting with a customizable Hamiltonian

Quantum Computing - Noise

All the previous technologies are far from being perfect. Current qubits are **noisy**:

- Measurement errors
- 1-qubit and 2-qubit gates fidelities
- T1 and T2 decoherence time
- Calibration
- → Noise Error Mitigation

Porting to hardware

IBM Quantum

ibm_perth OpenQASM 3

Details

7	Status:	• Online	Median CNOT error:	8.593e-3
Qubits	Total pending jobs:	1028 jobs	Median SX error:	3.052e-4
32	Processor type 🛈:	Falcon r5.11H	Median readout	2.510e-2
QV	Version:	1.2.8	Median T1:	110.66 us
2.9K	Basis gates:	CX, ID, RZ, SX, X	Median T2:	105.71 us
CLOPS	Your usage:	0 jobs	Instances with access:	1 Instances ↓

8

Porting to hardware

IBM Quantum

The world (python) is your quantum oyster

rigetti

HEP use-cases

<u>Summary of the QC4HEP WG</u>

- Focused mostly in projects concerning experimental particle physics at LHC
- For the majority of them: events are quantum in nature, but measurements are classical
- See colloquium that Vince gave a few weeks ag
 - <u>https://indico.nikhef.nl/event/5852/</u>

QC for Track Reconstruction

- QC has very interesting prospects of improvements in algorithm **complexity/timing**
- This talk: two track reconstruction algorithms
- Define **Ising-like** H^{TrackReco}(hits):

$$H = -\frac{1}{2} \sum_{ij} \omega_{ij} \sigma_z^i \sigma_z^j - \sum_i \omega_i \sigma_z^i$$

 $\rightarrow H_{min}^{TrackReco}$ == solution with the correct reconstructed tracks

HHL for Track Reconstruction [arXiv:2308.00619]

Differentiable Hamiltonian:

$$\nabla \mathcal{H} = 0 \Rightarrow A\mathbf{S} = \mathbf{b}$$

HHL: QC algorithm to solve the **system of linear equations**

Segment [S_{ab}]: combination of hit a and hit b \rightarrow in consecutive layers - for now

Hamiltonian accounts for **all** possible segments

Quantum Machine Learning

- The interface of **Quantum Computing** and **Machine Learning**
- Not a 1-1 correspondence with classical ML
- Potential for **large speedups** wrt classical
- However: watch out for barren plateaus
 - [talk by E. Combarro]

C - classical, Q - quantum

Imagine algorithms are cookies

Types of QML

- **Supervised ML:** Quantum Classifiers
- Unsupervised ML: Quantum

Generative Models

A bit of advertisement

Thanks for your attention!

QC and the NISQ era [arXiv:1801.00862]

NISQ: Noise Intermediate-Scale Quantum

HHL for Track Reconstruction [arXiv:2308.00619]

$$\begin{aligned} \mathcal{H}(\mathbf{S}) &= -\frac{1}{2} \left[\sum_{abc} f(\theta_{abc}, \varepsilon) S_{ab} S_{bc} + \gamma \sum_{ab} S_{ab}^2 + \delta \sum_{ab} (1 - 2S_{ab})^2 \right] \\ & \text{angular term} \qquad (a) \qquad (b) \\ f(\theta_{abc}, \varepsilon) &= \begin{cases} 1 & \text{if } \cos \theta_{abc} \ge 1 - \varepsilon \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

- (a) regularization term: makes the spectrum of A positive
- (b) gap term: ensures gap in the solution spectrum

Validation with a classical linear solver

LHCb MC event $B_s \rightarrow \phi \phi$ 1 collision event Half of the VELO

Validation with a classical linear solver

LHCb MC event $B_s \rightarrow \phi \phi$ 1 collision event Half of the VELO

Tracking performances with classical solver

• Very good performance **with LHCb MC**, but **high** circuit depth.

