Testing the strong-field dynamics of general relativity with direct gravitational-wave observations of merging binary neutron stars and black holes

J. Meidam, M. Agathos, L. van der Schaaf, C. Van Den Broeck

December 15, Nikhef Annual Meeting, Amsterdam

General relativity at its 100th birthday

- Gravitational physics encompasses important questions:
 - Relation between gravitational physics and quantum physics?
 - What is the nature of black holes?
 - How did the universe come into being and how did it evolve?

- How is general relativity holding up in experiments and observations?
 - Solar system:
 Perihelium precession of Mercury, Shapiro time delay,
 bending of starlight by the Sun, frame dragging, equivalence principle, ...
 - Cosmology
 - Radio observations of binary neutron stars

General relativity at its 100th birthday

- Gravitational physics encompasses important questions:
 - Relation between gravitational physics and quantum physics?
 - What is the nature of black holes?
 - How did the universe come into being and how did it evolve?

- How is general relativity holding up in experiments and observations?
 - Solar system:
 Perihelium precession of Mercury, Shapiro time delay, bending of starlight by the Sun, frame dragging, equivalence principle, ...
 - Cosmology
 - Radio observations of binary neutron stars

Existing tests only probe weak and/or stationary fields No access to even the classical strong-field dynamics of spacetime

Gravitational Waves

- Binary neutron stars in tight orbits lose orbital energy & angular momentum
 - Consistent with emission of gravitational waves
 - Hulse & Taylor Nobel Prize 1993
- Still weak-field dynamics from perspective of full general relativity
 - Typical velocity $\,v/c\sim 10^{-3}$
 - Typical field strength $\frac{GM}{c^2}R \sim 10^{-5}$
- Observe such objects as they merge?

Gravitational Waves

- Binary neutron stars in tight orbits lose orbital energy & angular momentum
 - Consistent with emission of gravitational waves
 - Hulse & Taylor Nobel Prize 1993
- Still weak-field dynamics from perspective of full general relativity
 - Typical velocity $v/c \sim 10^{-3}$
 - Typical field strength $\frac{GM}{c^2}R \sim 10^{-5}$
- Observe such objects as they merge?
 - Typical velocity v/c > 0.5
 - Typical field strength $\frac{GM}{c^2} > 0.2$

Need direct detection of gravitational waves

Coalescence of binary neutron stars and black holes

The inspiral of compact binaries

• Orbital motion during inspiral in terms of

$$\Psi(v) = \left(\frac{v}{c}\right)^{-5} \sum_{n=0}^{7} \left[\psi_n + \psi_n^{(l)} \ln \frac{v}{c}\right] \left(\frac{v}{c}\right)^n$$

- Up to factor 2, also the phase of GW signal
- In general relativity: ψ_n and $\psi_n{}^{(l)}$ are specific functions of component masses and spins

Probing the strong-field dynamics of spacetime

$$\Psi(v) = \left(\frac{v}{c}\right)^{-5} \sum_{n=0}^{7} \left[\psi_n + \psi_n^{(l)} \ln \frac{v}{c}\right] \left(\frac{v}{c}\right)^n$$

If no spins, then ψ_n and $\psi_n^{\ (l)}$ are only functions of masses

Only two of them are independent

Testing GR - Jeroen Meidam - Amsterdam

Probing the strong-field dynamics of spacetime

Want to combine information from all the sources we will detect In practice: measuring parameters not convenient Instead do *model selection* by computing an "odds ratio":

$$\mathcal{O}_{\rm GR}^{\rm modGR} = \frac{P(\mathcal{H}_{\rm modGR}|d, I)}{P(\mathcal{H}_{\rm GR}|d, I)}$$

Li et al., PRD ${\bf 85}, 083003~(2012);$ Agathos et al. PRD ${\bf 89}~082001~(2014)$

Background distribution

Model selection examples

Model selection examples

Model selection examples

- Deviation need not be a particular shift in one of the phasing terms
- Example: Anomalous frequency term

Visibility

Visibility

Binary Black Holes

- Very rich sources
- Modulation of orbit due to large spin-spin and spin-orbit interaction
- Merger within sensitivity band of detectors
 - Unveils genuinely strong field dynamics
- Ringdown also within band
 - First direct evidence for existence of black holes

Black hole ringdown

- Superposition of modes, characterized by mode frequencies and damping times: $\omega_{lm}(M,J)$ and $\tau_{lm}(M,J)$
- *No-hair theorem*: Final Black hole only depends on mass *M* and spin *J*
- Deviations from this prediction can be generically written as:

$$\omega_{lm} = \omega_{lm}^{\text{GR}}(M, J)(1 + \delta \hat{\omega}_{lm})$$

$$\tau_{lm} = \tau_{lm}^{\text{GR}}(M, J)(1 + \delta \hat{\tau}_{lm})$$

Test of No-hair theorem

Scenario: Measurements of odds ratio show no signs of violation

Test of No-hair theorem

Scenario: Measurements of odds ratio show no signs of violation

- Very stringent constraints on ringdown parameters possible
- Quadratic curvature corrections introduce relative shift of a factor of 2

Meidam et al., PRD 90, 064009 (2014)

Summary

- Gravitational waves will allow us to probe the genuinely strong-field dynamics of general relativity
- We have a model independent test of general relativity
 - Using inspiral coefficients
 - Using ringdown mode frequencies and damping times to test no-hair theorem
- Until 2014 pipeline only for binary neutron stars
- This year successfully extended to binary black hole regime